Top-down parsing

Top-down parsing

» Top-down parsing expands a parse tree
from the start symbol to the leaves
— Always expand the leftmost non-terminal

int * int + int

Top-down parsing |l

» Top-down parsing expands a parse tree
from the start symbol to the leaves
— Always expand the leftmost non-terminal

N * The leaves at any point
E

form a string BAy

- B contains only terminals
T - The input string is pbs

- The prefix p matches

- The next tokenis b

int * int + int

Top-down parsing |l

» Top-down parsing expands a parse tree
from the start symbol to the leaves

— Always expand the leftmost non-terminal
E

N * The leaves at any point
E

T N form a string BAy (A=T, y=¢)
- B contains only terminals
int T -y contains any symbols
' - The input string is pbs (b=int)
int - So Ay must derive bd

int * int + int

Top-down parsing IV

» Top-down parsing expands a parse tree
from the start symbol to the leaves

- Alwgys expand the leftmost non-terminal

+ So choose production for T that
can eventually derive something

/h T that starts with int
T T

int int

int * int + int

LL(k) parsing

E
Current sentential form: int* T +E
Look-ahead (1): int
Look-ahead (2): int +
Look-ahead (3): int +int
T

LL(1) parser: determines next production

in leftmost derivation, looking ahead by one
terminal

Key question: How do we choose the next
production systematically?

int * int + int

Overview

We will focus on LL(1) parsers.

— Generalization: LL(k) parsers

LL(1) parsers require three sets called

— nullable

— FIRST

— FOLLOW
Given these sets, you can write down a recursive-descent parser
Simplification

— nullable and FOLLOW are only required if the grammar has ¢ productions
Game plan

— start with grammars without ¢ productions (we saw this informally)

— then add ¢ productions

— end with an iterative, stack-based implementation of top-down parsing

Example 1

Restriction on grammar:
— for each non-terminal
« productions begin with terminals
+ no two productions begin with same terminal
— so no ¢ productions
Algorithm for parsing:
— one procedure for each non-terminal
— In each procedure, peek at the next token to determine which rule to apply
Example:
S > id :=E |if E then S else S |while Edo S

procedure S
case peekAtToken() of
id : match(id); match(:=); E; break;
if: match(if); E; match(then); S; match(else); S; break;
while: match (while); E; match(do); S; break;
otherwise error

LL(1) Parsing Table FIRST sets

« FIRST: non-terminal - subset of terminals

T id = if then else do while — beFIRST(N)if N >*bd
s |id=E if Ethen S else S while E do S + Construction: X
— for each non-terminal A

« foreach rule A - ty, add constraint: t is in FIRST(A)
— find smallest sets that satisfy all constraints

S > id:=E|if Ethen S else S |while Edo S + For our example grammar,
S > id = E [if E then S else S |while E do S

set of terminals = {id, :=, if, then, else, while, do}
Constraints:

« Consider the T[S, if] entry Z7id € FIRST(S)
— Means “When current non-terminal is S and next input token is “if’, use - if €FIRST(S)
: y » ~ while € FIRST(S)
production S - if E then S else S . i
. R X . « There are many sets that satisfy these constraints
» Given this table, we can construct the recursive code ftrivially. (eg) {id.if,while}, {idif,while,:=}, {idif while,do,:=},....
: : + We want the smallest set that satisfies all constraints
. ?
How do we generate parsing tables automatically? — FIRST(S) = {id, fwhile}

Extension: it is convenient to extend FIRST to any string y:
— b eFIRST(y)ify >*bd

Constructing Parsing Tables Example 2

* Some productions may begin with non-terminal

» Construct a parsing table T for CFG G - Example:
» For each production A — o in G do: S > XY|YX
— For each terminal b e First(a) do é?) EZ
* T[A,b]=A> a
+ Conflict: two or more productions in one table Itis clear that we can parse S as follows:
entry
— Grammar is not LL(1) prc::(;esiu;:kAtToken() of
— We may or may not be able to rewrite grammar to be aX:Y
LL(1) b:Y; X

otherwise error

FIRST sets

» Construction: for each non-terminal A
« foreachrule A > ty, t € FIRST(A)
« for each rule A > By, FIRST(B) C FIRST(A)
» For our example, rules give
— FIRST(X) C FIRST(S)
— FIRST(Y) C FIRST(S)
- a e FIRST(X)
— b € FIRST(Y)
* If we solve these constraints, we get
- FIRST(X) = {a}
— FIRST(Y) = {b}
- FIRST(S) = {a,b}

Constructing Parsing Tables

» Same as before T a b
» For each production
A ain G do: S| XY | oYX
— For each terminal X ab
t e First(a) do
CTA=AS> a Y ba

What if a grammar is not LL(1)?

« Table conflicts:
— two or more productions in some T[A,t]
* Example:
S>ablac
T[S,a] contains both productions so grammar is not LL(1)
* Some non-LL(1) grammars can be rewritten to be LL(1)
« Example can be left-factored
S>a¥s
S'>blc
= When writing recursive parser by hand, you can hack code to avoid
left-factoring
procedure S
match(a);
case input_roken of
b: match(b);
c: match(c);
otherwise error

Left-recursion

Grammar is left-recursive if for some non-terminal A
A>* Ay
Example: lists
T>L;
L>id|L,id
Grammars can be rewritten to eliminate left-recursion
T->idR
R->;|,idR
Hack to avoid doing this in code
procedure L
match(id);
while (input_token ==,) {
match(,); match(id);
}

¢ productions

Non-terminal N is nullable if N >+ ¢
Example:

S > AB$

A>ale

B>b

* When should you use the A - ¢ production?

One solution:
— Ignore ¢ productions and compute FIRST
— Table[A,a] = A>a
— all other entries for A: A > ¢

« This is bad practice

— errors should be caught as soon as possible
— what if next input token was $?
Solution:
— if we use A > ¢ production to derive a legal string, next token in input must be b
— if next token is b, use A > ¢ production; otherwise report error

* How do we describe this formally?

FOLLOW sets

* FOLLOW: Non-terminal - subset of terminals
* beg FOLLOW(A)if S >* ...Ab...
* To compute FOLLOW(A), we must look at RHS of
productions that contain A
* Example:
S > ABS
A>als
B->b
+ FOLLOW(B) = {$}
+ FOLLOW(A) = FIRST(B)
+ But ¢ rules change FIRST computation as well!
— FIRST(S) needs to take into account the fact that A is nullable
» How do we get all this straight?

Pobd -~

Game plan

Compute set of nullable non-terminals
Use nullable set to compute FIRST
Use FIRST to compute FOLLOW

Use FIRST and FOLLOW sets to
populate LL(1) parsing table

Computing Nullable

» Set up constraints for nullable set of non-terminals
as follows:
— Nullable C Non-terminals
-A>c¢
A € Nullable
-A-> .t..
no constraint
- A>BC.M
if B,C,...,M € Nullable, then A € Nullable

* Find least set that satisfies all constraints

Example

Z—d no constraint

Y —¢ Y € Nullable

X—-Y if Y € Nullable, X € Nullable
Z->XYZ if X,Y,Z € Nullable, Z € Nullable
Y—-c no constraint

X—a no constraint

So constraints are

Y € Nullable

if Y € Nullable then X € Nullable

if X,Y,Z € Nullable then Z € Nullable
Solution: nullable = {X,Y}

Computing First Sets

Definition First(X) ={b | X - ba}
1. First(b) ={ b } for b any terminal symbol

2. Forall productions X = A; ... A,
+ First(A;) C First(X)
» First(A,) C First(X) if A, € Nullable

» First(A,) C First(X)if A;...A.; € Nullable
Note: X > ¢ does not generate any constraint

3. Solve

Example

Z—d {d} C FIRST(Z)

Y —e no constraint

XY FIRST(Y) C FIRST(X)
Z—-XYZ FIRST(X) C FIRST(Z)

FIRST(Y) C FIRST(Z)
FIRST(Z) C FIRST(Z)

Y—-c {c} C FIRST(Y)
X —a {a} C FIRST(X)
Solution:

FIRST(X) = {a,c}
FIRST(Y) = {c}
FIRST(Z) = {a,c.d}

Computing Follow Sets

Definition Follow(X)={b|S >'BXbw}

1. Forall productions Y — ... XA, ... A
First(A;) C Follow(X)
First(A,) C Follow(X) if A, € nullable

n

First(A,) C Follow(X) if A,,..,A,, € nullable
Follow(Y) C Follow(X) if A;,..,A, € nullable

2. Solve.

Computing nullable,FIRST,FOLLOW

Example

Z—d no constraint for each symbol X
Y —e no constraint FIRST[xf = {}, FOLLOW[X] := { }, nullable[X] := false
X—Y FOLLOW(X) € FOLLOW(Y) for each feminal symbol t
Z—->XYZ FIRST(Y) € FOLLOW(X) FIRSTIH] = {1}
FIRST(Z) C FOLLOW(X)
FIRST(Z) C FOLLOW(Y) repeat
Yoo o constraint for each production X — ¥1 Y2 ... ¥k

If all i are nullable then

X—a no constraint nullable[X] = true
If ¥1..¥i-1 are nullable then
Solution: FIRST[X] := FIRST[X] U FIRST[YI]
FOLLOW(X) = {a,c,d} if Yi+1..¥k are all nullable then
roLonn- 054 e oo
FOLLOW(2Z) = {} FOLLOWIYi] :=aFOLLDV$|'Y|ieU FIRST[Y])
untll FIRST, FOLLOW, nullable do not change
LL(1) Parsing Table Example
Constructing Parsing Table E L Tx X > +E s
T—>(E)|intY Yo>*T|e
int * + () $
* For each production A — a in G do: T| intY (E)
— For each terminal b € First(a) do E TX TX
*TIA, b] = a X *E e e
— If a is nullable, for each b e Follow(A) do Y ‘T g g g
*T[A, b] =« . A
Follow(E) ={), $} First(T) = {int, (}
Follow(X)={$,)} F':f‘ST(E)={int, (}
orl B
s irs ={*
Follow(T = {+.).. $} X and Y are nullable

Notes on LL(1) Parsing Tables

* If any entry is multiply defined then G is not
LL(1). This happens
— If G is ambiguous
— If G is left recursive
— If G is not left-factored
— And in other cases as well

* Most programming language grammars are not
LL(1)

» We can produce the recursive parser
systematically from the parsing table.

lterative LL(1) parser

* |tis also possible to design an iterative
parser that uses an explicit stack and
— pushes and pops stuff from the stack
— examines token from input
to decide how to parse the program.

» Useful to study this to make a connection
with bottom-up parsing, which are always
presented using an iterative parser.

Pushdown automata

Here’s one way of thinking about context-
free grammars and parsing
labeled with non-terminals)
— the pushdown automaton begins
execution with the transition diagram for
— as long as the states it encounters have Q_Solo
transitions labeled with terminals, it (
behaves just like a real FSA
— however, when it encounters a transition
labeled with a non-terminal (say N), it
begins execution with the “transition a
Input sty
— when the transition diagram for N reaches nput string
an accepting state, it is popped from the
stack, and previous transition diagram
continues execution by taking an
% Universal
FSA

— write down a “transition diagram” for each P>8$ S>(S) S-a
the start symbol by pushing that state on
diagram” for N by pushing the start state O
transition
.. | stack

roduction (note that it has transitions
S $
the stack
of that transition diagram on the stack
— the string is accepted if the pushdown
automaton reaches the end of the input,
and the stack only contains the final state

for the transition diagram of the start
symbol

Transition diagram

» Convenient to label states P>S% $3() S3a
using productions with
dots to show how far
parsing has gotten

— (eg) P>8S.$: we have seen

S and we are expecting to (
seea$ @
a

Building an iterative LL(1) parser

* Draw dashed arrows as
shown to denote the
pushdown of state

— these would have been D, Se53 8-
procedure calls in the T
recursive code !

* Now you can just number -
the states and perform /
combinations of a

— eat one token from input

— push a new state on the
pushdown stack

— topmost transition dia?ram
accepts a substring of input

P>S$ S>(S) S~a

P1: S>F
P2: S>(S+F)
P3: F>a

(a +) S F

0|s2|g7 1
11 |1 {r1 |
2|g0[g0|g0|go | 3
Actions: 3 s4
sn : eat one token from input and go to state n 4|g7| 97|97 |97 5
gn: push state n
rm: pop topmost state on stack 5 s6
let new topmost state on stack be s 6lr2(r2|r2 r2
let non-terminal of production m be N
replace topmost state on stack by 7 s8
state T[s,N] 8|r3(r3(r3 |13

PT.S>F
S>F 1 P2: S5(S+F)
S2.(8+F) P3:F>a
(i

i 6
21 [saen s {s3Er A {s6+F) s3]

"2 (a+) S F

Stack Input 0]s2|97 !
0 (a+a) 1t |1 fr1 |

2 a+a) 3
20 a+a) 2190|g0|g0|g0

207 a+a) 3 s4

208 +a)

21 +a) 4|g7|g7|g7|a7| |5
3 +a) 5 6

4 a)

47 a) 6(r2|r2|r2 |r2

a0) o[e

6 8r3(r3 (r3 I3

emoty emoty

Summary

* Given an LL(1) grammar, you can
— generate parsing table for grammar
» compute NULLABLE, FIRST, FOLLOW
— write a recursive-descent parser from that table, using
template
* LL(1) parser-generator
— given LL(1) grammar
» computes NULLABLE, FIRST, FOLLOW sets

+ uses those sets and transition diagram of grammar to
produce an iterative parser that maintains an explicit stack

— examples: ANTLR, JAVACC

lterative parser

* We can read off the recursive parser from
the parsing table.

* We can also use an iterative parser that is
driven by the parsing table.

» Advantage:
— smaller space requirements
— usually faster

10

