Top-down parsing

Top-down parsing

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

int * int + int

Top-down parsing II

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b\delta$
 - The prefix β matches
 - The next token is b

int * int + int

Top-down parsing III

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- int * int + int
- The leaves at any point form a string $\beta A \gamma$ (A=T, $\gamma = \epsilon$)
 - β contains only terminals
 - $\,\gamma$ contains any symbols
 - The input string is $\beta b \delta$ (b=int)
 - So $A\gamma$ must derive $b\delta$

Top-down parsing IV

- · Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

· So choose production for T that can eventually derive something that starts with int

Overview

- We will focus on LL(1) parsers.
 - Generalization: LL(k) parsers
- LL(1) parsers require three sets called
 nullable

 - FOLLOW
- Given these sets, you can write down a recursive-descent parser
- Simplification
 nullable and FOLLOW are only required if the grammar has ε productions Game plan
- start with grammars without ε productions (we saw this informally)
- then add ϵ productions - end with an iterative, stack-based implementation of top-down parsing

Example 1

- Restriction on grammar:
 - for each non-terminal
 - productions begin with terminals
 no two productions begin with same terminal
 ...
- so no ε productions
- Algorithm for parsing:

 one procedure for each non-terminal
 In each procedure, peek at the next token to determine which rule to apply

S → id := E |if E then S else S |while E do S

procedure S

ocedure S
case peekAtToken() of
 id : match(id); match(:=); E; break;
 if: match(if); E; match(then); S; match(else); S; break;
 while: match (while); E; match(do); S; break;
 otherwise error

LL(1) Parsing Table

Ī	Т	id	:=	if	then	else	do	while
	S	id:= E		if E then S else S				while E do S

 $S \rightarrow id := E | if E then S else S | while E do S$

- · Consider the T[S, if] entry
 - Means "When current non-terminal is S and next input token is "if", use production $S \rightarrow if E then S else S"$
- · Given this table, we can construct the recursive code trivially.
- · How do we generate parsing tables automatically?

FIRST sets

- FIRST: non-terminal \rightarrow subset of terminals b \in FIRST(N) if N \rightarrow * b δ
- Construction:

 - for each non-terminal A
 for each nule A → ty, add constraint: t is in FIRST(A)
 find smallest sets that satisfy all constraints

For our example grammar, S → id := E |if E then S else S |while E do S set of terminals = {id, :=, if, then, else, while, do}

- set or retrininas = {u, .-, u, unert, else, willine, our Constraints:

 id ∈ FIRST(S)

 if ∈ FIRST(S)

 while ∈ FIRST(S)

 while ∈ FIRST(S)

 There are many sets that satisfy these constraints (eg) (fd,f,while), (fd,ff,while,t=), (fd,ff,while,do,:=),....

 We want the smallest set that satisfies all constraints

- FIRST(S) = {id,if,while}
- Extension: it is convenient to extend FIRST to any string γ : $\quad b \in \text{FIRST}(\gamma) \text{ if } \gamma \to * b\delta$

Constructing Parsing Tables

- · Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $b \in First(\alpha)$ do
 - T[A, b] = A $\rightarrow \alpha$
- · Conflict: two or more productions in one table
 - Grammar is not LL(1)
 - We may or may not be able to rewrite grammar to be LL(1)

Example 2

- · Some productions may begin with non-terminal
- Example:

 $S \rightarrow XY \mid YX$

 $X \rightarrow ab$

 $Y \rightarrow ba$

It is clear that we can parse S as follows:

procedure S

case peekAtToken() of

a: X; Y

b: Y; X

otherwise error

FIRST sets

- Construction: for each non-terminal A

 - for each rule A \rightarrow t γ , t \in FIRST(A) for each rule A \rightarrow B γ , FIRST(B) \subseteq FIRST(A)
- · For our example, rules give
 - $\begin{array}{l} \ \mathsf{FIRST}(\mathsf{X}) \subseteq \mathsf{FIRST}(\mathsf{S}) \\ \ \mathsf{FIRST}(\mathsf{Y}) \subseteq \mathsf{FIRST}(\mathsf{S}) \end{array}$

 - $\ a \in \mathsf{FIRST}(\mathsf{X})$
 - b ∈ FIRST(Y)
- · If we solve these constraints, we get
 - $FIRST(X) = {a}$
 - $FIRST(Y) = \{b\}$
 - $FIRST(S) = {a,b}$

Constructing Parsing Tables

- · Same as before
- · For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in \text{First}(\alpha) \text{ do}$
 - T[A, t] = A $\rightarrow \alpha$

Т	а	b
S	XY	YX
X	a b	
Υ		b a

What if a grammar is not LL(1)?

```
Table conflicts:
```

two or more productions in some T[A,t]

Example:

S → ab|ac

T[S,a] contains both productions so grammar is not LL(1)

Some non-LL(1) grammars can be rewritten to be LL(1)

• Example can be left-factored

S → a S'

 $S' \rightarrow b \mid c$

When writing recursive parser by hand, you can hack code to avoid left-factoring

procedure S

match(a); case input roken of

b: match(b);

c: match(c);

otherwise error

Left-recursion

```
Grammar is left-recursive if for some non-terminal A
```

 $A \rightarrow^* A\gamma$ • Example: lists

 $T \rightarrow L$;

 $L \rightarrow id \mid L, id$

Grammars can be rewritten to eliminate left-recursion

 $T \rightarrow id R$

R → ; |, id R Hack to avoid doing this in code

procedure L match(id); while (input_token == ,) {

match(,); match(id);

ε productions

- Non-terminal N is nullable if N \rightarrow + ϵ
- Example:
- Example: $S \to ABS$ $A \to a \mid \epsilon$ $B \to b$ When should you use the $A \to \epsilon$ production?
- · One solution:
- Ignore ε productions and compute FIRST
 Table[A,a] = A→a
 all other entries for A: A → ε

- This is bad practice
 errors should be caught as soon as possible
- what if next input token was \$?
 Solution:
- if we use A → ε production to derive a legal string, next token in input must be b
 if next token is b, use A → ε production; otherwise report error

 How do we describe this formally?

FOLLOW sets

- FOLLOW: Non-terminal → subset of terminals
- b ϵ FOLLOW(A) if S \rightarrow * ...Ab...
- . To compute FOLLOW(A), we must look at RHS of productions that contain A
- Example:
 - S → AB\$ $A \rightarrow a \mid \epsilon$
 - $B \rightarrow b$
- FOLLOW(B) = {\$}
- FOLLOW(A) = FIRST(B)
- But ϵ rules change FIRST computation as well!
- FIRST(S) needs to take into account the fact that A is nullable
- · How do we get all this straight?

Game plan

- 1. Compute set of nullable non-terminals
- 2. Use nullable set to compute FIRST
- 3. Use FIRST to compute FOLLOW
- 4. Use FIRST and FOLLOW sets to populate LL(1) parsing table

Computing Nullable

- Set up constraints for nullable set of non-terminals as follows:
 - Nullable \subseteq Non-terminals

 - $A \in \text{Nullable}$
 - A → ..t...
 - no constraint
 - A→BC..M
 - if $B,C,...,M\in Nullable,$ then $A\in Nullable$
- · Find least set that satisfies all constraints

Example

 $\begin{array}{lll} Z \to d & & \text{no constraint} \\ Y \to \epsilon & & Y \in \text{Nullable} \\ X \to Y & & \text{if } Y \in \text{Nullable}, \, X \in \text{Nullable} \\ Z \to X Y Z & & \text{if } X,Y,Z \in \text{Nullable}, \, Z \in \text{Nullable} \\ Y \to c & & \text{no constraint} \\ X \to a & & \text{no constraint} \\ \end{array}$

So constraints are $Y \in \text{Nullable}$ $Y \in \text{Nullable}$ if $Y \in \text{Nullable}$ then $X \in \text{Nullable}$ if $X, Y, Z \in \text{Nullable}$ then $Z \in \text{Nullable}$ Solution: nullable = $\{X, Y\}$

Computing First Sets

 $Definition \qquad \text{First}(X) = \{ \ b \ | \ X \to^* b\alpha \}$

- 1. First(b) = { b } for b any terminal symbol
- 2. For all productions $X \rightarrow A_1 \dots A_n$
 - $\bullet \quad \mathsf{First}(\mathsf{A}_1) \,\subseteq \mathsf{First}(\mathsf{X})$
 - First(A₂) \subseteq First(X) if A₁ \in Nullable

• ...

 $\bullet \quad \ \mbox{First}(A_n) \ \subseteq \mbox{First}(X) \ \mbox{if} \ \ A_1...A_{n\text{-}1} \in \mbox{Nullable}$

Note: $X \rightarrow \varepsilon$ does not generate any constraint

3. Solve

Example

 $\begin{array}{lll} Z \rightarrow d & & \{d\} \subseteq FIRST(Z) \\ Y \rightarrow \epsilon & & \text{no constraint} \\ X \rightarrow Y & & FIRST(Y) \subseteq FIRST(X) \\ Z \rightarrow X \ Y \ Z & & FIRST(X) \subseteq FIRST(Z) \\ & & FIRST(Y) \subseteq FIRST(Z) \\ & & FIRST(Z) \subseteq FIRST(Z) \\ Y \rightarrow c & & \{c\} \subseteq FIRST(Y) \\ X \rightarrow a & & \{a\} \subseteq FIRST(X) \end{array}$

Solution: $FIRST(X) = \{a,c\}$ $FIRST(Y) = \{c\}$ $FIRST(Z) = \{a,c,d\}$

Computing Follow Sets

Definition Follow(X) = { b | S $\rightarrow^* \beta X b \omega$ }

 $\begin{array}{lll} \textbf{1.} & \text{For all productions Y} \longrightarrow ... X \ A_1 \ ... \ A_n \\ & \text{First}(A_1) \ \subseteq \text{Follow}(X) \\ & \text{First}(A_2) \ \subseteq \text{Follow}(X) \ \text{if} \ A_1 \in \text{nullable} \\ & ... \\ & \text{First}(A_n) \ \subseteq \text{Follow}(X) \ \text{if} \ A_1,...,A_{n-1} \in \text{nullable} \\ & \text{Follow}(Y) \ \subseteq \text{Follow}(X) \ \text{if} \ A_1,...,A_n \in \text{nullable} \\ \end{aligned}$

2. Solve.

Example

```
 \begin{array}{lll} Z \rightarrow d & & \text{no constraint} \\ Y \rightarrow \epsilon & & \text{no constraint} \\ X \rightarrow Y & & \text{FOLLOW}(X) \subseteq \text{FOLLOW}(Y) \\ Z \rightarrow X \ Y \ Z & & \text{FIRST}(Y) \subseteq \text{FOLLOW}(X) \\ & & \text{FIRST}(Z) \subseteq \text{FOLLOW}(X) \\ & & \text{FIRST}(Z) \subseteq \text{FOLLOW}(Y) \\ \text{no constraint} & \text{no constraint} \\ X \rightarrow a & & \text{no constraint} \\ & \text{Solution:} \\ & \text{FOLLOW}(X) = \{a,c,d\} \\ & \text{FOLLOW}(Y) = \{a,c,d\} \\ & \text{FOLLOW}(Z) = \{\} \\ \end{array}
```

```
Computing nullable,FIRST,FOLLOW

for each symbol X
   FIRST[X] := {}, FOLLOW[X] := {}, nullable[X] := false

for each terminal symbol t
   FIRST[!] := {!},

repeat
   for each production X → Y1 Y2 ... Yk,
        if all Y1 are nullable then
            nullable[X] := true
        if Y1-Y-1 are nullable then
            FIRST[X] := FIRST[X] U FIRST[Y]
        if Y1+1...Yk are all nullable then
        FOLLOW[Y] := FOLLOW[Y] U FOLLOW[X]
        if Y1+1...Y1 are all nullable then
        FOLLOW[Y] := FOLLOW[Y] U FIRST[Y]]

until FIRST, FOLLOW, nullable do not change
```

Constructing Parsing Table

- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $b \in First(\alpha)$ do
 - T[A, b] = α
 - − If α is nullable, for each b ∈ Follow(A) do
 - T[A, b] = α

LL(1) Parsing Table Example										
		→ T X → (E) int `	$X \rightarrow + E \mid \varepsilon$ $Y \rightarrow * T \mid \varepsilon$							
	int	*	+	()	\$				
Т	int Y			(E)	· ·					
Е	ΤX			ΤX						
Х			+ E		3	3				
Υ		* T	3		3	3				
			First(T) = {int, (} First(E) = {int, (} First(X) = {+} First(Y) = {*} X and Y are nullable							

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1). This happens
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- Most programming language grammars are not II (1)
- We can produce the recursive parser systematically from the parsing table.

Iterative LL(1) parser

- It is also possible to design an iterative parser that uses an explicit stack and
 - pushes and pops stuff from the stack
 - examines token from input

to decide how to parse the program.

 Useful to study this to make a connection with bottom-up parsing, which are always presented using an iterative parser.

Pushdown automata Here's one way of thinking about contextfree grammars and parsing - write down a 'transition diagram' for each production (note that the stransitions labeled with non-terminals) in the stransitions labeled with non-terminal size on the stard symbol by pushing that state on the stard symbol by pushing that state on the stard symbol by pushing that state on the stard. - as long as the states it encounters have transitions labeled with terminals, it behaves just like a real FSA however, when it encounters a transition labeled with a non-terminal (say N), it begins execution with the 'transition labeled with a non-terminal (say N), it begins execution with the 'transition labeled with a non-terminal (say N), it begins execution with the 'transition labeled with a non-terminal (say N), it begins execution with the 'transition labeled with a non-terminal (say N), it begins execution with the 'transition labeled with a non-terminal (say N), it begins execution with the 'transition labeled with a non-terminal (say N), it begins execution with the 'transition labeled with a non-terminal (say N), it begins execution with the 'transition labeled with a non-terminal (say N), it begins execution with the 'transition labeled with a non-terminal (say N), it begins execution with the stark, and previous transition and previous transition diagram continues execution by taking an N transition - the string is accepted if the pushdown automator accepts the terminal state for the transition diagram of the start symbol

Controller

Transition diagram Convenient to label states using productions with dots to show how far parsing has gotten - (eg) P→S.\$: we have seen S and we are expecting to see a \$

- eat one token from input

 push a new state on the pushdown stack

topmost transition diagram accepts a substring of input

Summary

- Given an LL(1) grammar, you can
 - generate parsing table for grammar
 - compute NULLABLE, FIRST, FOLLOW
 - write a recursive-descent parser from that table, using template
- LL(1) parser-generator
 - given LL(1) grammar
 - computes NULLABLE, FIRST, FOLLOW sets
 - uses those sets and transition diagram of grammar to produce an iterative parser that maintains an explicit stack
 - examples: ANTLR, JAVACC

Iterative parser

- We can read off the recursive parser from the parsing table.
- We can also use an iterative parser that is driven by the parsing table.
- Advantage:
 - smaller space requirements
 - usually faster