Computational Science Algorithms

Computational science

- Simulations of physical phenomena
 fluid flow over aircraft (Boeing 777)
 fatigue fracture in aircraft bodies
 evolution of galaxies
- Two main approaches
 - continuous models: fields and differential equations (eg. Navier-Stokes equations, Maxwell's equations,...) discrete models: particles and forces (eg. gravitational forces)
- - Paradox

 most differential equations cannot be solved exactly

 must use numerical techniques that convert calculus problem to matrix computations: discretization

 approximation

 n-body methods are straight-forward

 but need to use a lot of bodies to get accuracy

 must find a way to reduce O(N²) complexity of obvious algorithm

 approximate the contribution of distant bodies
- Motto:
 - "All exact science is dominated by the idea of approximation."

2

Organization

- Finite-difference methods
 - ordinary and partial differential equations
 discretization techniques
 explicit methods: Forward-Euler method
 implicit methods: Backward-Euler method
- Finite-element methods
- mesh generation and refinement
 weighted residuals
- N-body methods
- Barnes-Hut
- Key algorithms and data structures matrix computations

Ordinary differential equations

- · Consider the ode u'(t) = -3u(t)+2u(0) = 1
- This is called an initial value problem
 - initial value of u is given - compute how function u evolves for t > 0
- Using elementary calculus, we can solve this ode exactly u(t) = 1/3 (e^{-3t}+2)

Problem

- For general ode's, we may not be able to express solution in terms of elementary functions
- In most practical situations, we do not need exact solution anyway
 - enough to compute an approximate solution, provided
 - · we have some idea of how much error was introduced
 - we can improve the accuracy as needed
- · General solution:
 - convert calculus problem into algebra/arithmetic problem
 - · discretization; replace continuous variables with discrete variables
 - · in finite differences,
 - time will advance in fixed-size steps: t=0,h,2h,3h,.
 - differential equation is replaced by difference equation

Forward-Euler method

- - we can compute the derivative at t=0 from the differential equation u'(t) = -3u(t)+2 so compute the derivative at t=0 and advance along tangent to t =h to find an approximation to u(h)

- to find an approximation to u(h)
 Formally, we replace derivative
 with forward difference to get a
 difference equation
 u'(t) → (u(t+h) u(t))/h
 Replacing derivative with
 difference is essentially the
 inverse of how derivatives were
 probably introduced to you in
 elementary calculus

Back to ode

- · Original ode
 - u'(t) = -3u(t)+2
- After discretization using Forward-Euler:

 $(u_f(t+h) - u_f(t))/h = -3u_f(t)+2$

- · After rearrangement, we get difference equation $u_f(t+h) = (1-3h)u_f(t)+2h$
- We can now compute values of u_f at t = h,2h,3h,...:

 $u_{f}(0) = 1$ $u_f(h) = (1-h)$ $u_f(2h) = (1-2h+3h^2)$

Tabulation

- Numerical solution
 - Choose a value for h
 Tabulate the values of u, at t = nh
 for n = 0,1,2,..., using the
 recurrence formula
- Question: how do you choose the step size h?

 - step size h?

 Small h is more accurate but also more computationally intensive

 If we assume we want to estimate the value of u at = T, we will need O(T/h) evaluations of the recurrence formula
- Important property of forward-Euler:

 - iler:

 Numerical solution is stable only if his "small enough" if his too big, numerical estimate will blow up

 Recurrence formula is a feedback loop and error introduced at one time step gets amplified by the recurrence formula

Analysis of recurrence formula

- · Understanding notions like stability of finite-difference formulas is complex in general
- · In this particular case, we can do the analysis easily because we can solve difference equation exactly
- · It is not hard to show that if difference equation is $u_f(t+h) = a^*u_f(t)+b$

 $u_{f}(0) = 1$ the solution is

 $u_f(nh) = a^n+b^*(1-a^n)/(1-a)$

· For our difference equation,

 $u_f(t+h) = (1-3h)u_f(t)+2h$

the exact solution is

 $u_f(nh) = 1/3((1-3h)^n+2)$

10

Comparison

- Exact solution u(t) = 1/3 (e^{-3t}+2)
- u(nh) = 1/3(e^{-3nh}+2) (at time-steps) Forward-Euler solution
- $u_f(nh) = 1/3((1-3h)^n+2)$ Use series expansion to compare $u(nh) = 1/3(1-3nh+9/2 n^2h^2 - + 2)$ $u_f(nh) = 1/3(1-3nh+n(n-1)/2 9h^2+...+2)$ So error = $O(nh^2)$
- Conclusion:
 - error per time step (local error) =
 O(h²)

 error at time nh = O(nh²)
- In general, Forward-Euler converges only if time step is "small enough"

Choosing time step

- Time-step needs to be small enough to capture highest frequency phenomenon of interest
- Nyquist's criterion
 - sampling frequency must be at least twice highest frequency to prevent
 - aliasing for most finite-difference formulas, you need sampling frequencies (much) higher than the Nyquist criterion
- In practice, most functions of interest are not band-limited, so use
 - insight from application or
- reduce time-step repeatedly till changes are not significant

 Fixed-size time-step can be inefficient if frequency varies widely over time interval.
 - other methods like finite-elements permit variable time-steps as we will see later

Packward-Euler method • Replace derivative with backward difference $u'(t) \rightarrow (u(t) - u(t-h)/h)$ • For our ode, we get $u_b(t) \cdot u_b(t-h)/h = \cdot 3u_b(t) + 2$ which after rearrangement $u_b(t) = (2h \cdot u_b(t-h)/h(1+3h))$ • As before, this equation is simple enough that we can write down the exact solution: $u_b(nh) = (1.1/41+3h) + 2)/3$ • Using series expansion, we get $u_b(nh) = (1.3nh + (n(-n-1)/2) 9h^2 + ... + 2)/3$ $u_b(nh) = (1.3nh + 9/2 n^2h^2 + 9/2 nh^2 + ... + 2)/3$ So error = O(nh²) (for any value of h)

• Exact solution u(t) = 1/3 (e^{-3t}+2) u(nh) = 1/3 (e^{-3t}+2) (at time-steps) • Forward-Euler solution u_k(nh) = 1/3 ((1/3h)²+2) error = O(nh²) (provided h < 2/3) • Backward-Euler solution u_k(n²) = 1/3 ((1/(1+3h))² + 2) error = O(nh²) (horan be any value you want) • Many other discretization schemes have been studied in the literature - Runge-Kutta - Crank-Nicolson - Upwind differencing - ... Red: exact solution Blue: Backward-Euler solution (h=0.1) Green: Forward-Euler solution (h=0.1)

Finite-differences:
partial differential equations

Solving linear systems

- Linear system: $A\underline{x} = \underline{b}$
- · Two approaches
 - direct methods: Cholesky, LU with pivoting
 - factorize A into product of lower and upper triangular matrices A =
 - · solve two triangular systems

 $L\underline{y} = \underline{b}$ Ux = y

· problems:

- even if A is sparse, L and U can be quite dense ("fill")
- no useful information is produced until the end of the procedure
- iterative methods: Jacobi, Gauss-Seidel, CG, GMRES
 - guess an initial approximation $\underline{\boldsymbol{x}}_0$ to solution
 - error is Ax₀ b (called residual)
 - repeatedly compute better approximation \underline{x}_{i+1} from residual $\ (A\underline{x}_i-\underline{b})$
 - · terminate when approximation is "good enough"

21

Iterative method: Jacobi iteration

· Linear system

4x+2y=8 3x+4y=11

- Exact solution is (x=1,y=2)
 - Jacobi iteration for finding approximations to solution

 guess an initial approximation

- use first component of residual to refine value of x
 use second component of residual to refine value of y
 For our example

for initial guess (x₀=0,y₀=0)

22

Jacobi iteration: matrix notation

• Linear system 4x+2y=8 3x+4y=11

Jacobi iteration

$$x_{i+1} = (8 - 2y_i)/4$$

 $y_{i+1} = (11 - 3x_i)/4$

Useful to write Jacobi iteration in terms of residual (error):

$$\begin{aligned} x_{i+1} &= x_i - \frac{1}{4}(4x_i + 2y_i - 8) \\ y_{i+1} &= y_i - \frac{1}{4}(3x_i + 4y_i - 11) \end{aligned}$$

• In matrix terms, this is

$$\begin{pmatrix} x_{i+1} \\ y_{i+1} \end{pmatrix} = \begin{pmatrix} x_i \\ y_i \end{pmatrix} - \begin{pmatrix} 1/4 & 0 \\ 0 & 1/4 \end{pmatrix} \begin{pmatrix} 4xi+2yi-8 \\ 3xi+4yi-11 \end{pmatrix}$$

Jacobi iteration: general picture

- Linear system Ax = b
- Jacobi iteration

 $\underline{x}_{i+1} = \underline{x}_i - M^{-1}(A\underline{x}_i - \underline{b})$ (where M is the diagonal of A)

- Key operation:
 - matrix-vector multiplication
 - important to exploit sparsity structure of A to reduce storage and
- Caveat:
 - Jacobi iteration does not always converge
 - even when it converges, it usually converges slowly
 - there are faster iterative methods available: CG,GMRES,.
 - what is important from our perspective is that key operation in all these iterative methods is matrix-vector multipli

Operator formulation of algorithms Data structure: usually a graph Active element Node /edge where computation is needed Jacobi: all nodes of next grid Operator Computation at active element Jacobi: five-point stencil Activity: application of operator to active element Set of nodes/edges read/written by activity Jacobi: active node in next grid and neighbors in current grid Ordering: scheduling constraints on execution order of activities Unordered algorithms: no semantic constraints but performance may depend on schedule Ordered algorithms: problem-dependent order Jacobi: unordered algorithm

Parallelism in unordered algorithms • Work on multiple active nodes simultaneously · Constraint: final state must be identical to state produced by processing active nodes serially in some order One implementation: activities can be executed in parallel if and only if their neighborhoods are disjoint (otherwise, activities conflict) correct but conservative: nearby active nodes in grid cannot be processed in parallel Another implementation: If neighborhoods of concurrent activities overlap, graph elements in intersection of neighborhoods are read-only (more refined notion of conflict) satisfactory for Jacobi current next 5-point stencil most general picture: commutativity of activities (we won't worry about this) Data parallelism: - topology-driven algorithm - no conflicts between activities

Summary

- Finite-difference methods

 - can be used to find approximate solutions to ode's and pde's Explicit methods: (e.g.) forward-Euler require matrix-vector multiplication
 - Implicit methds: (e.g.) backward-Euler or centered differences require solving linear system
- Many large-scale computational science simulations use these methods
- Time step or grid step needs to be constant and is determined by highest-frequency phenomenon
 - can be inefficient for when frequency varies widely in domain of interest
 - one solution: structured AMR methods

30

Finite-element methods

- Express approximate solution to pde as a linear combination of certain basis functions
- Similar in spirit to Fourier analysis
 - express periodic functions as linear combinations of sines and cosines
- Questions:
 - what should be the basis functions?
 - · mesh generation: discretization step for finite-elements
 - mesh defines basis functions 3, 4, 5,...which are low-degree piecewise polynomial functions
 - given the basis functions, how do we find the best linear combination of these for approximating solution to pde?

 - weighted residual method: similar in spirit to what we do in Fourier analysis, but more complex because basis functions are not necessarily orthogonal

Delaunay Mesh Refinement • Iterative refinement to remove bad triangles with lots of discretization error: while there are bad triangles do { Pick a bad triangle; Find its cavity; Retriangulate cavity; // may create new bad triangles Final mesh depends on order in which bad triangles are processed applications do not care which mesh is produced • Data structure: graph in which nodes represent triangles and edges represent triangle adjacencies • Parallelism: bad triangles with cavities that do not overlap can be processed in parallel parallelism is dependent on runtime values compilers cannot find this parallelism

Finding coefficients

- · Weighted residual technique
 - similar in spirit to what we do in Fourier analysis, but basis functions are not necessarily orthogonal
- · Key idea:
 - problem is reduced to solving a system of equations $A\underline{x} = \underline{b}$
 - solution gives the coefficients in the weighted sum
 - because basis functions are zero almost everywhere in the domain, matrix A is usually very sparse
 - number of rows/columns of A ~ O(number of points in mesh)
 number of non-zeros per row ~ O(connectivity of mesh point)
 - typical numbers:
 - A is 10⁹x10⁹
 - only about ~100 non-zeros per row

Sparse matrices in finite-element method

- Sparsity pattern is complex and irregular
 - Pattern and values of non-zeros depends on the mesh and basis functions, and is not known at compile-time
 - Cannot be inlined into code like we did for heat equation
- · Solution:
 - represent sparse matrix explicitly
 - Use sparse MVM code specialized to that representation

Introduction

- Physical system simulation (time evolution)
 - System consists of bodies
 - "n" is the number of bodies
 - Bodies interact via pair-wise forces
- Many systems can be modeled in these terms
 - Galaxy clusters (gravitational force)
 - Particles (electric force, magnetic force)

45

Barnes Hut Idea

- · Precise force calculation
 - Requires $O(n^2)$ operations $O(n^2)$ body pairs)
- Barnes and Hut (1986)
 - Algorithm to approximately compute forces
 - Bodies' initial position & velocity are also approximate
 - Requires only $O(n \log n)$ operations
 - Idea is to "combine" far away bodies
 - Error should be small because force $\sim 1/r^2$

46

Barnes Hut Algorithm

- · Set bodies' initial position and velocity
- · Iterate over time steps
 - 1. Subdivide space until at most one body per cell
 - · Record this spatial hierarchy in an octree
 - 2. Compute mass and center of mass of each cell
 - 3. Compute force on bodies by traversing octree
 - Stop traversal path when encountering a leaf (body) or an internal node (cell) that is far enough away
 - 4. Update each body's position and velocity

47

Build Tree (Level 1)

.

Subdivide space until at most one body per cell

Pseudocode

```
Set bodySet = ...
foreach timestep do {
   Octree octree = new Octree();
   foreach Body b in bodySet {
      octree.Insert(b);
   }
   OrderedList cellList = octree.CellsByLevel();
   foreach Cell c in cellList {
      c.Summarize();
   }
   foreach Body b in bodySet {
      b.ComputeForce(octree);
   }
   foreach Body b in bodySet {
      b.Advance();
   }
}
```

Complexity

```
Parallelism
Set bodySet = ...
foreach timestep do {
                                   // sequential
  Octree octree = new Octree();
foreach Body b in bodySet { // tree building
    octree.Insert(b);
  OrderedList cellList = octree.CellsByLevel();
  for
each Cell c in cellList \{\ \ //\ \ \ \ \ \ \ \ \ \ \ \ \}
    c.Summarize();
  foreach Body b in bodySet { // fully parallel
    b.ComputeForce(octree);
  foreach Body b in bodySet { // fully parallel
    b.Advance();
                                                       61
}
```


Summary (contd.)

- · Some key computational science algorithms and data structures
 - MVM:
 - Source: explicit finite-difference methods for ode's, iterative linear solvers, finite-element methods
 - Both dense and sparse matrices
 - Stencil computations:
 - Source: explicit finite-difference methods for pde's
 Dense matrices
 - A=LU:
 - Source: implicit finite-difference methods
 - Direct methods for solving linear systems: factorizationUsually only dense matrices
 - High-performance factorization codes use MMM as a kernel - Mesh generation and refinement

63

- - · Finite-element methods
 - · Graph computations

Extra material

Systems of ode's

- Consider a system of coupled ode's of the form
 - $u'(t) = a_{11}^*u(t) + a_{12}^*v(t) + a_{13}^*w(t) + c_1(t)$ $v'(t) = a_{21}^*u(t) + a_{22}^*v(t) + a_{23}^*w(t) + c_2(t)$ $w'(t) = a_{31}^*u(t) + a_{32}^*v(t) + a_{33}^*w(t) + c_3(t)$
- If we use Forward-Euler method to discretize this system, we get the following system of simultaneous equations

```
u_f(t+h)-u_f(t) / h = a_{11}^* u_f(t) + a_{12}^* v_f(t) + a_{13}^* w_f(t) + c_1(t)

v_f(t+h)-v_f(t) / h = a_{21}^* u_f(t) + a_{22}^* v_f(t) + a_{23}^* w_f(t) + c_2(t)

w_f(t+h)-w_f(t) / h = a_{31}^* u_f(t) + a_{32}^* v_f(t) + a_{33}^* w_f(t) + c_3(t)
```

65

Forward-Euler (contd.)

- · Rearranging, we get
 - $$\begin{split} &u_{f}(t+h) = (1+ha_{11})^{*}u_{f}(t) + ha_{12}^{*}v_{f}(t) + ha_{13}^{*}w_{f}(t) + hc_{1}(t) \\ &v_{f}(t+h) = ha_{21}^{*}u_{f}(t) + (1+ha_{22})^{*}v_{f}(t) + ha_{23}^{*}w_{f}(t) + hc_{2}(t) \\ &w_{f}(t+h) = ha_{31}^{*}u_{f}(t) + ha_{32}^{*}v_{f}(t) + (1+a_{33})^{*}w_{f}(t) + hc_{3}(t) \end{split}$$
- Introduce vector/matrix notation

```
\underline{\mathbf{x}}(t) = [\mathbf{u}(t) \ \mathbf{v}(t) \ \mathbf{w}(t)]^{\mathsf{T}}
\mathbf{A} = \dots
\underline{\mathbf{c}}(t) = [\mathbf{c}_{1}(t) \ \mathbf{c}_{2}(t) \ \mathbf{c}_{3}(t)]^{\mathsf{T}}
```

66

Vector notation

- · Our systems of equations was
 - $\begin{array}{l} u_i(t+h) = (1+ha_{11})^*u_i(t) + ha_{12}^*v_i(t) + ha_{13}^*w_i(t) + hc_1(t) \\ v_i(t+h) = ha_{21}^*u_i(t) + (1+ha_{22})^*v_i(t) + ha_{23}^*w_i(t) + hc_2(t) \\ w_i(t+h) = ha_{31}^*u_i(t) + ha_{32}^*v_i(t) + (1+a_{33})^*w_{i(t)} + hc_3(t) \end{array}$
- This system can be written compactly as follows <u>x(t+h) = (l+hA)x(t)+hc(t)</u>
- We can use this form to compute values of <u>x(h),x(2h),x(3h),...</u>
- Forward-Euler is an example of explicit method of discretization
 - key operation: matrix-vector (MVM) multiplication
 - in principle, there is a lot of parallelism
 - O(n²) multiplications
 - O(n) reductions
 - parallelism is independent of runtime values

67

Backward-Euler

- We can also use Backward-Euler method to discretize system of ode's
 - $\begin{array}{l} u_b(t) u_b(t-h) \ /h = a_{11}^* u_b(t) + a_{12}^* v_b(t) + a_{13}^* w_b(t) + c_1(t) \\ v_b(t) v_b(t-h) \ /h = a_{21}^* u_b(t) + a_{22}^* v_b(t) + a_{23}^* w_b(t) + c_2(t) \\ w_b(t) w_b(t-h) \ /h = a_{31}^* u_b(t) + a_{32}^* v_b(t) + a_{33}^* w_b(t) + c_3(t) \end{array}$
- We can write this in matrix notation as follows (I-hA)<u>x</u>(t) = <u>x</u>(t-h)+h<u>c</u>(t)
- Backward-Euler is example of implicit method of discretization
 - key operation: solving a linear system Ax = b
- How do we solve large systems of linear equations?
- Matrix (I-hA) is often very sparse
 - Important to exploit sparsity in solving linear systems