1/29/2017

Computational Science
Algorithms

Computational science

Simulations of physical phenomena
— fluid flow over aircraft (Boeing 777)
— fatigue fracture in aircraft bodies
— evolution of galaxies

Two main approaches

— continuous models: fields and differential equations (eg. Navier-Stokes
equations, Maxwell's equations,...)

— discrete models: particles and forces (eg. gravitational forces)
Paradox
— most differential equations cannot be solved exactly

+ must use numerical techniques that convert calculus problem to matrix

computations: discretization

 approximation

— n-body methods are straight-forward
« but need to use a lot of bodies to get accuracy
« must find a way to reduce O(N2) complexity of obvious algorithm
« approximate the contribution of distant bodies

Motto:
— “All exact science is dominated by the idea of approximation.”
Bertrand Russell

Roadmap

Iterative
methods
(Jacobi,CG,..)

Finite-difference

Continuous
Models
Physical
Phenomena
Discrete
Models

Organization

Finite-difference methods
— ordinary and partial differential equations
— discretization techniques
« explicit methods: Forward-Euler method
+ implicit methods: Backward-Euler method
Finite-element methods
— mesh generation and refinement
— weighted residuals
N-body methods
— Barnes-Hut
Key algorithms and data structures
— matrix computations
+ algorithms
- MVM and MMM
- solution of systems of linear equations
» direct methods
» iterative methods
« data structures
~ dense and sparse matrices
— graph computations
« mesh generation and refinement
— spatial decomposition trees




1/29/2017

Ordinary differential equations

Consider the ode
u'(t) = -3u(t)+2
u(0) =1

This is called an initial value s

problem I

— initial value of u is given
— compute how function u
evolves fort >0

Using elementary calculus, we

can solve this ode exactly
u(t) = 1/3 (3+2)

Problem

For general ode’s, we may not be able to express
solution in terms of elementary functions
In most practical situations, we do not need exact
solution anyway
— enough to compute an approximate solution, provided
» we have some idea of how much error was introduced
« we can improve the accuracy as needed
General solution:
— convert calculus problem into algebra/arithmetic problem
« discretization: replace continuous variables with discrete variables
« in finite differences,
— time will advance in fixed-size steps: t=0,h,2h,3h,...
— differential equation is replaced by difference equation

Forward-Euler method

Intuition: |
— we can compute the derivative at I
t=0 from the differential equation |
u'(t) = -3u(t)+2
— so compute the derivative at t=0
and advance along tangent to t =h
to find an approximation to u(h) |
Formally, we replace derivative
with forward difference to get a |
difference equation |
— u'(t) > (u(t+h) —u(t))/h |
Replacing derivative with |
giifferenc? ihs eszen'tialtlly the
inverse of how derivatives were
probably introduced to you in %‘ el X
elementary calculus

Back to ode

Original ode
u'(t) = -3u(t)+2

After discretization using Forward-Euler:
(ugt+h) — ut))'h = -3ugt)+2

After rearrangement, we get difference equation
ug(t+h) = (1-3h)ug(t)+2h

We can now compute values of u; att = h,2h,3h,...:
u(0) =1
ugh) = (1-h)
u/(2h) = (1-2h+3h2)




1/29/2017

Tabulation

Numerical solution

— Choose a value for h \

— Tabulate the values of u;at t = nh X,
forn=0,1.2,..., using the
recurrence formula

X,
\
Question: how do you choose the OX‘\

i X,
step size h? gxact solution
— Small h is more accurate but also X
more computationally intensive “h=0.01
— If we assume we want to estimate o
the value of u att =T, we will h=0"
need O(T/h) evaluations of the
recurrence formula | h=2
Important property of forward-
Euler:

— Numerical solution is stable only if
h is “small enough”

— If his too big, numerical estimate
will blow up

— Recurrence formula is a feedback
loop and error introduced at one

time step gets amplified by the
recurrence formula

Analysis of recurrence formula

Understanding notions like stability of finite-difference
formulas is complex in general
In this particular case, we can do the analysis easily
because we can solve difference equation exactly
It is not hard to show that if difference equation is
ug(t+h) = a*ugt)+b
ug0) =1
the solution is
ug(nh) = a"+b*(1-a")/(1-a)
For our difference equation,
ug(t+h) = (1-3h)ut)+2h
the exact solution is
unh) =1/3( (1-3h)"+2)

9 10
Time-step needs to be small enough to
. capture highest frequency

EX?? S1C;|3UI|DQ 2 phenomenon of interest

u(t) = 3+ \ Nyquist's criterion

u(nh) = 1/3(e*"+2) (at time-steps) &N - sampling frequency must be at least
Forward-Euler solution N twice highest frequency to prevent

ugnh) =1/3( (1-3h)"+2) aliasing
Use seres expansion o compre " I most e dference oo
u(nh) = 1/3(1-3nh+9/2 n2h2 - + 2) oo i ist criteri

W) = 1/3(1-anhen(n1)2 Ohee.. +2) N higher than the Nyquist criterion

= h=Q.* . . .

20 errlor = O(nh?) ‘ In practice, most functions of interest

onclusion: | hao are not band-limited, so use

- errozr per time step (local error) = — insight from application or

oM — reduce time-step repeatedly il time
— error at time nh = O(nh?) changes are not significant
In general, Forward-Euler Fixed-size time-step can be inefficient
converges only if time step is T if frequency varies widely over time
“small enough” | interval
— other methods like finite-elements
permit variable time-steps as we will
see later
1 12




1/29/2017

Backward-Euler method

. Replace derivative with
backward difference
u'(t) > (u(t) — u(t-h))/h

h=1000
. For our ode, we get i
Uy(t)-up(t-h)/h = -3u,(t)+2 h=0.1
which after rearrangement 0]
uy(t)= (2h+uy(t-h))/(1+3h) :
. As before, this equation is exact solution

simple enough that we can write
down the exact solution:
uy(nh) = ((1/(1+3h))" + 2)/3
. Using series expansion, we get
Up(nh) = (1-3nh + (-n(-n-1)/2) 92 +
42)/3

up(nh) = g -3nh + 9/2 n?h? + 9/2 nh?
+..42)I3

So error = O(nh?) (for any value of h)

Comparison

Exact solution

u(t) = 1/3 (e*+2)

u(nh) = 1/3(e3h+2) (at time-steps)
Forward-Euler solution

udnh) =1/3( (1-3h)1+2)

error = O(nh2) (provided h < 2/3)
Backward-Euler solution

uy(n*h) = 1/3 ((1/(143h))" + 2)

error = O(nh?) (h can be any value

you want)

Many other discretization
schemes have been studied in the
literature

— Runge-Kutta

— Crank-Nicolson

— Upwind differencing

Red: exact solution
Blue: Backward-Euler solution (h=0.1)
Green: Forward-Euler solution (h=0.1)

14

Higher-order difference formulas

First derivatives:

— Forward-Euler: y'(t) = yi(t+h)-y{(t) /h

— Backward-Euler: y'(t) = y,(t)-y,(t-h) /h

— Centered: y'(t) > y(t+h)-y(t-h)/2h .
Second derivatives: e
— Forward: y'(t) > (y{t+2h)-y(t+h))- (yt+h)-y(t)h? s

= y{t+2h)-2y{t+h)+y (tyn2 /

— Backward: y"(t) > y(t)-2y,(t-h)+y,(t-2h)/h?
— Centered: y"(t) > y(t+h) — 2y (t)+y,(t-h)/h? th t @h 2N

Explicit methods: derivatives at t are approximated by
values at t, t+h,t+2h, etc. t=>nh
— Forward-Euler is example y(t) > Ya(nh)
— Key operation is matrix-vector product
Implicit methds: derivatives at t are approximated using
some values before t such t-h, t-2h,...
— Backward-Euler, centered differences are examples
— Key operation is linear solve

Finite-differences:

partial differential equations




1/29/2017

Finite-difference methods for solving
partial differential equations

Basic ideas carry over unchanged
Example: 2-d heat equation
2. 2

o, o f(x.y)

ox*  9y*
Assume temperature at boundary is fixed
Discretize domain using a regular NxN grid of pitch h
Approximate derivatives as centered differences

2 uey+h)-uxy) _ u@xy)-uxy-h)
2*u N h 7
ay*? h

2 u@x+hy)-uxy) _uxy)-u(x-hy)
0*u N n T

ax? h

So we get a system of (N-1)x(N-1) difference equations
in terms of the unknowns at the (N-1)x(N-1) interior points

5-point stencil

for all interior points (ih,jh)
u(ih,jh+h)+u(ih jh-h)+u(ih+h,jh)+u(ih-h,jh) — 4u(ih,jh) = h2*f(ih,jh)

Example

| P,
P o oy’ (xy)

Assume f(x,y) =0

* Unknown tarﬁperatures areT1, T2, T3, T4
* Discretized equation at point 1:

T2-T1i Ti-5#8 i8-T1i Ti-T%
[ [ 3 B _
+ =1
h A

17 18
Example (contd) General picture: matrix notation
H — 100 az_u " az_u = f(xy) $ystem of (N-1)x(N-1) difference equations o )
e ax’ 0y’ WY, in terms of the unknowns at the (N-1)x(N-1) interior points o o 0 o

Assume f(x,y) =0

w00'e

4T1+T2+T3=-150

-4110[(T1
T1—4T2 + T4 =-300 1-401)|T2| =
T1-4T3 + T4 =-350 10-41|T3

011-4|T4

T2 + T3 -4T4 =-500 _

Solution: T1 = 119, T2 = 156, T3 = 169, T4 = 206

How do we solve large systems of linear equations?

for all interior points (ih,jh)

u(ih,jh+h)u(injh-h)+uGh+h jn)+u(in-h jh) - 4uGh h) = he finjh) e

« Matrix notation: use natural order for u’s
(i-1,) (i)

u(i-1j)
;J'(-i‘,j—1) ....... @]
uij) | = hAfihjh )

O

5-point stencil
(matrix indices)

Pentadiagonal sparse matrix
Matrix is known at compile-time and has simple structure.

(i+1.j)
O

20




1/29/2017

Solving linear systems

* Linear system: Ax=Db
* Two approaches
— direct methods: Cholesky, LU with pivoting
« factorize A into product of lower and upper triangular matrices A =
LU
« solve two triangular systems
Ly=b
Ux=y
« problems:
— even if Ais sparse, L and U can be quite dense (“fill")
— no useful information is produced until the end of the procedure
— iterative methods: Jacobi, Gauss-Seidel, CG, GMRES
« guess an initial approximation x, to solution
« error is Ax, — b (called residual)
« repeatedly compute better approximation x;,, from residual (Ax;— b)
« terminate when approximation is “good enough”

21

lterative method: Jacobi iteration

« Linear system

4x+2y=8
3x+4y=11

« Exact solution is (x=1,y=2)
« Jacobi iteration for finding approximations to solution

— guess an initial approximation
— iterate
« use first component of residual to refine value of x
+ use second component of residual to refine value of y

« For our example

X1 = (8 - 2y)/4
Yo = (11-3x)/4

— forinitial guess (x,=0,y,=0)

01 2 3 4 5 6 7
0 2 0.625 1.375 0.8594 1.1406 0.9473 1.0527
0 275 1250 2.281 1.7188 21055 1.8945 2.0396

22

Jacobi iteration: matrix notation

« Linear system
4x+2y=8
3x+4y=11

« Jacobi iteration
Xuq = (8- 2y)/4
Yier = (11 - 3x)/4

« Useful to write Jacobi iteration in terms of residual (error):
1
Xieq = X — 2(4%+2y;-8)
1
Yot =¥+ 5 (Bx+ay-11)

« In matrix terms, this is

Xier\ _ (% _(1/4 0) 4xi+2yi-8
i/ Wi 0 1/4/\3xi+4yi-11

23

Jacobi iteration: general picture

Linear system Ax = b
Jacobi iteration

X = X, — M(AX, — b) (where M is the diagonal of A)

Key operation:

— matrix-vector multiplication

— important to exploit sparsity structure of A to reduce storage and
computation

Caveat:

— Jacobi iteration does not always converge

— even when it converges, it usually converges slowly

— there are faster iterative methods available: CG,GMRES,..

— what is important from our perspective is that key operation in all
these iterative methods is matrix-vector multiplication
24




1/29/2017

Example (contd)

’u | *u
i — + —=Af(x,
LA axt  9y? )
s —t— Assume f(x,y) = 0

-4T1+ T2+ T3 =-150

T1—4T2 + T4 =-300

T1-4T3 + T4 =-350 Jacobi
T2 + T3 -4T4 =-500

-4T1™1 + 720 +T30 + 0 = -150
TAn-4T2*1 + 0 + T4" = -300
TA" + 0 -4T30+1 + T4 = -350
0+ T2" + T30 -4T4"™1 = 500

T = Y (T20 + T30+ 100 + 50)
T2 = Y4(T1n + T4" + 100 + 200)
T3 = Y(T1n + T4" + 300 + 50)

T4M1 = Y4(T20+ T30 + 300 + 200)

- Initialize the interior temperatures to some values

- lterate until some measure of convergence is met

- Key operation is a sparse MVM

- However, code is implemented without explicit sparse matrices %

Implementation

» Data structures
— temperature values at a given iteration can
be stored in a NxN matrix
— use two matrices, current and next
» Algorithm N Cﬁ
— compute values in next using values in
current
— operator: five-point stencil
_ current[i—1, j]+current[i, j —1]+current[i +1, j]+current[i, j +1]
4
— switch between current and next in 1
successive iterations
* Questions:

— where is the parallelism in this algorithm?

« All grid points in next can be computed in
parallel

— can we exploit locality?
« Divide current and next into 2D blocks

« Modern prefetchers will also do a fine job
without blocking

next[i, j]

current next

5-point stencil

26

Operator formulation of algorithms

Data-centric abstraction of algorithms
Data structure: usually a graph
Active element
— Node /edge where computation is needed
— Jacobi: all nodes of next grid
Operator N_/
— Computation at active element
— Jacobi: five-point stencil
Activity: application of operator to active
element
Neighborhood
— Set of nodes/edges read/written by activity
— Jacobi: active node in next grid and
neighbors in current grid
Ordering : scheduling constraints on
EXeoution order of AGIVitios current next
— Unordered algorithms: no semantic
constraints but performance may depend on

N

5-point stencil
schedule
— Ordered algorithms: problem-dependent
order

— Jacobi: unordered algorithm

27

TAO analysis: algorithm abstraction

Srmiued it gt}

‘Orrhereut
m current next
Opersior Local compulalion
Realar 5-point stencil

Jacobi

« Topology: structured (grid)

« Active nodes: topology-driven (all nodes of next grid), unordered
« Operator: local computation for next, reader for current




1/29/2017

Parallelism in unordered algorithms

¢ Work on multiple active nodes
simultaneously
* Constraint:
— final state must be identical to state produced

by processing active nodes serially in some
order

— amorphous data-parallelism
* One implementation:
— activities can be executed in parallel if and only

if their neighborhoods are disjoint (otherwise,
activities conflict)

— correct but conservative: nearby active nodes
in grid cannot be processed in parallel

¢ Another implementation:

— if neighborhoods of concurrent activities
overlap, graph elements in intersection of current next
neighborhoods are read-only (more refined
notion of conflict)

— satisfactory for Jacobi

— most general picture: commutativity of
activities (we won’t worry about this)

¢ Data parallelism:
— topology-driven algorithm
— no conflicts between activities 29

5-point stencil

Summary

Finite-difference methods
— can be used to find approximate
solutions to ode’s and pde’s
— Explicit methods: (e.g.) forward-
Euler require matrix-vector
multiplication
— Implicit methds: (e.g.) backward-
Euler or centered differences require
solving linear system
Many large-scale computational
science simulations use these
methods
Time step or grid step needs to be
constant and is determined by
highest-frequency phenomenon
— can be inefficient for when frequency
varies widely in domain of interest
— one solution: structured AMR
methods

30

Big picture

Iterative
methods
(Jacobi,CG,..)

Finite-difference
Implicit Ax=b

Finite-element

Continuous
Models

Physical
Models

31

Discrete
Models

Finite-element methods

Express approximate solution to pde as a linear combination
of certain basis functions
Similar in spirit to Fourier analysis
— express periodic functions as linear combinations of sines and
cosines
Questions:
— what should be the basis functions?
« mesh generation: discretization step for finite-elements

« mesh defines basis functions -, ~,, ~,...which are low-degree piecewise

polynomial functions
— given the basis functions, how do we find the best linear combination
of these for approximating solution to pde?

cU=LG

. wei?hted residual method: similar in spirit to what we do in Fourier
analysis, but more complex because basis functions are not necessarily
orthogonal

32




1/29/2017

Mesh generation and refinement

1-D example:
— mesh is a set of points, not necessarily equally spaced
— basis functions are “hats” which
have a value of 1 at a mesh point,
« decay down to 0 at neighboring mesh points
+ Oeverywhere else
— linear combinations of these produce piecewise linear functions in domain, which may
change slope only at mesh points
In 2-D, mesh is a triangularization of domain, while in 3-D, it might be a
tetrahedralization
Mesh refinement: called h-refinement
— add more points to mesh in regions where discretization error is large
— irregular nature of mesh makes this easy to do this locally

- finite-di require global refil which can be ionall: pensive 33

Delaunay Mesh Refinement

Iterative refinement to remove bad
triangles with lots of discretization error:
while there are bad triangles do {
Pick a bad triangle;
Find its cavity;
Retriangulate cavity;
/I may create new bad triangles

}
Don't-care non-determinism:
- final mesh depends on order in which bad
triangles are processed
— applications do not care which mesh is
produced
Data structure:
— graph in which nodes represent triangles
and edges represent triangle adjacencies
Parallelism:
— bad triangles with cavities that do not
overlap can be processed in parallel
— parallelism is dependent on runtime values
+ compilers cannot find this parallelism

34

TAO analysis

St fpitdine st}

DMR
« Topology: unstructured graph Awe

« Active nodes: data-driven, unordered

« Operator: morph 35

Finding coefficients

* Weighted residual technique
— similar in spirit to what we do in Fourier analysis, but basis
functions are not necessarily orthogonal
* Key idea:
— problem is reduced to solving a system of equations Ax = b
— solution gives the coefficients in the weighted sum
— because basis functions are zero almost everywhere in the
domain, matrix A is usually very sparse
« number of rows/columns of A ~ O(number of points in mesh)
* number of non-zeros per row ~ O(connectivity of mesh point)
— typical numbers:
« Ais 10%10°
« only about ~100 non-zeros per row

36




1/29/2017

Finding the best choices of the coefficients:

Weighted residuals: intuitive idea

Analogy with Fourier series: d NS g*(t) ODE: % =—3u+2 -
fix) =a_ + Eai cos(ix) +Zhlsin[i.\') - \// Apmmm “'(Q = Eq*(g)
(U | . X :\ ——7k u(t) . =1
How do you find ‘best’ choices for a's and b's Cl ;(;2 ics H -i [(i) — gn !En +3ﬂ‘{i} _2
S % i : Lo
I\ f(x) cos(kx) dx = : (a i + z.‘\l cos(ix) +Ehi~_-itl(ix) Jeos(kx)dx ECS 104 ! Write thiz as
n - : ' . Residual(t) = L(u*(t)) — F(t)
+n t
= | @y cos(kx)cos(kx)dx . .
S * Residual depends on choice of c;
=a,nx * Choose ¢; so that integral of residual, weighted
Key idea: - residual f(x) - a o +Za coslix) +Eb sin(iy) byeaCh ﬂ( IS zero. . . .
welght residual by known fanctlon and integrate * This gives N equations in N unknowns, which
5 e esymmpoocing oeiciem) ! can be solved to find values for c;
37 38
Sparse matrices in finite-element
Weighted Residual Technique method
Residual:  (Lu®-f) =L (e 6 1-1)
Welghtéd Realdual =(L(Zcp)-t); 4, + Sparsity pattern is complex and irregular
Equation for k "unknown: |9+(L(Zc & )-f) av-n = — Pattern and values of non-zeros depends on
T I “I_ _ the mesh and basis functions, and is not
the differential {.l|l|<\| on 1s lrear known at Compile-time
"l.f-' Lo dv +os ’3,- Loav = ] & rav — Cannot be inlined into code like we did for
This system can be written as kw) heat equatlon
Ke = b where e Solution:
K = '3,- Lo av b« | o ray — represent sparse matrix explicitly
2
Key insight: Calculus problem of solving pde is converted to — Use sparse MVM code specialized to that
linear algebra problem of solving K ¢ = b where K is sparse representatlon
39 40

10



1/29/2017

Sparse matrix representations

albleldlelf[elh] Awval

o 1[3[Z[a01[3]3[4] Acolumn Indexed access 10 a row
CRS | T
12 %4 [TTTTT A rowptr
1A ]
sl el 14
el [T F
4 i z[d[h] A.val

IAJ2[4] Adow Indexed sccess 1o a colunn

MVM with sparse matrices

+ Coordinate storage oo | TSR A
for P =1to NZ do

Y(A.row(P))=Y(A.row(P)) + A.val(P)*X(A.column(P))

Storage

Acolpr * CRS Storage [ GIbeaerTes] Aval
forl=1toNdo crg | CEEELIEEE) Acolun
— for JJ = A.rowptr(l) to A.rowPtr(1+1)-1 do T Asouptr
. ] A i i i i Y()=Y(1)+A.val(JJ)*X(A.column(J))) :
Storage Acolumn | rows sor columns
41 42
Flow-chart of Adaptive Finite-element Sinmulation of Fracture
o | ’ | | Barnes Hut
L Mechanics Cenerator N .
T - w, N-body Simulation
i s = Wp refinement -
{ Estimation! | 7
natk PA,
dl\pl.x‘u-nu-m\ \:."
|
Solver - Ke=f=~ ‘ For mul.nm)
43 44

1



1/29/2017

Introduction

* Physical system simulation (time evolution)
— System consists of bodies

n” is the number of bodies
— Bodies interact via pair-wise forces

* Many systems can be modeled in these
terms

— Galaxy clusters (gravitational force)
— Particles (electric force, magnetic force)

45

Barnes Hut Idea

* Precise force calculation
— Requires O(n?) operations (O(n?) body pairs)

* Barnes and Hut (1986)

— Algorithm to approximately compute forces

* Bodies’ initial position & velocity are also
approximate

— Requires only O(n log n) operations
—ldea is to “combine” far away bodies
— Error should be small because force ~ 1/r?

46

Barnes Hut Algorithm

» Set bodies’ initial position and velocity
* lterate over time steps
1. Subdivide space until at most one body per cell
* Record this spatial hierarchy in an octree
2. Compute mass and center of mass of each cell
3. Compute force on bodies by traversing octree

Stop traversal path when encountering a leaf (body)
or an internal node (cell) that is far enough away

4. Update each body’s position and velocity

47

Build Tree (Level 1)

Subdivide space until at most one body per cell

48

12



1/29/2017

Build Tree (Level 2)

A

Subdivide space until at most one body per cell

49

Build Tree (Level 3)

KA

Subdivide space until at most one body per cell

50

Build Tree (Level 4)

Subdivide space until at most one body per cell

51

Build Tree (Level 5)

Subdivide space until at most one body per cell

52

13



1/29/2017

Compute Cells’ Center of Mass

For each internal cell, compute sum of mass and weighted average
of position of all bodies in subtree; example shows two cells only

53

Compute Forces

Compute force, for example, acting upon green body

54

Compute Force (short distance)

ot

Scan tree depth first from left to right; green portion already completed

55

Compute Force (down one level)

Red center of mass is too close, need to go down one level

56

14



1/29/2017

Compute Force (long distance)

Yellow center of mass is far enough away

57

Compute Force (skip subtree)

Therefore, entire subtree rooted in the yellow cell can be skipped

58

Pseudocode

Set bodySet = ...
foreach timestep do {
Octree octree = new Octree();
foreach Body b in bodySet {
octree. Insert(b);
¥
OrderedList cellList = octree.CellsByLevel();
foreach Cell c in celllList {
c.Summarize();

foreach Body b in bodySet {
b.ComputeForce(octree);

3
foreach Body b in bodySet {
b.Advance();
¥
h3 59

Complexity

Set bodySet = ...
foreach timestep do {
Octree octree = new Octree();
foreach Body b in bodySet { /7 O(n log n)
octree. Insert(b);
¥
OrderedList cellList = octree.CellsByLevel();
foreach Cell c in cellList { // 0(n)
c.Summarize();

// 0(n log n)

by
foreach Body b in bodySet { // 0(n log n)
b.ComputeForce(octree);

3
foreach Body b in bodySet { // 0(n)
b.Advance();
¥
3 60

15



1/29/2017

Parallelism

Set bodySet = ...
foreach timestep do {
Octree octree = new Octree();
foreach Body b in bodySet { // tree building
octree. Insert(b);

// sequential

OrderedList cellList = octree.CellsByLevel();

foreach Cell c in cellList { // tree traversal
c.Summarize();

}

foreach Body b in bodySet { // fully parallel
b.ComputeForce(octree);

3
foreach Body b in bodySet { // fully parallel
b.Advance();

} 61

Finite-difference

Implicit Ax=b
Finite-element

Continuous
Models
Physical

Phenomena

Discrete
Models

Iterative
methods
(Jacobi,CG,..)

62

Summary (contd.)

» Some key computational science algorithms and data
structures
- MVM:

« Source: explicit finite-difference methods for ode’s, iterative linear
solvers, finite-element methods

« Both dense and sparse matrices
— Stencil computations:
« Source: explicit finite-difference methods for pde’s
» Dense matrices
— A=LU:
« Source: implicit finite-difference methods
« Direct methods for solving linear systems: factorization
« Usually only dense matrices
» High-performance factorization codes use MMM as a kernel
— Mesh generation and refinement
* Finite-element methods
« Graph computations

63

Extra material

64

16



1/29/2017

Systems of ode’s

» Consider a system of coupled ode’s of the form
u'(t) = agyu(t) + ag"v(t) + ag*w(t) + cq(t)

V'(t) = @y u(t) + ax*v(t) + a*w(t) + cy(t)
W(t) = ag *u(t) + ag"v(t) + ag*w(t) + c4(t)

* If we use Forward-Euler method to discretize
this system, we get the following system of
simultaneous equations
utrh)—udt) /h = a;"udt) + a vi(t) + ag"wilt) + cq(t)

V(trh)=vi(t) 1h = a5, *Ud(t) + a5, Vi(t) + a™wilt) + Coft)
Wi{t+h)-wi(t) /h= ag;"ug(t) + ag,"vi(t) + ags " wilt) + cy(t)

65

Forward-Euler (contd.)

* Rearranging, we get
ug(t+h) = (1+hay;)"u(t) + ha*vi(t) + hagg*wi(t) + hey(t)
Vi(tth) = hay "ug(t) + (1+hay,)*vi(t) + hays*wi(t) + healt)
W(t+h) = hag"ug(t) + hag,*v(t) + (1+ags) w(t) + hey(t)
* Introduce vector/matrix notation
X(t) = [u(t) v(t) w(t)]"
A =...
c(t) =[e4(t) eo(t) ca(t)]”

66

Vector notation

» Our systems of equations was

ug(t+h) = (1+hay ) ug(t) + hag"vi(t) + hagg"wi(t) + hey(t)
Vi(t+h) = hay *ug(t) + (1+hag,)"v((t) + hays*wi(t) + he,(t)
W(t+h) = hag,*ug(t) + hag,"vi(t) + (1+as5)*wyt) + hes(t)
» This system can be written compactly as follows
X(t+h) = (I+hA)x(t)+he(t)
» We can use this form to compute values of
X(h),x(2h),x(3h),...
» Forward-Euler is an example of explicit method of
discretization
— key operation: matrix-vector (MVM) multiplication
— in principle, there is a lot of parallelism
« O(n?) multiplications
« O(n) reductions
— parallelism is independent of runtime values
67

Backward-Euler

* We can also use Backward-Euler method to
discretize system of ode’s
Up(t)-up(t-h) /h = a;*up(t) + @i Vp(t) + ag5™wy(t) + c4(t)
Vp(t)=Vp(t-h) /h = ap " up(t) + a5, Vi,(t) + a5 "Wy (t) + Cy(t)
Wy (Wi (t-h) /h= ag*up(t) + @z, Vp(t) + ass™wy(t) + c5(t)
» We can write this in matrix notation as follows
(I-hA)x(t) = x(t-h)+he(t)
» Backward-Euler is example of implicit method of
discretization
— key operation: solving a linear system Ax = b
* How do we solve large systems of linear equations?
+ Matrix (I-hA) is often very sparse
— Important to exploit sparsity in solving linear systems

68

17



