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Top-down parsing

Top-down parsing

• Top-down parsing expands a parse tree 
from the start symbol to the leaves
– Always expand the leftmost non-terminal

E

T E
+

int   *    int  +   int

Top-down parsing II
• Top-down parsing expands a parse tree 

from the start symbol to the leaves
– Always expand the leftmost non-terminal

E

int T
*

T E
+

int   * int +   int

• The leaves at any point 
form a string βAγ
– β contains only terminals
– The input string is βbδ
– The prefix β matches
– The next token is b

Top-down parsing III
• Top-down parsing expands a parse tree 

from the start symbol to the leaves
– Always expand the leftmost non-terminal

E

int T
*

int

T E
+

T

int   *    int  + int

• The leaves at any point 
form a string βAγ (A=T, γ=ε)
– β contains only terminals
– γ contains any symbols
– The input string is βbδ (b=int)
– So Aγ must derive bδ
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Top-down parsing IV

• Top-down parsing expands a parse tree 
from the start symbol to the leaves
– Always expand the leftmost non-terminal

E

int T
*

int

T E
+

T

int

int   *    int  +   int

• So choose production for T that 
can eventually derive something 
that starts with int

LL(k) parsing

E

int T
*

T E+

int   * int +   int

Current sentential form:  int * T + E

Look-ahead (1):  int
Look-ahead (2):  int +
Look-ahead (3):  int + int

LL(1) parser: determines next production
in leftmost derivation, looking ahead by one
terminal 
Key question: How do we choose the next 
production systematically?

Overview
• We will focus on LL(1) parsers. 

– Generalization: LL(k) parsers
• LL(1) parsers require three sets called

– nullable
– FIRST
– FOLLOW

• Given these sets, you can write down a recursive-descent parser
• Simplification

– nullable and FOLLOW are only required if the grammar has ε productions
• Game plan

– start with grammars without ε productions (we saw this informally)
– then add ε productions
– end with an iterative, stack-based implementation of top-down parsing

Example 1
• Restriction on grammar:

– for each non-terminal
• productions begin with terminals
• no two productions begin with same terminal

– so no ε productions
• Algorithm for parsing: 

– one procedure for each non-terminal
– In each procedure, peek at the next token to determine which rule to apply

• Example:
S id := E |if E then S else S |while E do S

procedure S
case peekAtToken() of

id : match(id); match(:=); E; break;
if: match(if); E; match(then); S; match(else); S; break;
while: match (while); E; match(do); S; break;
otherwise error
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LL(1) Parsing Table

while E do Sif E then S else Sid:= ES

whiledoelsethenif:=idT

• Consider the T[S, if] entry
– Means “When current non-terminal is S and next input token is “if”, use 

production  S if E then S else S”
• Given this table, we can construct the recursive code trivially.
• How do we generate parsing tables automatically?

S id := E |if E then S else S |while E do S

FIRST sets
• FIRST: non-terminal subset of terminals

– b ∈ FIRST(N) if N ∗ bδ

• Construction: 
– for each non-terminal A

• for each rule A tγ, add constraint: t is in FIRST(A) 
– find smallest sets that satisfy all constraints

• For our example grammar, 
S id := E |if E then S else S |while E do S
set of terminals = {id, :=, if, then, else, while, do}

Constraints:
– id ∈ FIRST(S)
– if  ∈ FIRST(S)
– while ∈ FIRST(S)

• There are many sets that satisfy these constraints
(eg) {id,if,while}, {id,if,while,:=}, {id,if,while,do,:=},….

• We want the smallest set that satisfies all constraints
– FIRST(S) = {id,if,while}

• Extension: it is convenient to extend FIRST to any string γ:
– b ∈ FIRST(γ) if γ ∗ bδ

Constructing Parsing Tables

• Construct a parsing table T for CFG G
• For each production  A → α in G do:

– For each terminal b ∈ First(α) do
• T[A, b] = A α

• Conflict: two or more productions in one table 
entry
– Grammar is not LL(1)
– We may or may not be able to rewrite grammar to be 

LL(1)

Example 2
• Some productions may begin with non-terminal
• Example:

S XY | YX
X a b
Y b a

It is clear that we can parse S as follows:

procedure S 
case peekAtToken() of 

a: X ; Y
b: Y ; X

otherwise error
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FIRST sets
• Construction: for each non-terminal A

• for each rule A tγ, t ∈ FIRST(A) 
• for each rule A Bγ, FIRST(B) ⊆ FIRST(A)

• For our example, rules give
– FIRST(X) ⊆ FIRST(S)
– FIRST(Y) ⊆ FIRST(S)
– a ∈ FIRST(X)
– b ∈ FIRST(Y)

• If we solve these constraints, we get 
– FIRST(X) = {a}
– FIRST(Y) = {b}
– FIRST(S) = {a,b}

Constructing Parsing Tables

• Same as before
• For each production  

A → α in G do:
– For each terminal 

t ∈ First(α) do
• T[A, t] = A α b aY

a bX

YXXYS

baT

What if a grammar is not LL(1)?
• Table conflicts:

– two or more productions in some T[A,t]
• Example:

S a b | a c
T[S,a] contains both productions so grammar is not LL(1)

• Some non-LL(1) grammars can be rewritten to be LL(1)
• Example can be left-factored

S a S’
S’ b | c

• When writing recursive parser by hand, you can hack code to avoid 
left-factoring

procedure S
match(a);
case input_roken of 

b: match(b);
c: match(c);
otherwise error

Left-recursion
• Grammar is left-recursive if for some non-terminal A 

A *  Aγ
• Example: lists

T L ;
L id | L , id

• Grammars can be rewritten to eliminate left-recursion
T id R
R ; | , id R

• Hack to avoid doing this in code
procedure L

match(id);
while (input_token == ,) {

match(,); match(id);
}
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ε productions
• Non-terminal N is nullable if N + ε
• Example:

S AB$
A a | ε
B b

• When should you use the A ε production?
• One solution:

– Ignore ε productions and compute FIRST
– Table[A,a] = A a
– all other entries for A: A ε

• This is bad practice
– errors should be caught as soon as possible
– what if next input token was $?

• Solution:
– if we use A ε production to derive a legal string, next token in input must be b
– if next token is b, use A ε production; otherwise report error

• How do we describe this formally?

FOLLOW sets

• FOLLOW: Non-terminal subset of terminals
• b ε FOLLOW(A) if S * …Ab…
• To compute FOLLOW(A), we must look at RHS of 

productions that contain A
• Example:

S AB$
A a | ε
B b

• FOLLOW(B) = {$}
• FOLLOW(A) = FIRST(B)
• But ε rules change FIRST computation as well!

– FIRST(S) needs to take into account the fact that A is nullable
• How do we get all this straight?

Game plan

1. Compute set of nullable non-terminals
2. Use nullable set to compute FIRST
3. Use FIRST to compute FOLLOW
4. Use FIRST and FOLLOW sets to 

populate LL(1) parsing table

Computing Nullable

• Set up constraints for nullable set of non-terminals 
as follows:
– Nullable ⊆ Non-terminals
– A ε

A ∈ Nullable
– A ..t…

no constraint
– A BC..M

if B,C,…,M ∈ Nullable, then A ∈ Nullable

• Find least set that satisfies all constraints
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Example
Z → d                              no constraint
Y →ε Y ∈ Nullable
X → Y                             if Y ∈ Nullable, X ∈ Nullable
Z → X Y Z                       if X,Y,Z ∈ Nullable, Z ∈ Nullable
Y → c                              no constraint
X → a                              no constraint

So constraints are
Y ∈ Nullable
if Y ∈ Nullable then X ∈ Nullable
if X,Y,Z ∈ Nullable then Z ∈ Nullable

Solution: nullable = {X,Y}

Computing First Sets

Definition      First(X) = { b | X →* bα}
1. First(b) = { b } for b any terminal symbol
2. For all productions X → A1 … An

• First(A1)  ⊆ First(X) 
• First(A2)  ⊆ First(X) if A1 ∈ Nullable
• …
• First(An)  ⊆ First(X) if  A1…An-1 ∈ Nullable

Note: X ε does not generate any constraint
3. Solve

Example
Z → d                              {d} ⊆ FIRST(Z)
Y →ε no constraint
X → Y                             FIRST(Y) ⊆ FIRST(X)
Z → X Y Z                       FIRST(X) ⊆ FIRST(Z)

FIRST(Y) ⊆ FIRST(Z)
FIRST(Z) ⊆ FIRST(Z)

Y → c                              {c} ⊆ FIRST(Y)
X → a                              {a} ⊆ FIRST(X)

Solution:
FIRST(X) = {a,c}
FIRST(Y) = {c}
FIRST(Z) = {a,c,d}

Computing Follow Sets
Definition      Follow(X) = { b | S →* β X b ω }

1. For all productions Y → … X A1 … An
First(A1)  ⊆ Follow(X)
First(A2)  ⊆ Follow(X) if A1 ∈ nullable
…
First(An)  ⊆ Follow(X) if A1,..,An-1 ∈ nullable
Follow(Y)  ⊆ Follow(X) if A1,..,An ∈ nullable

2. Solve.
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Example
Z → d                              no constraint
Y →ε no constraint
X → Y                             FOLLOW(X)  ⊆ FOLLOW(Y)
Z → X Y Z                       FIRST(Y)  ⊆ FOLLOW(X)

FIRST(Z)  ⊆ FOLLOW(X)
FIRST(Z)  ⊆ FOLLOW(Y)

Y → c                              no constraint
X → a                              no constraint

Solution:
FOLLOW(X) = {a,c,d}
FOLLOW(Y) = {a,c,d}
FOLLOW(Z) = {}

Computing nullable,FIRST,FOLLOW

Constructing Parsing Table

• For each production  A → α in G do:
– For each terminal b ∈ First(α) do

• T[A, b] = α
– If α is nullable, for each b ∈ Follow(A) do

• T[A, b] = α

LL(1) Parsing Table Example
E → T X                               X → + E | ε
T → ( E ) | int Y                   Y → * T | ε

( E )int YT

εεε* T Y
εε+ EX

T XT XE

$)(+*int

Follow( E ) = {), $} 
Follow( X ) = {$, ) }
Follow( Y ) = {+, ) , $}
Follow( T ) = {+, ) , $}

First( T ) = {int, ( }
First( E ) = {int, ( }
First( X ) = {+}
First( Y ) = {*}
X and Y are nullable
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Notes on LL(1) Parsing Tables
• If any entry is multiply defined then G is not 

LL(1). This happens
– If G is ambiguous
– If G is left recursive
– If G is not left-factored
– And in other cases as well

• Most programming language grammars are not 
LL(1)

• We can produce the recursive parser 
systematically from the parsing table. 

Iterative LL(1) parser

• It is also possible to design an iterative 
parser that uses an explicit stack and
– pushes and pops stuff from the stack 
– examines token from input

to decide how to parse the program.
• Useful to study this to make a connection 

with bottom-up parsing, which are always 
presented using an iterative parser. 

Pushdown automata

• Here’s one way of thinking about context-
free grammars and parsing

– write down a “transition diagram” for each 
production (note that it has transitions 
labeled with non-terminals)

– the pushdown automaton begins 
execution with the transition diagram for 
the start symbol by pushing that state on 
the stack

– as long as the states it encounters have 
transitions labeled with terminals, it 
behaves just like a real FSA

– however, when it encounters a transition 
labeled with a non-terminal (say N), it 
begins execution with the “transition 
diagram” for N by pushing the start state 
of that transition diagram on the stack

– when the transition diagram for N reaches 
an accepting state, it is popped from the 
stack, and previous transition diagram 
continues execution by taking an N 
transition

– the string is accepted if the pushdown 
automaton reaches the end of the input, 
and the stack only contains the final state 
for the transition diagram of the start 
symbol

P S$    S (S)      S a

P

S

S $

(
S )

a

Universal
FSA

Controller…. Stack

Input string

Transition diagram

• Convenient to label states 
using productions with 
dots to show how far 
parsing has gotten
– (eg) P S.$: we have seen 

S and we are expecting to 
see a $

P S$    S (S)      S a

P S$.P .S$

S .(S)
S .a

$

(
S )

a

P S.$S

S (.S) S (S.) S (S).

S a.
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Building an iterative LL(1) parser

• Draw dashed arrows as 
shown to denote the 
pushdown of state
– these would have been 

procedure calls in the 
recursive code 

• Now you can just number 
the states and perform 
combinations of
– eat one token from input
– push a new state on the 

pushdown stack
– topmost transition diagram 

accepts a substring of input

P S$    S (S)      S a

P S$.P .S$

S .(S)
S .a

$

(
S )

a

P S.$S

S (.S) S (S.) S (S).

S a.

S .F
S .(S+F)

S F.

S (.S+F) S (S.+F) S (S+.F) S (S+F.) S (S+F).

F .a F a.

F

(

S + F )

a

0 1

2 3 4 5 6

7 8

a

3

0

1

2

3

4

5

6

7

8

( a + ) S F

s2 g7 1

r1 r1 r1 r1

g0 g0 g0g0

s4

5

s6

r2 r2 r2 r2

s8

r3 r3 r3 r3

P1: S F
P2: S (S+F)
P3: F a

Actions:
sn : eat one token from input and go to state n
gn: push state n
rm: pop topmost state on stack

let new topmost state on stack be s
let non-terminal of production m be N
replace topmost state on stack by
state T[s,N]

g7 g7 g7 g7

S .F
S .(S+F)

S F.

S (.S+F) S (S.+F) S (S+.F) S (S+F.) S (S+F).

F .a F a.

F

(

S + F )

a

0 1

2 3 4 5 6

7 8

a

3

0

1

2

3

4

5

6

7

8

( a + ) S F

s2 g7 1

r1 r1 r1 r1

g0 g0 g0g0

s4

5

s6

r2 r2 r2 r2

s8

r3 r3 r3 r3

P1: S F
P2: S (S+F)
P3: F a

g7 g7 g7 g7

Stack     Input
0                             (a+a)
2                              a+a)
2 0                           a+a)
2 0 7                        a+a)
2 0 8                          +a)
2 1                             +a)
3                                +a)
4                                  a)
4 7                               a)
4 8                                 )
5                                    )
6                                                               
empty                    empty

Summary
• Given an LL(1) grammar, you can

– generate parsing table for grammar
• compute NULLABLE, FIRST, FOLLOW

– write a recursive-descent parser from that table, using 
template

• LL(1) parser-generator
– given LL(1) grammar

• computes NULLABLE, FIRST, FOLLOW sets
• uses those sets and transition diagram of  grammar to 

produce an iterative parser that maintains an explicit stack
– examples: ANTLR, JAVACC
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Iterative parser

• We can read off the recursive parser from 
the parsing table.

• We can also use an iterative parser that is 
driven by the parsing table.

• Advantage:
– smaller space requirements
– usually faster


