
1

Generating Pentium Code

2

x86 Quick Overview

• Registers:
– General purpose 32bit: eax, ebx, ecx, edx, esi, edi

• Also 16-bit: ax, bx, etc., and 8-bit: al, ah, bl, bh, etc.
– Stack registers:

• esp: stack pointer (like SaM SP, points to topmost stack address)
• ebp: frame base pointer (like SaM FBR)

• Instructions:
– Arithmetic: add, sub, inc, mod, idiv, imul, etc.
– Logic: and, or, not, xor
– Comparison: cmp, test
– Control flow: jmp, jcc, jecz
– Function calls: call, ret
– Data movement: mov (many variants)
– Stack manipulations: push, pop
– Other: lea

Note on register names

• AX/EAX/RAX: accumulator
• BX/EBX/RBX: base
• CX/ECX/RCX: counter
• DX/EDX/RDX: data/general
• SI/ESI/RSI: "source index" for string operations.
• DI/EDI/RDI: "destination index" for string operations.
• SP/ESP/RSP: stack pointer for top address of the stack.
• BP/EBP/RBP: stack base pointer for holding the address of the

current stack frame.
• IP/EIP/RIP: instruction pointer. Holds the current instruction

address.

Registers are general-purpose: can be used for anything
programmer wants

Historically, the registers were intended to be used as shown
below, hence their odd names:

Instruction set

• SaM: zero-address instruction set
– instructions popped operands from stack and pushed result on stack

• X86 instruction set: two-address instruction set
– Op a, b

• a,b specify the two operands
• result of operation is stored in b
• a,b: registers or memory address
• at most one operand can be in memory
• memory addresses can be specified as offset from ebp (or other

registers)
– SaM: PUSHOFF 8 x86: pushl 8(%ebp)
– more generally, address can be specified as disp(base,offset,scale)

– Examples:
• addl $3, %eax //add constant 3 to register eax
• movl %eax, %ebx //move contents of register eax to register ebx
• movl 8(%ebp), %eax //move contents at memory address (8 + contents(ebp))

//to register eax
• movl %eax, 4(%ebx,%ecx,4) //effective address is 4 + contents(%ebx) + 4*contents(%ecx)

CS 412/413 Spring 2008 Introduction to Compilers 5

Key differences from SaM(1)
Memory Layout

Code

Locals,
parameters

Static area

Stack

Object fields,
arrays

Globals,
Static data

Heap

low

high

Key differences from SaM (2)

Storing value 0x0A0B0C0D in memory

x86 is “little-endian”

SaM dealt only with 32-bit words and word addresses.

x86 instruction set can address bytes and supports data of different sizes,
so you have to be aware of the representation of data.

How are 32-bit quantities stored in memory?

Key differences from SaM (3)

• SaM had no general-purpose registers
• x86 has general-purpose registers

– some registers might be in use when a procedure
call is made

– must save/restore registers so that values in
registers survive across the call

• gcc convention:
– caller save: eax,ecx,edx
– callee save: ebp,ebx,esi,edi
– esp is stack pointer
– important if you want to link your compiled code with

C library compiled with gcc

gcc stack frame

smaller addresses

Similar to SaM stack frame but

- arguments are pushed right to left

f(arg1,arg2,…,argN)

- registers are saved by caller and callee

- ebp (FBR) is one of callee save registers

- eax is used to return a value from functionesp

ebp

Example (gcc)

//save register esi
//x esi

//esi + 3 esi
//eax now has return value
//restore esi

// save ebp
//ebp points to current frame

//pop local variables
//restore ebp

CS 412/413 Spring 2008 Introduction to Compilers 10

Code Generation
• Three-address code makes it easy to generate assembly

– Complex expressions in the input program already lowered to
sequences of simple IR instructions

– Just need to translate each low IR instruction into a sequence of
assembly instructions

e.g. a = p+q mov 16(%ebp), %ecx
add 8(%ebp), %ecx
mov %ecx, -8(%ebp)

• Need to consider many language constructs:
– Operations: arithmetic, logic, comparisons
– Accesses to local variables, global variables
– Array accesses, field accesses
– Control flow: conditional and unconditional jumps
– Method calls, dynamic dispatch
– Dynamic allocation (new)
– Run-time checks

CS 412/413 Spring 2008 Introduction to Compilers 11

Accessing Stack Variables

• To access stack variables:
use offsets from ebp

• Example:
8(%ebp) = parameter 1
12(%ebp) = parameter 2
-4(%ebp) =local 1

Param n

Param 1

Return address
Previous fp

…

Local 1

Local n
…

ebp

Param 1

Param n

…

esp

ebp+8

ebp-4

ebp+…

CS 412/413 Spring 2008 Introduction to Compilers 12

Accessing Stack Variables
• Translate accesses to variables:

– For parameters, compute offset from %ebp using:
• Parameter number
• Sizes of other parameters

– For local variables, decide on data layout and assign offsets
from frame pointer to each local

– Store offsets in the symbol table

• Example:
– a: local, offset-4
– p: parameter, offset+16, q: parameter, offset+8
– Assignment a = p + q becomes equivalent to:

-4(%ebp) = 16(%ebp) + 8(%ebp)
– How to write this in assembly?

CS 412/413 Spring 2008 Introduction to Compilers 13

Arithmetic
• How to translate: p+q ?

– Assume p and q are locals or parameters
– Determine offsets for p and q
– Perform the arithmetic operation

• Problem: the ADD instruction in x86 cannot take both operands
from memory; notation for possible operands:
– mem32: register or memory 32 bit (similar for r/m8, r/m16)
– reg32: register 32 bit (similar for reg8, reg16)
– imm32: immediate 32 bit (similar for imm8, imm16)
– At most one operand can be mem !

• Translation requires using an extra register
– Place p into a register (e.g. %ecx): mov 16(%ebp), %ecx
– Perform addition of q and %ecx: add 8(%ebp), %ecx

CS 412/413 Spring 2008 Introduction to Compilers 14

Data Movement
• Translate a = p+q:

– Load memory location (p) into register (%ecx) using a move instr.
– Perform the addition
– Store result from register into memory location (a):

mov 16(%ebp), %ecx (load)
add 8(%ebp), %ecx (arithmetic)
mov %ecx, -8(%ebp) (store)

• Move instructions cannot have two memory operands
Therefore, copy instructions must be translated using an extra register:

a = p ⇒ mov 16(%ebp), %ecx
mov %ecx, -8(%ebp)

• However, loading constants doesn’t require extra registers:
a = 12 ⇒ mov $12, -8(%ebp)

CS 412/413 Spring 2008 Introduction to Compilers 15

Accessing Global Variables
• Global (static) variables and constants not stack allocated
• Have fixed addresses throughout the execution of the program

– Compile-time known addresses (relative to the base address where
program is loaded)

– Hence, can directly refer to these addresses using symbolic names in
the generated assembly code

• Example: string constants

str: .string “Hello world!“

– The string will be allocated in the static area of the program
– Here, “str” is a label representing the address of the string
– Can use $str as a constant in other instructions:

push $str

CS 412/413 Spring 2008 Introduction to Compilers 16

Accessing Heap Data
• Heap data allocated with new (Java) or malloc (C/C++)

– Such allocation routines return address of allocated data
– References to data stored into local variables
– Access heap data through these references

• Array accesses in language with dynamic array size
– access a[i] requires:

• Compute address of element: a + i * size
• Access memory at that address

– Can use indexed memory accesses to compute addresses
– Example: assume size of array elements is 4 bytes, and local variables

a, i (offsets –4, -8)

a[i] = 1 mov –4(%ebp), %ebx (load a)
mov –8(%ebp), %ecx (load i)
mov $1, (%ebx,%ecx,4) (store into the heap)

CS 412/413 Spring 2008 Introduction to Compilers 17

Control-Flow
• Label instructions

– Simply translated as labels in the assembly code
– E.g., label2: mov $2, %ebx

• Unconditional jumps:
– Use jump instruction, with a label argument
– E.g., jmp label2

• Conditional jumps:
– Translate conditional jumps using test/cmp instructions:
– E.g., tjump b L cmp %ecx, $0

jnz L
where %ecx hold the value of b, and we assume booleans are
represented as 0=false, 1=true

CS 412/413 Spring 2008 Introduction to Compilers 18

Run-time Checks
• Run-time checks:

– Check if array/object references are non-null
– Check if array index is within bounds

• Example: array bounds checks:
– if v holds the address of an array, insert array bounds checking

code for v before each load (…=v[i]) or store (v[i] = …)
– Assume array length is stored just before array elements:

cmp $0, -12(%ebp) (compare i to 0)

jl ArrayBoundsError (test lower bound)

mov –8(%ebp), %ecx (load v into %ecx)

mov –4(%ecx), %ecx (load array length into %ecx)

cmp –12(%ebp), %ecx (compare i to array length)

jle ArrayBoundsError (test upper bound)

. . .

CS 412/413 Spring 2008 Introduction to Compilers 19

X86 Assembly Syntax
• Two different notations for assembly syntax:

– AT&T syntax and Intel syntax
– In the examples: AT&T (gcc) syntax

• Summary of differences:

Order of operands op a, b : b is destination op a, b : a is destination

Memory addressing disp(base,offset,scale) [base + offset*scale + disp]

Size of memory
operands

instruction suffixes (b,w,l)
(e.g., movb, movw, movl)

operand prefixes
(byte ptr, word ptr, dword ptr)

Registers %eax, %ebx, etc. eax, ebx, etc.

Constants $4, $foo, etc 4, foo, etc

AT&T Intel

