
Memory Consistency Model

Swarnendu Biswas
UT Austin



Outline

• Data races

• Memory consistency models

• Sequential Consistency

• Hardware memory models

• TSO, PSO, Relaxed consistency

• Language memory models

• C++, Java



Today’s Trends



Data Race: Primary Source of Concurrency 
Errors

X = new Object();
done = true;

Thread T1

while (!done) {}
X.compute();

Thread T2

Object X = null;
boolean done= false;



X = new Object();
done = true;

Thread T1

while (!done) {}
X.compute();

write

Thread T2

Object X = null;
boolean done= false;

read

Data race Conflicting accesses – two threads access the same shared 
variable where at least one access is a write

Concurrent accesses – accesses are not ordered by 
synchronization operations



done = true;

X = new Object();

while (!done) {} 
X.compute();

Thread T1 Thread T2

NPE

X = new Object();

done = true;

temp = done;

while (!temp) {} 

Thread T1 Thread T2

Infinite loop



Data Races are Bad

Therac-25 accident & Northeast US Blackout &
NASDAQ Facebook glitch



Memory Consistency Model: What Value Can a Read Return?



How a Core Might 
Reorder Accesses?

• Store-store

• Load-load

• Store-load

• Load-store



Memory Consistency 
Model

• Specifies the allowed behaviors  of 
multithreaded programs executing with shared 
memory
• Both at the hardware-level and at the programming-

language-level

• “What values can a load return?”
• Return the “last” write

• Uniprocessor: program order

• Multiprocessor: ?

• There can be multiple correct behaviors



Memory Consistency 
Model

• Visibility: 
• “When does a value update become visible to 

others?”

• Ordering:
• When can operations of any given thread appear out 

of order to another thread?



Dekker’s Algorithm



Sequential 
Consistency (SC)

• Uniprocessor - operations executed in 
order specified by the program

• Multiprocessor - all operations executed in 
order, and the operations of each 
individual core appear in program order



Earlier Example Under SC



SC Rules

• a = b or a != b

• if L(a) <p L(b) ⇒ L(a) <m L(b) 

• If L(a) <p S(b) ⇒ L(a) <m S(b)

• If S(a) <p S(b) ⇒ S(a) <m S(b)

• If S(a) <p L(b) ⇒ S(a) <m L(b) 

• Every load gets its value from the last store 
before it (in global memory order) to the same 
address



SC Provides Write Atomicity



Write Atomicity

• Relaxing write atomicity 
violates SC



End-to-end SC

• Simple memory model that can be 
implemented both in hardware and in 
languages

• Performance
• Naive hardware

• Maintain program order - expensive for a write

• E.g., write buffer can break Dekker’s algorithm

• Write atomicity 

• Program semantics
• SC does not guarantee data race freedom

• Not a strong memory model

a++; buffer[index]++;



Cache Coherence

• Single writer multiple readers

• Memory updates are passed correctly, 
cached copies always contain the most 
recent data

• Virtually a synonym for SC

• Alternate definition based on relaxed 
ordering
• A write is eventually made visible to all 

processors

• Writes to the same location appear to be 
seen in the same order by all processors 
(serialization)

• SC - *all*



Maintaining the Illusion of Write Atomicity



Memory Consistency 
vs Cache Coherence

• Cache Coherence does not define 
shared memory behavior
• Goal is to make caches invisible

• Memory consistency can use cache 
coherence as a “black box”



Characterizing Hardware 
Memory Models

• Relax program order
• Store → Load, Store → Store, etc.

• Applicable to pairs of operations with different 
addresses

• Relax write atomicity
• Read own write early

• Read other’s write early 
• Applicable to only cache-based systems



Read Other’s Write Early Can Violate Write Atomicity



Possible Interleavings Under SC



Total Store Order 
(TSO)

• Allows reordering stores to loads

• Can read own write early, not 
other’s writes

• Conjecture: widely-used x86 
memory model is equivalent to TSO



TSO Rules

• a == b or a != b

• If L(a) <p L(b) ⇒ L(a) <m L(b) 

• If L(a) <p S(b) ⇒ L(a) <m S(b) 

• If S(a) <p S(b) ⇒ S(a) <m S(b) 

• If S(a) <p L(b) ⇒ S(a) <m L(b) /* Enables 
FIFO Write Buffer */

• Every load gets its value from the last store 
before it to the same address

• Needs a notion of a FENCE



TSO Rules (…contd)

• If L(a) <p FENCE ⇒ L(a) <m FENCE 

• If S(a) <p FENCE ⇒ S(a) <m FENCE 

• If FENCE <p FENCE ⇒ FENCE <m FENCE 

• If FENCE <p L(a) ⇒ FENCE <m L(a) 

• If FENCE <p S(a) ⇒ FENCE <m S(a) 

• If S(a) <p FENCE ⇒ S(a) <m FENCE 

• If FENCE <p L(a) ⇒ FENCE <m L(a) 



RMW in TSO

• Load of a RMW cannot be performed until 
earlier stores are performed (i.e., exited the 
write buffer)

• Load requires read–write coherence 
permissions, not just read permissions

• To guarantee atomicity, the cache controller 
may not relinquish coherence permission to 
the block between the load and the store



Partial Store Order 
(PSO)

• Allows reordering of store to loads and 
stores to stores

• Writes to different locations from the same 
processor can be pipelined or overlapped 
and are allowed to reach memory or other 
cached copies out of program order

• Can read own write early, not other’s writes



Opportunities to Reorder Memory Operations



Reorder Operations Within a Synchronization Block



Optimization 
Opportunities

• Non-FIFO coalescing write buffer

• Support non-blocking reads
• Hide latency of reads

• Use lockup-free caches and speculative 
execution

• Simpler support for speculation
• Need not compare addresses of loads to 

coherence requests

• For SC, need support to check whether the 
speculation is correct



Relaxed Consistency 
Rules

• If L(a) <p FENCE ⇒ L(a) <m FENCE

• If S(a) <p FENCE ⇒ S(a) <m FENCE

• If FENCE <p FENCE ⇒ FENCE <m FENCE

• If FENCE <p L(a) ⇒ FENCE <m L(a)

• If FENCE <p S(a) ⇒ FENCE <m S(a)

Maintain TSO rules for ordering two accesses to 
the same address only

• If L(a) <p L’(a) ⇒ L(a) <m L’(a)

• If L(a) <p S(a) ⇒ L(a) <m S(a)

• If S(a) <p S’(a) ⇒ S(a) <m S’(a)

• Every load gets its value from the last store 
before it to the same address



Correct Implementation Under Relaxed Consistency



Correct Implementation Under Relaxed Consistency



Relaxed Consistency 
Memory Models

• Weak ordering
• Distinguishes between data and 

synchronization operations
• A synchronization operation is not issued 

until all previous operations are complete
• No operations are issued until the 

previous synchronization operation 
completes

• Release consistency
• Distinguishes between acquire and 

release synchronization operations
• RCsc - maintains SC between 

synchronization operations
• Acquire → all, all → release, and sync → 

sync



Relaxed Consistency 
Memory Models

• Why should we use them?

• Performance

• Why should we not use them?

• Complexity



Hardware Memory Models: One Slide Summary



DRF0 Model

• Conceptually similar to WO

• Assumes no data races

• Allows many optimizations in the compiler and hardware



Language Memory 
Models

• Developed much later

• Most are based on the data-race-free-0 
(DRF0) model 

Why do we need one?

• Isn’t the hardware memory model enough?



C++ Memory Model

• Adaptation of the DRFO memory model

• SC for data race free programs

• C/C++ simply ignore data races
• No safety guarantees in the language

• Memory operation

• Synchronization: lock, unlock, 
atomic load, atomic store, atomic 
RMW

• Data: Load, Store



C++ Memory Model

• Compiler reordering allowed for 
memory operations M1 and M2 when:

• M1 is a data operation and M2 is a 
read synchronization operation

• M1 is write synchronization and M2 
is data

• M1 and M2 are both data with no 
synchronization between them

• M1 is data and M2 is the write of a 
lock operation

• M1 is unlock and M2 is either a read 
or write of a lock



Write Correct C++ Code

• Mutually exclusive execution of critical code blocks

• Mutex provides inter-thread synchronization
• Unlock() synchronizes with calls to lock() on the same mutex object

std::mutex mtx;

{

mtx.lock();

// access shared data here

mtx.unlock();

}



Synchronize Using Locks

std::mutex mtx; 

bool dataReady = false;

{

mtx.lock();

prepareData();

dataReady = true;

mtx.unlock();

}

{

mtx.lock();

if (dataReady) {

consumeData();

}

mtx.unlock();

}



Synchronize Using Locks

std::mutex mtx; 

bool dataReady = false;

prepareData();

{

mtx.lock();

dataReady = true;

mtx.unlock();

}

bool b;

{

mtx.lock();

b = dataReady;

mtx.unlock();

}

if (b) {

consumeData();

}



Using Atomics

• “Data race free” variable by definition: std::atomic<int>

• A store synchronizes with operations that load the stored value

• Similar to volatile in Java 

• C++ volatile is different!
• Does not establish inter-thread synchronization, not atomic (can be part of a data race)

std::mutex mtx; 

std::atomic<bool> dataReady(false);

prepareData();

dataReady.store(true);

if (dataReady.load()) {

consumeData();

}



Memory Order of Atomics

• Specifies how regular, non-
atomic memory accesses are 
to be ordered around an 
atomic operation
• Default is sequential 

consistency

atomic.h

enum memory_order {

memory_order_relaxed,

memory_order_consume,

memory_order_acquire,

memory_order_release,

memory_order_acq_rel,

memory_order_seq_cst

};



Visibility and 
Ordering

• Visibility: When are the effects of one 
thread visible to another?

• Ordering: When can operations of any 
given thread appear out of order to 
another thread?



Relaxed Ordering

// Thread 1:
r1 = y.load(memory_order_relaxed); 
x.store(r1, memory_order_relaxed); 

// Thread 2:
r2 = x.load(memory_order_relaxed); // C 
y.store(42, memory_order_relaxed); // D

Is r1 == r2 == 42 
possible?



Relaxed Ordering

// Thread 1:
r1 = x.load(memory_order_relaxed); 
If (r1 == 42) {

y.store(r1, memory_order_relaxed); 
}

// Thread 2:
r2 = y.load(memory_order_relaxed); 
If (r2 == 42) {

x.store(42, memory_order_relaxed); 
}

Is r1 == r2 == 42 
possible?



Ensuring Visibility

• Writer thread releases a lock
• Flushes all writes from the thread’s working 

memory

• Reader thread acquires a lock
• Forces a (re)load of the values of the 

affected variables

• Atomic (C++)/ volatile (Java)
• Values written are made visible immediately 

before any further memory operations
• Readers reload the value upon each access

• Thread join
• Parent thread is guaranteed to see the 

effects made by the child thread



Java Memory Model (JMM)

• First high-level language to 
incorporate a memory model

• Provides memory- and type-
safety, so has to define some 
semantics for data races



JMM (…contd)



Happens-before Memory Model (HBMM)



HBMM (...contd)



JMM is Stronger than DRF0 and HBMM



JVMs Do Not Comply with the JMM 



What Constitutes a 
Good Memory Model?

• Programmability

• Performance

• Portability

• Precision



Lessons Learnt

• SC for DRF is the minimal baseline

• Make sure the program is free of 
data races

• System guarantees SC execution

• Specifying semantics for racy programs 
is hard

• Simple optimizations may introduce 
unintended consequences



Memory Consistency Model

Swarnendu Biswas
UT Austin


