
Program Optimization 
Through Loop Vectorization 

María Garzarán, Saeed Maleki  
 William Gropp and David Padua 

 
Department of Computer Science 

University of Illinois at Urbana-Champaign 



Program Optimization Through 
Loop Vectorization 

 
 

Materials for this tutorial can be found: 
http://polaris.cs.uiuc.edu/~garzaran/pldi-polv.zip 

 
 

Questions?  
Send an email to garzaran@uiuc.edu 

 

2 

http://polaris.cs.uiuc.edu/~garzaran/pldi-polv.zip


Topics covered in this tutorial 
• What are the microprocessor vector extensions 

or SIMD (Single Instruction Multiple Data Units) 
 

• How to use them 
– Through the compiler via automatic vectorization   

• Manual transformations that enable vectorization  
• Directives to guide the compiler 

– Through intrinsics 
• Main focus on vectorizing through the compiler. 

– Code more readable 
– Code portable 

 
 

 

3 



Outline 
 

1. Intro 
2. Data Dependences (Definition)   
3. Overcoming limitations to SIMD-Vectorization 

– Data Dependences 
– Data Alignment 
– Aliasing 
– Non-unit strides 
– Conditional Statements 

4. Vectorization with intrinsics  
 

4 



Simple Example 
• Loop vectorization transforms a program so that the 

same operation is performed at the same time on 
several vector elements 
 
 

 
 
 
 
 
 
 
 

for (i=0; i<n; i++)  
  c[i] = a[i] + b[i]; 

… Register File 

X1 

Y1 

Z1 

32 bits 

32 bits 

+ 

32 
bits 

Scalar Unit Vector 
Unit 

ld r1, addr1 
ld r2, addr2 
add r3, r1, r2 
st r3, addr3 

  

n  
times 

ldv vr1, addr1 
ldv vr2, addr2 
addv vr3, vr1, vr2 
stv vr3, addr3 
  

n/4  
times 

5 



SIMD Vectorization 
• The use of SIMD units can speed up the program.  
• Intel SSE and IBM Altivec have 128-bit vector registers and 

functional units 
– 4 32-bit single precision floating point numbers 
– 2 64-bit double precision floating point numbers 
– 4 32-bit integer numbers 
– 2 64 bit integer 
– 8 16-bit integer or shorts 
– 16 8-bit bytes or chars 

 
• Assuming a single ALU, these SIMD units can execute 4 single 

precision floating point number or 2 double precision operations in 
the time it takes to do only one of these operations by a scalar unit. 

 

6 



Executing Our Simple Example 

for (i=0; i<n; i++)  
  c[i] = a[i] + b[i]; 

… Register File 

X
1 

Y1 

Z1 

32 bits 

+ 

32 bits 

Scalar Unit Vector 
Unit 

Intel Nehalem 
Exec. Time scalar code: 6.1  
Exec. Time vector code: 3.2  
Speedup: 1.8 

 
IBM Power 7 

Exec. Time scalar code: 2.1 
Exec. Time vector code: 1.0  
Speedup: 2.1 
 

S000 

7 



How do we access the SIMD  units? 
• Three choices 

1. C code and a vectorizing compiler 
 

 
1. Macros or Vector Intrinsics 

 
 
 
 

1. Assembly Language 

8 

for (i=0; i<LEN; i++)  
  c[i] = a[i] + b[i]; 

void example(){   
__m128 rA, rB, rC;  
 for (int i = 0; i <LEN; i+=4){     
    rA = _mm_load_ps(&a[i]);     
    rB = _mm_load_ps(&b[i]);     
    rC = _mm_add_ps(rA,rB);    
   _mm_store_ps(&C[i], rC);   
}} 

 
     ..B8.5  
 movaps    a(,%rdx,4), %xmm0 
 addps     b(,%rdx,4), %xmm0 
 movaps    %xmm0, c(,%rdx,4) 
 addq      $4, %rdx 
 cmpq      $rdi, %rdx 
 jl        ..B8.5 



Why should the compiler vectorize? 
1. Easier  
2. Portable across vendors and machines 

– Although compiler directives differ across compilers 
3. Better performance of the compiler generated code  

– Compiler applies other transformations 
 

 

9 

Compilers make your codes (almost) machine independent  

But, compilers fail: 
- Programmers need to provide the necessary 
information 
- Programmers need to transform the code  

Presenter
Presentation Notes
Not totally machine independent because the hints t the compiler are different. 




How well do compilers vectorize? 

                 Compiler 
Loops 

XLC ICC GCC 

Total 159 
  Vectorized 74 75 32 
  Not vectorized 85 84 127 
Average Speed Up 1.73 1.85 1.30 

10 

                 Compiler 
Loops 

XLC but 
not ICC 

ICC but 
not XLC 

Vectorized 25 26 



How well do compilers vectorize? 

                 Compiler 
Loops 

XLC ICC GCC 

Total 159 
  Vectorized 74 75 32 
  Not vectorized 85 84 127 
Average Speed Up 1.73 1.85 1.30 

11 

                 Compiler 
Loops 

XLC but 
not ICC 

ICC but 
not XLC 

Vectorized 25 26 

By adding manual vectorization the average speedup  
was 3.78 (versus 1.73 obtained by the XLC compiler)  



How much programmer intervention? 

 
• Next, three examples to illustrate what the programmer 

may need to do: 
– Add compiler directives 
– Transform the code  
– Program using vector intrinsics 

12 



Experimental results  
• The tutorial shows results for two different 

platforms with their compilers: 
– Report generated by the compiler 
– Execution Time for each platform 

 
  

13 

Platform 2: IBM Power 7 
IBM Power 7, 3.55 GHz 
IBM xlc compiler, version 11.0 
OS Red Hat Linux Enterprise 5.4 

Platform 1: Intel Nehalem  
Intel Core i7 CPU 920@2.67GHz 
Intel ICC compiler, version 11.1 
OS Ubuntu Linux 9.04 

The examples use single precision floating point numbers  
 



Compiler directives 

14 

 
void test(float* A,float* B,float* C,float* D, float* E) 
{     
  for (int i = 0; i <LEN; i++){       
   A[i]=B[i]+C[i]+D[i]+E[i]; 
  } 
} 



Compiler directives 

15 

 
void test(float* A, float* B, float* 
C, float* D, float* E) 
{     
  for (int i = 0; i <LEN; i++){       
   A[i]=B[i]+C[i]+D[i]+E[i]; 
  } 
} 

S1111 S1111 

S1111 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. 
Exec. Time scalar code: 5.6 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
Compiler report: Loop was 
vectorized. 
Exec. Time scalar code: 5.6 
Exec. Time vector code: 2.2 
Speedup: 2.5 

 
void test(float* __restrict__ A,  
float* __restrict__ B,  
float* __restrict__ C,  
float* __restrict__ D,  
float* __restrict__ E) 
{     
  for (int i = 0; i <LEN; i++){       
   A[i]=B[i]+C[i]+D[i]+E[i]; 
  } 
} 

S1111 

Presenter
Presentation Notes
__ restrict

The programmer informs the compiler that the memory accessed by a pointer can only be accessed (directly) or indirectly by that pointer. 
That is, the pointers do not alias. 



Compiler directives 

16 

 
void test(float* A, float* B, float* 
C, float* D, float* E) 
{     
  for (int i = 0; i <LEN; i++){       
   A[i]=B[i]+C[i]+D[i]+E[i]; 
  } 
} 

S1111 S1111 

S1111 

Power 7 
Compiler report: Loop was not 
vectorized.  
Exec. Time scalar code: 2.3 
Exec. Time vector code: -- 
Speedup: -- 

Power 7 
Compiler report: Loop was 
vectorized. 
Exec. Time scalar code: 1.6 
Exec. Time vector code: 0.6 
Speedup: 2.7 

 
void test(float* __restrict__ A,  
float* __restrict__ B,  
float* __restrict__ C,  
float* __restrict__ D,  
float* __restrict__ E) 
{     
  for (int i = 0; i <LEN; i++){       
   A[i]=B[i]+C[i]+D[i]+E[i]; 
  } 
} 

S1111 



Loop Transformations 

17 

 
     for (int i=0;i<LEN;i++){   
    sum = (float) 0.0;   
    for (int j=0;j<LEN;j++){     
 sum += A[j][i];   
    }   
    B[i] = sum; 
   } 

j 

i 

 
  for (int i=0;i<size;i++){ 
    sum[i] = 0;   
    for (int j=0;j<size;j++){     
 sum[i] += A[j][i];   
    }   
    B[i] = sum[i]; 
   } 

A 

B 



Loop Transformations 

18 

 
  for (int i=0;i<LEN;i++){ 
    sum = (float) 0.0;   
    for (int j=0;j<LEN;j++){     
 sum += A[j][i];   
    }   
    B[i] = sum; 
   }   

S136 S136_1 S136_2 

S136 S136_1 S136_2 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. Vectorization 
possible but seems inefficient 
Exec. Time scalar code: 3.7 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
report: Permuted loop 
was vectorized. 
scalar code: 1.6 
vector code: 0.6 
Speedup: 2.6 

Intel Nehalem 
report: Permuted loop 
was vectorized. 
scalar code: 1.6 
vector code: 0.6 
Speedup: 2.6 

 
   for (int i=0;i<LEN;i++)    
    sum[i] = (float) 0.0; 
    for (int j=0;j<LEN;j++){     
 sum[i] += A[j][i]; 
    }  
    B[i]=sum[i];    
   } 
    
      
   

 
   for (int i=0;i<LEN;i++)   
    B[i] = (float) 0.0; 
    for (int j=0;j<LEN;j++){     
 B[i] += A[j][i];   
    }     
   } 

      



Loop Transformations 

19 

 
  for (int i=0;i<LEN;i++){ 
    sum = (float) 0.0;   
    for (int j=0;j<LEN;j++){     
 sum += A[j][i];   
    }   
    B[i] = sum; 
   } 

S136 S136_1 S136_2 

S136 S136_1 S136_2 

IBM Power 7 
Compiler report: Loop was 
not SIMD vectorized 
Exec. Time scalar code: 2.0 
Exec. Time vector code: -- 
Speedup: -- 

IBM Power 7 
report: Loop 
interchanging applied. 
Loop was SIMD 
scalar code: 0.4 
vector code: 0.16 
Speedup: 2.7 

IBM Power 7 
report: Loop 
interchanging applied. 
Loop was SIMD 
vectorized 
scalar code: 0.4 
vector code: 0.2 
Speedup: 2.0 

 
   for (int i=0;i<LEN;i++)    
    sum[i] = (float) 0.0; 
    for (int j=0;j<LEN;j++){     
 sum[i] += A[j][i]; 
    }  
    B[i]=sum[i];    
   } 
   
      
   

 
   for (int i=0;i<LEN;i++)   
    B[i] = (float) 0.0; 
    for (int j=0;j<LEN;j++){     
 B[i] += A[j][i];   
    }     
   } 

      



 
Intrinsics (SSE) 
 

#include <xmmintrin.h> 

#define n 1024 

__attribute__((aligned(16))) float a[n], b[n], c[n]; 

 

int main() { 

__m128 rA, rB, rC; 

for (i = 0; i < n; i+=4) { 

  rA = _mm_load_ps(&a[i]); 

  rB = _mm_load_ps(&b[i]); 

  rC= _mm_mul_ps(rA,rB); 

  _mm_store_ps(&c[i], rC); 

}} 
20 

#define n 1024 

__attribute__ ((aligned(16))) float a[n], b[n], c[n]; 

int main() { 

for (i = 0; i < n; i++) { 

  c[i]=a[i]*b[i]; 

 } 

} 

 



Intrinsics (Altivec) 

21 

#define n 1024 
__attribute__ ((aligned(16))) float a[n],b[n],c[n]; 
... 
for (int i=0; i<LEN; i++) 
  c[i]=a[i]*b[i]; 

vector float rA,rB,rC,r0;    // Declares vector registers 
r0 = vec_xor(r0,r0);         // Sets r0 to {0,0,0,0} 
for (int i=0; i<LEN; i+=4){    // Loop stride is 4 
  rA = vec_ld(0, &a[i]);     // Load values to rA 
  rB = vec_ld(0, &b[i]);     // Load values to rB 
  rC = vec_madd(rA,rB,r0);   // rA and rB are multiplied 
  vec_st(rC, 0, &c[i]);   // rC is stored to the c[i:i+3] 
} 



Outline 
 

1. Intro 
2. Data Dependences (Definition)   
3. Overcoming limitations to SIMD-Vectorization 

– Data Dependences 
– Data Alignment 
– Aliasing 
– Non-unit strides 
– Conditional Statements 

4. Vectorization with intrinsics  
 

22 



Data dependences 
 
 
 

• The notion of dependence is the foundation of the process 
of vectorization. 

• It is used to build a calculus of program transformations 
that can be applied manually by the programmer or 
automatically by a compiler. 

23 



Definition of Dependence 
 
 

• A statement S is said to be data dependent on 
statement T if 
– T executes before S in the original sequential/scalar program 
– S and T access the same data item 
– At least one of the accesses is a write.  

24 



Data Dependence 

Flow dependence (True dependence) 

Anti dependence 

Output dependence 

S1: X = A+B 
S2: C= X+A 

S1: A = X + B 
S2: X= C + D 

S1: X = A+B 
S2: X= C + D 

S1 

S2 

S1 

S2 

S1 

S2 

25 

Presenter
Presentation Notes
Anti dependence and output dependence are also called named dependences, because by renaming the variable X we could remove the dependence




Data Dependence 
 
 
 

• Dependences indicate an execution order that must be 
honored. 

• Executing statements in the order of the dependences 
guarantee correct results. 

• Statements not dependent on each other can be reordered, 
executed in parallel, or coalesced into a vector operation. 

26 



Dependences in Loops (I) 
• Dependences in loops are easy to understand if the loops are unrolled. Now the 

dependences are between statement “executions”. 

for (i=0; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i] + 2; 
} 

S1 

27 

S2 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (I) 
• Dependences in loops are easy to understand if loops are unrolled. Now the 

dependences are between statement “executions” 

for (i=0; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i] + 2; 
} 

S1 
S2 

i=0 

28 

 
 
S1: a[0] = b[0] + 1 
S2: c[0] = a[0] + 2 
 

 
 
S1: a[1] = b[1] + 1 
S2: c[1] = a[1] + 2 
 

 
 
S1: a[2] = b[2] + 1 
S2: c[2] = a[2] + 2 
 

i=1 i=2 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (I) 
• Dependences in loops are easy to understand if loops are unrolled. Now the 

dependences are between statement “executions” 

for (i=0; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i] + 2; 
} 

S1 
S2 

i=0 

29 

 
 
S1: a[0] = b[0] + 1 
S2: c[0] = a[0] + 2 
 

 
 
S1: a[1] = b[1] + 1 
S2: c[1] = a[1] + 2 
 

 
 
S1: a[2] = b[2] + 1 
S2: c[2] = a[2] + 2 
 

i=1 i=2 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (I) 
• Dependences in loops are easy to understand if loops are unrolled. Now the 

dependences are between statement “executions” 

for (i=0; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i] + 2; 
} 

S1 
S2 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

0 1 2 3 … 

… 

30 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (I) 
• Dependences in loops are easy to understand if loops are unrolled. Now the 

dependences are between statement “executions” 

for (i=0; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i] + 2; 
} 

S1 
S2 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

0 1 2 3 … 

… 

31 

     Loop independent dependence 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (I) 
• Dependences in loops are easy to understand if loops are unrolled. Now the 

dependences are between statement “executions” 

for (i=0; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i] + 2; 
} 

S1 
S2 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

0 1 2 3 … 

… 

32 

S1 

S2 

For the whole loop 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (I) 
• Dependences in loops are easy to understand if loops are unrolled. Now the 

dependences are between statement “executions” 

for (i=0; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i] + 2; 
} 

S1 
S2 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

0 1 2 3 … 

… 

33 

S1 

S2 

For the whole loop 

0 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (I) 
• Dependences in loops are easy to understand if loops are unrolled. Now the 

dependences are between statement “executions” 

for (i=0; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i] + 2; 
} 

S1 
S2 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

0 1 2 3 … 

… 

34 

S1 

S2 

For the whole loop 

0 

distance 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (I) 
• Dependences in loops are easy to understand if loops are unrolled. Now the 

dependences are between statement “executions” 

for (i=0; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i] + 2; 
} 

S1 
S2 

35 

For the dependences shown here, we assume  
that arrays do not overlap in memory (no aliasing).  
Compilers must know that there is no aliasing in order to  
vectorize.  
 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (II) 
• Dependences in loops are easy to understand if loops are unrolled. Now the 

dependences are between statement “executions” 

for (i=1; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i-1] + 2; 
} 

S1 

36 

S2 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (II) 
• Dependences in loops are easy to understand if loops are unrolled. Now the 

dependences are between statement “executions” 

for (i=1; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i-1] + 2; 
} 

S1 
S2 

i=1 

37 

 
 
S1: a[1] = b[1] + 1 
S2: c[1] = a[0] + 2 
 

 
 
S1: a[2] = b[2] + 1 
S2: c[2] = a[1] + 2 
 

 
 
S1: a[3] = b[3] + 1 
S2: c[3] = a[2] + 2 
 

i=2 i=3 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (II) 
• Dependences in loops are easy to understand if loops are unrolled. Now the 

dependences are between statement “executions” 

for (i=1; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i-1] + 2; 
} 

S1 

38 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

1 2 3 4 … 

… 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (II) 
• Dependences in loops are easy to understand if loops are unrolled. Now the 

dependences are between statement “executions” 

for (i=1; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i-1] + 2; 
} 

S1 

39 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

1 2 3 4 … 

… 

Loop carried dependence 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (II) 
• Dependences in loops are easy to understand if loops are unrolled. Now the 

dependences are between statement “executions” 

for (i=1; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i-1] + 2; 
} 

S1 

40 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

1 2 3 4 … 

… 
S1 

S2 

For the whole loop 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (II) 
• Dependences in loops are easy to understand if loops are unrolled. Now the 

dependences are between statement “executions” 

for (i=1; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i-1] + 2; 
} 

S1 

41 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

1 2 3 4 … 

… 
S1 

S2 

For the whole loop 

1 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (II) 
• Dependences in loops are easy to understand if loops are unrolled. Now the 

dependences are between statement “executions” 

for (i=1; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i-1] + 2; 
} 

S1 

42 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

1 2 3 4 … 

… 
S1 

S2 

For the whole loop 

1 

distance 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops (III) 

• Dependences in loops are easy to understand if loops are unrolled. 
Now the dependences are between statement “executions” 

for (i=0; i<n; i++){ 
  a = b[i] + 1; 
  c[i] = a + 2; 
} 

S1 
S2 

43 



Dependences in Loops (III) 

for (i=0; i<n; i++){ 
  a = b[i] + 1; 
  c[i] = a + 2; 
} 

S1 
S2 

44 

i=0 
 
 
S1: a= b[0] + 1 
S2: c[0] = a + 2 
 

 
 
S1: a = b[1] + 1 
S2: c[1] = a + 2 
 

 
 
S1: a = b[2] + 1 
S2: c[2] = a+ 2 
 

i=1 i=2 



Dependences in Loops (III) 

for (i=0; i<n; i++){ 
  a = b[i] + 1; 
  c[i] = a + 2; 
} 

S1 
S2 

45 

i=0 
 
 
S1: a= b[0] + 1 
S2: c[0] = a + 2 
 

 
 
S1: a = b[1] + 1 
S2: c[1] = a + 2 
 

 
 
S1: a = b[2] + 1 
S2: c[2] = a+ 2 
 

i=1 i=2 

     Loop independent dependence 
     Loop carried dependence 



Dependences in Loops (III) 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

0 1 2 3 … 

for (i=0; i<n; i++){ 
  a = b[i] + 1; 
  c[i] = a + 2; 
} 

S1 
S2 

46 



Dependences in Loops (III) 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

0 1 2 3 … 

for (i=0; i<n; i++){ 
  a = b[i] + 1; 
  c[i] = a + 2; 
} 

S1 
S2 

47 

S1 

S2 



Dependences in Loops (IV) 

• Doubly nested loops 
for (i=1; i<n; i++) { 
 for (j=1; j<n; j++) { 
   a[i][j]=a[i][j-1]+a[i-1][j]; 
}} 

   

S1 

48 

Presenter
Presentation Notes
nested loop, with a single statement S1
Each line corresponds to a statement instace of the j iteration. 



for (i=1; i<n; i++) { 
 for (j=1; j<n; j++) { 
   a[i][j]=a[i][j-1]+a[i-1][j]; 
}} 

   

a[1][1] = a[1][0] + a[0][1]  
 
a[1][2] = a[1][1] + a[0][2]  
 
a[1][3] = a[1][2] + a[0][3]  
 
a[1][4] = a[1][3] + a[0][4]  
 

S1 

49 

j=1 

j=2 

j=3 

j=4 

a[2][1] = a[2][0] + a[1][1]  
 
a[2][2] = a[2][1] + a[1][2]  
 
a[2][3] = a[2][2] + a[1][3]  
 
a[2][4] = a[2][3] + a[1][4]  
 Loop carried dependences 

i=1 i=2 

Dependences in Loops (IV) 

Presenter
Presentation Notes
nested loop, with a single statement S1
Each line corresponds to a statement instace of the j iteration. 



Dependences in Loops (IV) 

for (i=1; i<n; i++) { 
 for (j=1; j<n; j++) { 
   a[i][j]=a[i][j-1]+a[i-1][j]; 
}} 

   

a[1][1] = a[1][0] + a[0][1]  
 
a[1][2] = a[1][1] + a[0][2]  
 
a[1][3] = a[1][2] + a[0][3]  
 
a[1][4] = a[1][3] + a[0][4]  
 

S1 

50 

j=1 

j=2 

j=3 

j=4 

a[2][1] = a[2][0] + a[1][1]  
 
a[2][2] = a[2][1] + a[1][2]  
 
a[2][3] = a[2][2] + a[1][3]  
 
a[2][4] = a[2][3] + a[1][4]  
 Loop carried dependences 

i=1 i=2 

Presenter
Presentation Notes
nested loop, with a single statement S1
Each line corresponds to a statement instace of the j iteration. 



Dependences in Loops (IV) 

for (i=1; i<n; i++) { 
 for (j=1; j<n; j++) { 
   a[i][j]=a[i][j-1]+a[i-1][j]; 
}} 

   
1 2 3 4 … 

1 

2 

3 

4 

j 

i 

S1 

51 

Presenter
Presentation Notes
nested loop, with a single statement S1
Each line corresponds to a statement instace of the j iteration. 



Dependences in Loops (IV) 

for (i=1; i<n; i++) { 
 for (j=1; j<n; j++) { 
   a[i][j]=a[i][j-1]+a[i-1][j]; 
}} 

   
1 2 3 4 … 

1 

2 

3 

4 

j 

i 

S1 

52 

S1 

1,1 

Presenter
Presentation Notes
nested loop, with a single statement S1
Each line corresponds to a statement instace of the j iteration. 



Data dependences and 
vectorization 

 
• Loop dependences guide vectorization 
• Main idea: A statement inside a loop which is not in a cycle 

of the dependence graph can be vectorized. 
 

53 

for (i=0; i<n; i++){ 
  a[i] = b[i] + 1; 
} 

S1 

S1 

a[0:n-1] = b[0:n-1] + 1; 



Data dependences and 
vectorization 
• Main idea: A statement inside a loop which is not in a cycle 

of the dependence graph can be vectorized. 
 

54 

for (i=1; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i-1] + 2; 
} 

S1 

S1 

S2 
1 

a[1:n] = b[1:n] + 1; 
c[1:n] = a[0:n-1] + 2; S2 



Data dependences and 
transformations 

 
 

• When cycles are present, vectorization can be achieved by: 
– Separating (distributing) the statements not in a cycle 
– Removing dependences 
– Freezing loops  
– Changing the algorithm 

55 



Distributing 

56 

for (i=1; i<n; i++){ 
  b[i] = b[i] + c[i]; 
  a[i] = a[i-1]*a[i-2]+b[i]; 
  c[i] = a[i] + 1; 
} 

S1 
S2 
S3 

S1 

S2 

S3 

b[1:n-1] = b[1:n-1] + c[1:n-1]; 
for (i=1; i<n; i++){ 
 a[i] = a[i-1]*a[i-2]+b[i]; 
} 
c[1:n-1] = a[1:n-1] + 1; 



Removing dependences 

57 

for (i=0; i<n; i++){ 
  a = b[i] + 1; 
  c[i] = a + 2; 
} 

S1 
S2 

S1 

S2 

for (i=0; i<n; i++){ 
  a’[i] = b[i] + 1; 
  c[i] = a’[i] + 2; 
} 
a=a’[n-1] 

S1 
S2 

S1 

S2 

 
  a’[0:n-1] = b[0:n-1] + 1; 
  c[0:n-1] = a’[0:n-1] + 2; 
  a=a’[n-1] 

S1 
S2 



Freezing Loops 

58 

for (i=1; i<n; i++) { 
  for (j=1; j<n; j++) { 
    a[i][j]=a[i][j]+a[i-1][j]; 
  } 
} 

   

S1 

1,0 

 
for (j=1; j<n; j++) { 
    a[i][j]=a[i][j]+a[i-1][j]; 
  } 
 

   

S1 

Ignoring (freezing) the outer loop: 

for (i=1; i<n; i++) { 
    a[i][1:n-1]=a[i][1:n-1]+a[i-1][1:n-1]; 
} 

   



Changing the algorithm 
• When there is a recurrence, it is necessary to change the 

algorithm in order to vectorize. 
• Compiler use pattern matching to identify the recurrence 

and then replace it with a parallel version. 
• Examples or recurrences include: 

– Reductions (S+=A[i]) 
– Linear recurrences (A[i]=B[i]*A[i-1]+C[i] ) 
– Boolean recurrences (if (A[i]>max) max = A[i]) 

 
 
 

59 



Changing the algorithm (cont.) 

60 

a[0:n-1]=b[0:n-1]; 
for (i=0;i<k;i++)  /* n = 2k  */ 
      a[2**i:n-1]=a[2**i:n-1]+b[0:n-2**i]; 

a[0]=b[0]; 
for (i=1; i<n; i++) 
      a[i]=a[i-1]+b[i]; S1 

S1 

S2 

. 
 
 
 
 
 
 

 



Stripmining 
• Stripmining is a simple transformation. 

 
 
 
 
 

• It is typically used to improve locality. 

61 

for (i=1; i<n; i++){ 
   … 
} 

/* n is a multiple of q */ 
for (k=1; k<n; k+=q){ 
   for (i=k; i<k+q-1; i++){ 
   … 
   } 
} 



Stripmining (cont.) 
• Stripmining is often used when vectorizing 

62 

for (i=1; i<n; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i] + 2; 
} 

for (i=1; i<n; i+=q){ 
  a[i:i+q-1] = b[i:i+q-1] + 1; 
  c[i:i+q-1] = a[i:i+q] + 2; 
} 

for (k=1; k<n; k+=q){   
/* q could be size of vector register */ 
  for (i=k; i < k+q; i++){ 
     a[i] = b[i] + 1; 
     c[i] = a[i-1] + 2; 
  } 
} 

stripmine 

vectorize 



Outline 
 

1. Intro 
2. Data Dependences (Definition)   
3. Overcoming limitations to SIMD-Vectorization 

– Data Dependences 
– Data Alignment 
– Aliasing 
– Non-unit strides 
– Conditional Statements 

4. Vectorization with intrinsics  
 

63 



Loop Vectorization 
• Loop Vectorization is not always a legal and 

profitable transformation.  
• Compiler needs: 

– Compute the dependences 
• The compiler figures out dependences by 

– Solving a system of (integer) equations (with constraints) 
– Demonstrating that there is no solution to the system of 

equations  

– Remove cycles in the dependence graph 
– Determine data alignment 
– Vectorization is profitable 

64 



Simple Example 
• Loop vectorization transforms a program so that the 

same operation is performed at the same time on  
several of the elements of the vectors 
 
 
 

 
 
 
 
 
 
 
 

for (i=0; i<LEN; i++)  
  c[i] = a[i] + b[i]; 

65 

… Register File 

X1 

Y1 

Z1 

32 bits 

32 bits 

+ 

32 
bits 

Scalar Unit Vector 
Unit 

ld r1, addr1 
ld r2, addr2 
add r3, r1, r2 
st r3, addr3 

  

n  
times 

ldv vr1, addr1 
ldv vr2, addr2 
addv vr3, vr1, vr2 
stv vr3, addr3 
  

n/4  
times 



Loop Vectorization  
• When vectorizing a loop with several statements the 

compiler  need to strip-mine the loop and then apply loop 
distribution  
 for (i=0; i<LEN; i++){ 

  a[i]=b[i]+(float)1.0; 
  c[i]=b[i]+(float)2.0; 
} 

S1 
S2 

66 

for (i=0; i<LEN; i+=strip_size){ 
 for (j=i; j<i+strip_size; j++) 
   a[j]=b[j]+(float)1.0; 
 for (j=i; j<i+strip_size; j++) 
   c[j]=b[j]+(float)2.0; 
} 

 

S2 S2 S2 S2 S2 S2 S2 S2 

S1 S1 S1 S1 

i=0 i=1 i=2 i=3 

S1 S1 S1 S1 

i=4 i=5 i=6 i=7 



Loop Vectorization  
• When vectorizing a loop with several statements the 

compiler need to strip-mine the loop and then apply loop 
distribution  
 for (i=0; i<LEN; i++){ 

  a[i]=b[i]+(float)1.0; 
  c[i]=b[i]+(float)2.0; 
} 

S1 
S2 

67 

for (i=0; i<LEN; i+=strip_size){ 
 for (j=i; j<i+strip_size; j++) 
   a[j]=b[j]+(float)1.0; 
 for (j=i; j<i+strip_size; j++) 
   c[j]=b[j]+(float)2.0; 
} 

 

S2 S2 S2 S2 S2 S2 S2 S2 

S1 S1 S1 S1 

i=0 i=1 i=2 i=3 

S1 S1 S1 S1 

i=4 i=5 i=6 i=7 



Dependence Graphs and 
Compiler Vectorization 
• No dependences: previous two slides 
• Acyclic graphs: 

– All dependences are forward:  
• Vectorized by the compiler  

– Some backward dependences:  
• Sometimes vectorized by the compiler  

• Cycles in the dependence graph 
– Self-antidependence:  

• Vectorized by the compiler 
– Recurrence:  

• Usually not vectorized by the the compiler 
– Other examples 

68 



Acyclic Dependence Graphs: 
Forward Dependences 

 
 

 
for (i=0; i<LEN; i++) { 
  a[i]= b[i] + c[i] 
  d[i] = a[i] + (float) 1.0; 
} 

 
 

S1 
S2 

S1 

S2 

forward  
dependence 

69 

S1 

S2 

S1 

S2 

S1 

S2 

S1 

S2 

i=0 i=1 i=2 i=3 

Presenter
Presentation Notes
a[1] = b[1] + c[1]
d[2] = a[2]
a[2] = b[2] + c[2]
d[2] = a[3] 

There is an antidependence betweeen S2 and S1 of different loop iterations. 
Loop Diustriburion is not legal for this loop

If you exchange the statements, then loop distribution is legal. 



for (i=0; i<LEN; i++) { 
  a[i]= b[i] + c[i] 
  d[i] = a[i] + (float) 1.0; 
} 

70 

Intel Nehalem 
Compiler report: Loop was 
vectorized 
Exec. Time scalar code: 10.2 
Exec. Time vector code:   6.3 
Speedup: 1.6 

S113 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 3.1 
Exec. Time vector code: 1.5 
Speedup: 2.0 

Acyclic Dependence Graphs: 
Forward Dependences 

Presenter
Presentation Notes

The 



for (i=0; i<LEN; i++) { 
  a[i]= b[i] + c[i] 
  d[i] = a[i+1] + (float) 1.0; 
} 

 
 S1 

S2 

S1 
S2 backward  

dependence 

71 

S1: a[0] = b[0] + c[0] 
S2: d[0] = a[1] + 1 
S1: a[1] = b[0] + c[0] 
S2: d[1] = a[2] + 1 
 

i=0 

i=1 

S1 

S2 

S1 

S2 

S1 

S2 

S1 

S2 

This loop cannot be vectorized as it is 

Acyclic Dependenden Graphs 
 Backward Dependences (I) 



S1 
S2 

for (i=0; i<LEN; i++) { 
  d[i] = a[i+1]+(float)1.0; 
  a[i]= b[i] + c[i]; 
} 

 
 

S2 
S1 

S1 

S2 

backward  
depedence 

S2 

S1 

forward  
depedence 

72 

Acyclic Dependenden Graphs 
 Backward Dependences (I) 

S1 

S2 

S1 

S2 

S1 

S2 

S2 

S1 

S2 

S1 

S2 

S1 

Reorder of statements 
for (i=0; i<LEN; i++) { 
  a[i]= b[i] + c[i] 
  d[i] = a[i+1] + (float) 1.0; 
} 

 
 

Presenter
Presentation Notes
Lexically backward dependence. The source of the dependence comes from a statement that 
appears later. 



for (i=0; i<LEN; i++) { 
  a[i]= b[i] + c[i]; 
  d[i] = a[i+1]+(float)1.0; 
} 

 
 

for (i=0; i<LEN; i++) { 
  d[i] = a[i+1]+(float)1.0; 
  a[i]= b[i] + c[i]; 
} 

 
 

73 

S114 S114_1 

S114 S114_1 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. Existence of vector 
dependence 
Exec. Time scalar code: 12.6 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
Compiler report: Loop was vectorized  
Exec. Time scalar code: 10.7 
Exec. Time vector code: 6.2 
Speedup: 1.72 
Speedup vs non-reordered code:2.03 

Acyclic Dependenden Graphs 
 Backward Dependences (I) 

S1 

S2 

S1 

S2 

Presenter
Presentation Notes
Lexically backward dependence. The source of the dependence comes from a statement that 
appears later. 



74 

S114 S114_1 

S114 S114_1 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 1.2 
Exec. Time vector code: 0.6 
Speedup: 2.0 

IBM Power 7 
Compiler report: Loop was SIMD  
vectorized 
Exec. Time scalar code: 1.2 
Exec. Time vector code: 0.6 
Speedup: 2.0 

The IBM XLC compiler generated the same code in both cases 

Acyclic Dependenden Graphs 
 Backward Dependences (I) 

for (i=0; i<LEN; i++) { 
  a[i]= b[i] + c[i]; 
  d[i] = a[i+1]+(float)1.0; 
} 

 
 

for (i=0; i<LEN; i++) { 
  d[i] = a[i+1]+(float)1.0; 
  a[i]= b[i] + c[i]; 
} 

 
 

Presenter
Presentation Notes
Lexically backward dependence. The source of the dependence comes from a statement that 
appears later. 



for (int i = 1; i < LEN; i++) { 
 a[i] = d[i-1] + (float)sqrt(c[i]);      
 d[i] = b[i] + (float)sqrt(e[i]);     
} 
 

S1 

S2 

S1 
S2 backward  

dependence 

75 

S1: a[1] = d[0] + sqrt(c[1]) 
S2: d[1] = b[1] + sqrt(e[1]) 
S1: a[2] = d[1] + sqrt(c[2]) 
S2: d[2] = b[2] + sqrt(e[2]) 
 

i=1 

i=2 

S1 

S2 

S1 

S2 

S1 

S2 

S1 

S2 

This loop cannot be vectorized as it is 

Acyclic Dependenden Graphs 
 Backward Dependences (II) 



76 

S214 S214_1 

S114 S114_1 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. Existence of vector 
dependence 
Exec. Time scalar code: 7.6 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
Compiler report: Loop was vectorized  
Exec. Time scalar code: 7.6 
Exec. Time vector code: 3.8 
Speedup: 2.0 

Acyclic Dependenden Graphs 
 Backward Dependences (II) 

S1 

S2 

S1 

S2 

for (int i=1;i<LEN;i++) {        
  a[i]=d[i-1]+(float)sqrt(c[i]); 
  d[i]=b[i]+(float)sqrt(e[i]);     
} 
 

for (int i=1;i<LEN;i++) {        
  d[i]=b[i]+(float)sqrt(e[i]); 
  a[i]=d[i-1]+(float)sqrt(c[i]);     
} 
 

Presenter
Presentation Notes
Lexically backward dependence. The source of the dependence comes from a statement that 
appears later. 



for (i=0; i<LEN; i++) { 
  a[i]= b[i] + c[i]; 
  d[i] = a[i+1]+(float)1.0; 
} 

 
 

for (i=0; i<LEN; i++) { 
  d[i] = a[i+1]+(float)1.0; 
  a[i]= b[i] + c[i]; 
} 

 
 

77 

S114 S114_1 

S114 S114_1 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 3.3 
Exec. Time vector code: 1.8 
Speedup: 1.8 

IBM Power 7 
Compiler report: Loop was SIMD  
vectorized 
Exec. Time scalar code: 3.3 
Exec. Time vector code: 1.8 
Speedup: 1.8 

The IBM XLC compiler generated the same code in both cases 

Acyclic Dependenden Graphs 
 Backward Dependences (II) 

Presenter
Presentation Notes
Lexically backward dependence. The source of the dependence comes from a statement that 
appears later. 



Cycles in the DG (I) 

S1 

S2 

for (int i=0;i<LEN-1;i++){  
  b[i]   = a[i] + (float) 1.0; 
  a[i+1] = b[i] + (float) 2.0; 
} 

 

S1 
S2 

78 

S1 

S2 

S1 

S2 

S1 

S2 

S1 

S2 

This loop cannot be vectorized (as it is) 
Statements cannot be simply reordered  

Presenter
Presentation Notes
S1 loads the value that is modified by S2. 




for (int i=0;i<LEN-1;i++){  
  b[i]   = a[i] + (float) 1.0; 
  a[i+1] = b[i] + (float) 2.0; 
} 

 

79 

S115 

S115 

Intel Nehalem 
Compiler report: Loop was not vectorized. 
Existence of vector dependence 
Exec. Time scalar code: 12.1 
Exec. Time vector code:  -- 
Speedup: -- 

Cycles in the DG (I) 

Presenter
Presentation Notes
S1 loads the value that is modified by S2. 




for (int i=0;i<LEN-1;i++){  
  b[i]   = a[i] + (float) 1.0; 
  a[i+1] = b[i] + (float) 2.0; 
} 

 

80 

S115 

S115 

IBM Power 7 
Compiler report: Loop was SIMD vectorized 
Exec. Time scalar code: 3.1 
Exec. Time vector code: 2.2 
Speedup: 1.4 

Cycles in the DG (I) 

Presenter
Presentation Notes
S1 loads the value that is modified by S2. 




81 

for (int i=0;i<LEN-1;i++)  
  a[i+1]=a[i]+(float)1.0+(float)2.0; 
 
for (int i=0;i<LEN-1;i++)  
  b[i]   = a[i] + (float) 1.0; 

 

compiler generated code 

for (int i=0;i<LEN-1;i++){  
  b[i]   = a[i] + (float) 1.0; 
  a[i+1] = b[i] + (float) 2.0; 
} 

 

S115 

The IBM XLC compiler applies 
forward substitution and reordering 
to vectorize the code 

This loop is  
not vectorized 

This loop is  
vectorized 

b[i] 

S1 

S2 

S1 

S2 

Cycles in the DG (I)  

Presenter
Presentation Notes
S1 loads the value that is modified by S2. 




82 

for (int i=0;i<LEN-1;i++){  
  b[i]  =a[i]+(float)1.0; 
  a[i+1]=b[i]+(float)2.0; 
} 

 

S115 S215 

for (int i=0;i<LEN-1;i++){  
  b[i]=a[i]+d[i]*d[i]+c[i]*c[i]+c[i]*d[i]; 
  a[i+1]=b[i]+(float)2.0; 
} 

 
Will the IBM XLC compiler 
vectorize this code as before? 

Cycles in the DG (I)  

Presenter
Presentation Notes
S1 loads the value that is modified by S2. 




83 

for (int i=0;i<LEN-1;i++)  
  a[i+1]=a[i]+d[i]*d[i]+c[i]*c[i]+c[i]*d[i]+(float)2.0; 
 
for (int i=0;i<LEN-1;i++)  
  b[i]=a[i]+d[i]*d[i]+c[i]*c[i]+c[i]*d[i]+(float) 1.0; 

 

To vectorize, the compiler needs to do this 

for (int i=0;i<LEN-1;i++){  
  b[i]  =a[i]+(float)1.0; 
  a[i+1]=b[i]+(float)2.0; 
} 

 

S115 S215 

for (int i=0;i<LEN-1;i++){  
  b[i]=a[i]+d[i]*d[i]+c[i]*c[i]+c[i]*d[i]; 
  a[i+1]=b[i]+(float)2.0; 
} 

 
Will the IBM XLC compiler 
vectorize this code as before? 

Cycles in the DG (I) 

Presenter
Presentation Notes
S1 loads the value that is modified by S2. 




84 

for (int i=0;i<LEN-1;i++)  
  a[i+1]=a[i]+d[i]*d[i]+c[i]*c[i]+c[i]*d[i]+(float)2.0; 
 
for (int i=0;i<LEN-1;i++)  
  b[i]=a[i]+d[i]*d[i]+c[i]*c[i]+c[i]*d[i]+(float) 1.0; 

 

for (int i=0;i<LEN-1;i++){  
  b[i]  =a[i]+(float)1.0; 
  a[i+1]=b[i]+(float)2.0; 
} 

 

S115 S215 

for (int i=0;i<LEN-1;i++){  
  b[i]=a[i]+d[i]*d[i]+c[i]*c[i]+c[i]*d[i]; 
  a[i+1]=b[i]+(float)2.0; 
} 

 Will the IBM XLC compiler 
vectorize this code as before? 

No, the compiler does not  
vectorize S215 because  
it is not cost-effective 

Cycles in the DG (I) 

Presenter
Presentation Notes
S1 loads the value that is modified by S2. 




S1 

S2 

for (int i=1;i<LEN;i++){  
  a[i] = b[i] + c[i]; 
  d[i] = a[i] + e[i-1]; 
  e[i] = d[i] + c[i]; 
} 

 

S1 
S2 

A loop can be partially vectorized 

S3 

S3 

S1 can be vectorized 
S2 and S3 cannot be vectorized (as they are)   

85 

Cycles in the DG (II) 



for (int i=1;i<LEN;i++){  
  a[i] = b[i] + c[i]; 
  d[i] = a[i] + e[i-1]; 
  e[i] = d[i] + c[i]; 
} 

 

86 

S116 S116 

Intel Nehalem 
Compiler report: Loop was 
partially vectorized 
Exec. Time scalar code: 14.7 
Exec. Time vector code: 18.1 
Speedup: 0.8 

S116 S116 

Cycles in the DG (II) 

for (int i=1;i<LEN;i++){  
  a[i] = b[i] + c[i]; 
  d[i] = a[i] + e[i-1]; 
  e[i] = d[i] + c[i]; 
} 

 

IBM Power 7 
Compiler report: Loop was not  
SIMD vectorized because a data  
dependence prevents SIMD 
vectorization 
Exec. Time scalar code: 13.5 
Exec. Time vector code: -- 
Speedup: -- 



for (int i=0;i<LEN-1;i++){     
  a[i]=a[i+1]+b[i]; 
} 

S1 

S1 

for (int i=1;i<LEN;i++){     
  a[i]=a[i-1]+b[i]; 
} 

S1 

Self-antidependence 
can be vectorized 

Self true-dependence 
can not  vectorized  
(as it is) 

a[0]=a[1]+b[0] 
a[1]=a[2]+b[1] 
a[2]=a[3]+b[2] 
a[3]=a[4]+b[3] 

a[1]=a[0]+b[1] 
a[2]=a[1]+b[2] 
a[3]=a[2]+b[3] 
a[4]=a[3]+b[4] 

S1 

87 

Cycles in the DG (III) 

Presenter
Presentation Notes
How to explain the difference between these two in the dependence graph?

a21 = a11 + b
a22= a12 + b
a23= a13 + b
a31 = a21 +b
a32 = a22 + b
a33 = a32 +b
This loop can be vectorized if the outermost loop is runned sequential. 




for (int i=0;i<LEN-1;i++){     
  a[i]=a[i+1]+b[i]; 
} 

S1 
for (int i=1;i<LEN;i++){     
  a[i]=a[i-1]+b[i]; 
} 

S1 

88 

S117 S118 

Intel Nehalem 
Compiler report: Loop was 
vectorized 
Exec. Time scalar code: 6.0 
Exec. Time vector code: 2.7 
Speedup: 2.2 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. Existence of vector 
dependence 
Exec. Time scalar code: 7.2 
Exec. Time vector code: -- 
Speedup: -- 

S117 S118 

S1 S1 

Cycles in the DG (III) 

Presenter
Presentation Notes
How to explain the difference between these two in the dependence graph?

a21 = a11 + b
a22= a12 + b
a23= a13 + b
a31 = a21 +b
a32 = a22 + b
a33 = a32 +b
This loop can be vectorized if the outermost loop is runned sequential. 




for (int i=0;i<LEN-1;i++){     
  a[i]=a[i+1]+b[i]; 
} 

S1 
for (int i=1;i<LEN;i++){     
  a[i]=a[i-1]+b[i]; 
} 

S1 

S117 S118 

S117 S118 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 2.0 
Exec. Time vector code: 1.0 
Speedup: 2.0 

IBM Power 7 
Compiler report: : Loop was not  
SIMD vectorized because a data  
dependence prevents SIMD 
vectorization 
Exec. Time scalar code: 7.2 
Exec. Time vector code: -- 
Speedup: -- 

S1 S1 

89 

Cycles in the DG (III)  

Presenter
Presentation Notes
How to explain the difference between these two in the dependence graph?

a21 = a11 + b
a22= a12 + b
a23= a13 + b
a31 = a21 +b
a32 = a22 + b
a33 = a32 +b
This loop can be vectorized if the outermost loop is runned sequential. 




for (int i=1;i<LEN;i++){     
  a[i]=a[i-1]+b[i]; 
} 

S1 

Self true-dependence 
is not vectorized 

a[1]=a[0]+b[1] 
a[2]=a[1]+b[2] 
a[3]=a[2]+b[3] 

S1 

This is also a self-true  
dependence. But …  
can it be vectorized? 

S1 

a[4]  =a[0]+b[4] 
a[5]  =a[1]+b[5] 
a[6]  =a[2]+b[6] 
a[7]  =a[3]+b[7] 
a[8]  =a[4]+b[8] 
a[9]  =a[5]+b[9] 
a[10]=a[6]+b[10] 
a[11]=a[7]+b[11] 

i=4 
i=5 
i=6 
i=7 
i=8 
i=9 
i=10 
i=11 

for (int i=4;i<LEN;i++){     
  a[i]=a[i-4]+b[i]; 
} 

90 

Cycles in the DG (IV)  

4 

1 

Presenter
Presentation Notes
How to explain the difference between these two in the dependence graph?

a21 = a11 + b
a22= a12 + b
a23= a13 + b
a31 = a21 +b
a32 = a22 + b
a33 = a32 +b
This loop can be vectorized if the outermost loop is runned sequential. 




for (int i=1;i<n;i++){     
  a[i]=a[i-1]+b[i]; 
} 

S1 

a[1]=a[0]+b[1] 
a[2]=a[1]+b[2] 
a[3]=a[2]+b[3] 

S1 

91 

for (int i=4;i<LEN;i++){     
  a[i]=a[i-4]+b[i]; 
} 

Yes, it can be vectorized because the 
dependence distance is 4, which is the 
number of iterations that the SIMD unit 
can execute simultaneously.  

S1 

a[4]  =a[0]+b[4] 
a[5]  =a[1]+b[5] 
a[6]  =a[2]+b[6] 
a[7]  =a[3]+b[7] 
a[8]  =a[4]+b[8] 
a[9]  =a[5]+b[9] 
a[10]=a[6]+b[10] 
a[11]=a[7]+b[11] 

S1 

S1 

S1 

S1 

S1 
S1 

S1 

S1 

i=4 
i=5 
i=6 
i=7 
i=8 
i=9 
i=10 
i=11 

Self true-dependence 
cannot be vectorized 

4 

1 

Cycles in the DG (IV) 

Presenter
Presentation Notes
How to explain the difference between these two in the dependence graph?

a21 = a11 + b
a22= a12 + b
a23= a13 + b
a31 = a21 +b
a32 = a22 + b
a33 = a32 +b
This loop can be vectorized if the outermost loop is runned sequential. 




for (int i=4;i<LEN;i++){     
  a[i]=a[i-4]+b[i]; 
} 

S119 

Intel Nehalem 
Compiler report: Loop was 
vectorized 
Exec. Time scalar code: 8.4 
Exec. Time vector code: 3.9 
Speedup: 2.1 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 6.6 
Exec. Time vector code: 1.8 
Speedup: 3.7 

92 

Cycles in the DG (IV)  

Presenter
Presentation Notes
How to explain the difference between these two in the dependence graph?

a21 = a11 + b
a22= a12 + b
a23= a13 + b
a31 = a21 +b
a32 = a22 + b
a33 = a32 +b
This loop can be vectorized if the outermost loop is runned sequential. 




for (int i = 0; i < LEN-1; i++) {     
 for (int j = 0; j < LEN; j++)   
   a[i+1][j] = a[i][j] + b; 
} 

S1 

Can this loop be vectorized? 
 
i=0, j=0:  a[1][0] = a[0][0] + b 
       j=1:  a[1][1] = a[0][1] + b 
       j=2:  a[1][2] = a[0][2] + b 
i=1  j=0:  a[2][0] = a[1][0] + b 
       j=1:  a[2][1] = a[1][1] + b 
       j=2:  a[2][2] = a[1][2] + b 
   

S1 

93 

Cycles in the DG (V) 

Presenter
Presentation Notes
a21 = a11 + b
a22= a12 + b
a23= a13 + b
a31 = a21 +b
a32 = a22 + b
a33 = a32 +b
This loop can be vectorized if the outermost loop is runned sequential. 




Can this loop be vectorized? 
 
i=0, j=0:  a[1][0] = a[0][0] + 1 
       j=1:  a[1][1] = a[0][1] + 1 
       j=2:  a[1][2] = a[0][2] + 1 
i=1  j=0:  a[2][0] = a[1][0] + 1 
       j=1:  a[2][1] = a[1][1] + 1 
       j=2:  a[2][2] = a[1][2] + 1 
   

for (int i=0;i<LEN;i++){     
 a[i+1][0:LEN-1]=a[i][0:LEN-
1]+b; 
} 

Dependences occur in the outermost loop.  
- outer loop runs serially 
- inner loop can be vectorized 

for (int i = 0; i < LEN-1; i++) {     
 for (int j = 0; j < LEN; j++)   
   a[i+1][j] = a[i][j] + (float) 1.0; 
} 

S1 
S1 

94 

Cycles in the DG (V) 

Presenter
Presentation Notes
a21 = a11 + b
a22= a12 + b
a23= a13 + b
a31 = a21 +b
a32 = a22 + b
a33 = a32 +b
This loop can be vectorized if the outermost loop is runned sequential. 




for (int i = 0; i < LEN-1; i++) {     
 for (int j = 0; j < LEN; j++)   
   a[i+1][j] = a[i][j] + 1; 
} 

95 

S121 

Intel Nehalem 
Compiler report: Loop was 
vectorized 
Exec. Time scalar code: 11.6 
Exec. Time vector code:  3.2 
Speedup: 3.5 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized  
Exec. Time scalar code: 3.9 
Exec. Time vector code: 1.8 
Speedup: 2.1 

Cycles in the DG (V) 

Presenter
Presentation Notes
a21 = a11 + b
a22= a12 + b
a23= a13 + b
a31 = a21 +b
a32 = a22 + b
a33 = a32 +b
This loop can be vectorized if the outermost loop is runned sequential. 




for (int i=0;i<LEN;i++){ 
  
  a[r[i]] = a[r[i]] * (float) 2.0; 
} 
 

S1 

96 

• Cycles can  appear because the compiler does not know 
if there are dependences 
 
 

 

 

S1 

S1 

S1 

S1 

S1 
S1 

Compiler cannot resolve the system 
 
To be safe, it considers that a data 
dependence is possible for every  
instance of S1 

Is there a value of i such  
that r[i’] = r[i], such that i’ ≠ i? 

Cycles in the DG (VI) 

S1 



for (int i=0;i<LEN;i++){ 
  r[i] = i; 
  a[r[i]] = a[r[i]]* (float) 2.0; 
} 
 

97 

• The compiler is conservative.  
• The compiler only vectorizes when it can prove that it is 

safe to do it.  
 
 

 

 

Does the compiler use the info  that r[i] = i 
to compute data dependences? 

Cycles in the DG (VI)  



for (int i=0;i<LEN;i++){ 
  a[r[i]]=a[r[i]]*(float)2.0; 
} 
 

98 

Does the compiler uses the info  that 
r[i] = i to compute data dependences? 

S122 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. Existence of vector 
dependence 
Exec. Time scalar code: 5.0 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
Compiler report: Partial Loop was 
vectorized 
Exec. Time scalar code: 5.8 
Exec. Time vector code: 5.7 
Speedup: 1.01 

for (int i=0;i<LEN;i++){ 
  r[i] = i; 
  a[r[i]]=a[r[i]]*(float)2.0; 
} 
 

S123 

S122 S123 

Cycles in the DG (VI)  



for (int i=0;i<LEN;i++){ 
  a[r[i]]=a[r[i]]*(float)2.0; 
} 
 

99 

Does the compiler uses the info  that 
r[i] = i to compute data dependences? 

IBM Power 7 
Compiler report: Loop was not 
vectorized because a data  
dependence prevents SIMD 
vectorization 
Exec. Time scalar code: 2.6 
Exec. Time vector code: 2.3 
Speedup: 1.1 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 2.1 
Exec. Time vector code: 0.9 
Speedup: 2.3 

for (int i=0;i<LEN;i++){ 
  r[i] = i; 
  a[r[i]]=a[r[i]]*(float)2.0; 
} 
 

S122 S123 

S122 S123 

Cycles in the DG (VI) 

Presenter
Presentation Notes
It uses forward substitution to vectorize, as shown in a previous example



Dependence Graphs and 
Compiler Vectorization 
• No dependences: Vectorized by the compiler 
• Acyclic graphs: 

– All dependences are forward:  
• Vectorized by the compiler  

– Some backward dependences:  
• Sometimes vectorized by the compiler  

• Cycles in the dependence graph 
– Self-antidependence:  

• Vectorized by the compiler 
– Recurrence:  

• Usually not vectorized by the the compiler 
– Other examples 

100 



Loop Transformations  
• Compiler Directives 
• Loop Distribution or loop fission 
• Reordering Statements 
• Node Splitting 
• Scalar expansion 
• Loop Peeling 
• Loop Fusion 
• Loop Unrolling 
• Loop Interchanging 

 
 

101 



Compiler Directives (I) 
 

• When the compiler does not vectorize automatically due 
to dependences the programmer can inform the compiler 
that it is safe to vectorize: 
 

#pragma ivdep (ICC compiler)  
 

#pragma ibm independent_loop (XLC compiler) 

 

 
 

 

 

102 



Compiler Directives (I) 
• This loop can be vectorized when k < -3 and k >= 0. 
• Programmer knows that k>=0 

 
 
 

 

 
 
 
 

103 

 for (int i=val;i<LEN-k;i++)     
     a[i]=a[i+k]+b[i]; 
 

a[0]=a[1]+b[0] 
a[1]=a[2]+b[1] 
a[2]=a[3]+b[2] 

a[1]=a[0]+b[0] 
a[2]=a[1]+b[1] 
a[3]=a[2]+b[2] 

k =-1 

If (k >= 0)  no dependence  
or self-anti-dependence 

If (k <0)  self-true dependence 

Can  
be vectorized k =1 

Cannot   
be vectorized 

S1 

S1 

Presenter
Presentation Notes
a[2]= a[1] *c

a[3]= a[2]*c



Compiler Directives (I) 
• This loop can be vectorized when k < -3 and k >= 0. 
• Programmer knows that k>=0 

 
 
 

 

 
 
 
 

104 

 for (int i=val;i<LEN-
k;i++)     
     a[i]=a[i+k]+b[i]; 
 

How can the programmer tell the 
compiler that k >= 0 

Presenter
Presentation Notes
a[2]= a[1] *c

a[3]= a[2]*c



Compiler Directives (I) 
• This loop can be vectorized when k < -3 and k >= 0. 
• Programmer knows that k>=0 

 
 
 

 

 
 
 
 

105 

#pragma ivdep   

wrong results will be  
obtained if loop is vectorized 
when  -3 < k < 0 

Intel ICC provides the #pragma ivdep to  
tell the compiler that it is safe to ignore 
unknown dependences 

 for (int i=val;i<LEN-
k;i++)     
     a[i]=a[i+k]+b[i]; 
 

Presenter
Presentation Notes
a[2]= a[1] *c

a[3]= a[2]*c



Compiler Directives (I) 

106 

   for (int i=0;i<LEN-k;i++)     
     a[i]=a[i+k]+b[i]; 

S124 S124_1 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. Existence of vector 
dependence 
Exec. Time scalar code: 6.0 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
Compiler report: Loop was 
vectorized 
Exec. Time scalar code: 6.0 
Exec. Time vector code: 2.4 
Speedup: 2.5 

S124 and S124_1 S124_2 

if (k>=0) 
 #pragma ivdep 

 for (int i=0;i<LEN-k;i++)     
     a[i]=a[i+k]+b[i]; 
if (k<0) 
  for (int i=0);i<LEN-k;i++) 
     a[i]=a[i+k]+b[i]; 

if (k>=0) 

 for (int i=0;i<LEN-k;i++)  
     a[i]=a[i+k]+b[i]; 
if (k<0) 
  for (int i=0);i<LEN-k;i++) 
     a[i]=a[i+k]+b[i]; 
          

S124_2 

Presenter
Presentation Notes
a[2]= a[1] *c

a[3]= a[2]*c



Compiler Directives (I) 

107 

IBM Power 7 
Compiler report: Loop was not 
vectoriced because a data  
dependence prevents SIMD 
vectorization 
Exec. Time scalar code: 2.2 
Exec. Time vector code: --  
Speedup: -- 

 #pragma ibm independent_loop 
needs AIX OS (we ran the 

experiments on Linux) 

   for (int i=0;i<LEN-k;i++)     
     a[i]=a[i+k]+b[i]; 

S124 S124_1 
if (k>=0) 

 for (int i=0;i<LEN-k;i++)     
     a[i]=a[i+k]+b[i]; 
if (k<0) 
  for (int i=0);i<LEN-k;i++) 
     a[i]=a[i+k]+b[i]; 
          

S124_2 

S124 and S124_1 S124_2 

if (k>=0) 
 #pragma ibm independent_loop 

 for (int i=0;i<LEN-k;i++)     
     a[i]=a[i+k]+b[i]; 
if (k<0) 
  for (int i=0);i<LEN-k;i++) 
     a[i]=a[i+k]+b[i]; 

Presenter
Presentation Notes
a[2]= a[1] *c

a[3]= a[2]*c



Compiler Directives (II) 
 

• Programmer can disable vectorization of a loop when the 
when the vector code runs slower than the scalar code 
 
 

 
 

 
 

 

 

108 

#pragma novector (ICC compiler)  
 
#pragma nosimd (XLC compiler) 
 



S1 

S2 

for (int i=1;i<LEN;i++){  
  a[i] = b[i] + c[i]; 
  d[i] = a[i] + e[i-1]; 
  e[i] = d[i] + c[i]; 
} 

 

S1 
S2 

Vector code can run slower than scalar code   

S3 

S3 

S1 can be vectorized 
S2 and S3 cannot be vectorized (as they are)   

109 

Compiler Directives (II) 

Less locality when  
executing in vector mode 



#pragma novector 

110 

S116 

Intel Nehalem 
Compiler report: Loop was 
partially vectorized 
Exec. Time scalar code: 14.7 
Exec. Time vector code: 18.1 
Speedup: 0.8 

S116 

Compiler Directives (II) 

for (int i=1;i<LEN;i++){  
  a[i] = b[i] + c[i]; 
  d[i] = a[i] + e[i-1]; 
  e[i] = d[i] + c[i]; 
} 

 



Loop Distribution  
• It is also called loop fission.  
• Divides loop control over different statements in the loop 

body.  
 
 for (i=1; i<LEN; i++) { 

  a[i]= (float)sqrt(b[i])+ 
        (float)sqrt(c[i]); 
  dummy(a,b,c); 
} 

 
 

for (i=1; i<LEN; i++)  
  a[i]= (float)sqrt(b[i])+ 
        (float)sqrt(c[i]); 
 
for (i=1; i<LEN; i++) 
  dummy(a,b,c);  
   

 
 

- Compiler cannot analyze the dummy function. 
As a result, the compiler cannot apply loop distribution, 
because it does not know if it is a legal transformation 
- Programmer can apply loop distribution if legal.  
 

111 

Presenter
Presentation Notes
Second statement cannot be vectorized 
Loop distribution helps the compiler realize this. 



Loop Distribution  
 
 

S126 S126_1 

Intel Nehalem 
Compiler report: Loop was not 
vectorized 
Exec. Time scalar code: 4.3 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
Compiler report: 
- Loop 1 was vectorized.  
- Loop 2 was not vectorized 
Exec. Time scalar code: 5.1 
Exec. Time vector code: 1.1 
Speedup: 4.6 

S126 S126_1 

112 

for (i=1; i<LEN; i++) { 
  a[i]= (float)sqrt(b[i])+ 
        (float)sqrt(c[i]); 
  dummy(a,b,c); 
} 

 
 

for (i=1; i<LEN; i++)  
  a[i]= (float)sqrt(b[i])+ 
        (float)sqrt(c[i]); 
for (i=1; i<LEN; i++) 
  dummy(a,b,c);  
   

 
 

Presenter
Presentation Notes
Second statement cannot be vectorized 
Loop distribution helps the compiler realize this. 



Loop Distribution  
 
 

S126 S126_1 

S126 S126_1 

IBM Power 7 
Compiler report: Loop was not 
SIMD vectorized 
Exec. Time scalar code: 1.3 
Exec. Time vector code:  -- 
Speedup: -- 

IBM Power 7 
Compiler report: 
- Loop 1 was SIMD vectorized.  
- Loop 2 was not SIMD vectorized 
Exec. Time scalar code: 1.14 
Exec. Time vector code: 1.0 
Speedup: 1.14 

113 

for (i=1; i<LEN; i++) { 
  a[i]= (float)sqrt(b[i])+ 
        (float)sqrt(c[i]); 
  dummy(a,b,c); 
} 

 
 

for (i=1; i<LEN; i++)  
  a[i]= (float)sqrt(b[i])+ 
        (float)sqrt(c[i]); 
for (i=1; i<LEN; i++) 
  dummy(a,b,c);  
   

 
 

Presenter
Presentation Notes
Second statement cannot be vectorized 
Loop distribution helps the compiler realize this. 



Reordering Statements 

S1 
S2 

for (i=0; i<LEN; i++) { 
  a[i]= b[i] + c[i]; 
  d[i] = a[i+1]+(float)1.0; 
} 

 
 

for (i=0; i<LEN; i++) { 
  d[i] = a[i+1]+(float)1.0; 
  a[i]= b[i] + c[i]; 
} 

 
 

S1 
S2 

S1 

S2 

backward  
depedence 

S1 

S2 
forward  
depedence 

114 

Presenter
Presentation Notes
Lexically backward dependence. The source of the dependence comes from a statement that 
appears later. 



Reordering Statements 

for (i=0; i<LEN; i++) { 
  a[i]= b[i] + c[i]; 
  d[i] = a[i+1]+(float)1.0; 
} 

 
 

for (i=0; i<LEN; i++) { 
  d[i] = a[i+1]+(float)1.0; 
  a[i]= b[i] + c[i]; 
} 

 
 

115 

S114 S114_1 

S114 S114_1 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. Existence of vector 
dependence 
Exec. Time scalar code: 12.6 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
Compiler report: Loop was 
vectorized.  
Exec. Time scalar code: 10.7 
Exec. Time vector code: 6.2 
Speedup: 1.7 

Presenter
Presentation Notes
Lexically backward dependence. The source of the dependence comes from a statement that 
appears later. 



Reordering Statements 

for (i=0; i<LEN; i++) { 
  a[i]= b[i] + c[i]; 
  d[i] = a[i+1]+(float)1.0; 
} 

 
 

for (i=0; i<LEN; i++) { 
  d[i] = a[i+1]+(float)1.0; 
  a[i]= b[i] + c[i]; 
} 

 
 

116 

S114 S114_1 

S114 S114_1 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 3.3 
Exec. Time vector code: 1.8 
Speedup: 1.8 

IBM Power 7 
Compiler report: Loop was SIMD  
vectorized 
Exec. Time scalar code: 3.3 
Exec. Time vector code: 1.8 
Speedup: 1.8 

The IBM XLC compiler generated the same code in both cases 

Presenter
Presentation Notes
Lexically backward dependence. The source of the dependence comes from a statement that 
appears later. 



Node Splitting 

for (int i=0;i<LEN-1;i++){  
  a[i]=b[i]+c[i]; 
  d[i]=(a[i]+a[i+1])*(float)0.5;  
} 

 

S1 
S2 

for (int i=0;i<LEN-1;i++){  
  temp[i]=a[i+1]; 
  a[i]=b[i]+c[i]; 
  d[i]=(a[i]+temp[i])*(float) 0.5   
} 

 

S1 
S2 

S1 

S2 

S0 

S0 S1 

S2 

117 



Node Splitting 

for (int i=0;i<LEN-1;i++){  
  a[i]=b[i]+c[i]; 
  d[i]=(a[i]+a[i+1])*(float)0.5;  
} 

 

for (int i=0;i<LEN-1;i++){  
  temp[i]=a[i+1]; 
  a[i]=b[i]+c[i]; 
  d[i]=(a[i]+temp[i])*(float)0.5;  
} 

 

118 

S126 S126_1 

S126 S126_1 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. Existence of vector 
dependence 
Exec. Time scalar code: 12.6 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
Compiler report: Loop was 
vectorized.  
Exec. Time scalar code: 13.2 
Exec. Time vector code: 9.7 
Speedup: 1.3 



Node Splitting 

for (int i=0;i<LEN-1;i++){  
  a[i]=b[i]+c[i]; 
  d[i]=(a[i]+a[i+1])*(float)0.5;  
} 

 

S1 
S2 

for (int i=0;i<LEN-1;i++){  
  temp[i]=a[i+1]; 
  a[i]=b[i]+c[i]; 
  d[i]=(a[i]+temp[i])*(float) 0.5   
} 

 

S1 
S2 

S0 

119 

S126 S126_1 

S126 S126_1 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 3.8 
Exec. Time vector code: 1.7 
Speedup: 2.2 

IBM Power 7 
Compiler report: Loop was SIMD  
vectorized 
Exec. Time scalar code: 5.1 
Exec. Time vector code: 2.4 
Speedup: 2.0 



Scalar Expansion 
for (int i=0;i<n;i++){  
  t = a[i]; 
  a[i] = b[i]; 
  b[i] = t; 
} 

 

S1 
S2 
S3 

for (int i=0;i<n;i++){  
  t[i] = a[i]; 
  a[i] = b[i]; 
  b[i] = t[i];   
} 

 

S1 
S2 
S3 

S1 

S2 

S3 

S1 

S2 

S3 

120 



Scalar Expansion 

for (int i=0;i<n;i++){  
  t = a[i]; 
  a[i] = b[i]; 
  b[i] = t; 
} 

 

for (int i=0;i<n;i++){  
  t[i] = a[i]; 
  a[i] = b[i]; 
  b[i] = t[i];   
} 

 

121 

S139 S139_1 

S139 S139_1 

Intel Nehalem 
Compiler report: Loop was 
vectorized. 
Exec. Time scalar code: 0.7 
Exec. Time vector code: 0.4 
Speedup: 1.5 

Intel Nehalem 
Compiler report: Loop was 
vectorized.  
Exec. Time scalar code: 0.7 
Exec. Time vector code: 0.4 
Speedup: 1.5 



Scalar Expansion 

for (int i=0;i<n;i++){  
  t = a[i]; 
  a[i] = b[i]; 
  b[i] = t; 
} 

 

for (int i=0;i<n;i++){  
  t[i] = a[i]; 
  a[i] = b[i]; 
  b[i] = t[i];   
} 

 

122 

S139 S139_1 

S139 S139_1 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 0.28 
Exec. Time vector code: 0.14 
Speedup: 2 

IBM Power 7 
Compiler report: Loop was SIMD  
vectorized 
Exec. Time scalar code: 0.28 
Exec. Time vector code: 0.14 
Speedup: 2.0 



• Remove the first/s or the last/s iteration of the loop into separate 
code outside the loop 

• It is always legal, provided that no additional iterations are 
introduced. 

• When the trip count of the loop is not constant the peeled loop has 
to be protected with additional runtime tests.  

• This transformation is useful to enforce a particular initial memory 
alignment on array references prior to loop vectorization.  

 
 
 
for (i=0; i<LEN; i++)  
  A[i] = B[i] + C[i]; 

 
 
 

 
A[0] = B[0] + C[0]; 
for (i=1; i<LEN; i++)  
  A[i] = B[i] + C[i]; 

 
 
 

123 

Loop Peeling 



• Remove the first/s or the last/s iteration of the loop into separate 
code outside the loop 

• It is always legal, provided that no additional iterations are 
introduced. 

• When the trip count of the loop is not constant the peeled loop has 
to be protected with additional runtime tests.  

• This transformation is useful to enforce a particular initial memory 
alignment on array references prior to loop vectorization.  

 
 
 
for (i=0; i<LEN; i++)  
  A[i] = B[i] + C[i]; 

 
 
 

 
if (N>=1) 
  A[0] = B[0] + C[0]; 
for (i=1; i<LEN; i++)  
  A[i] = B[i] + C[i]; 

 
 
 

124 

Loop Peeling 



Loop Peeling 

for (int i=0;i<LEN;i++){  
  a[i] = a[i] + a[0]; 
} 
 

S1 

a[0]= a[0] + a[0]; 
for (int i=1;i<LEN;i++){  
  a[i] = a[i] + a[0] 
} 
 

a[0]=a[0]+a[0] 
a[1]=a[1]+a[0] 
a[2]=a[2]+a[0] 

S1 

Self true-dependence 
is not vectorized 

After loop peeling, there are no  
dependences, and the loop can be  
vectorized 

125 



Loop Peeling 

for (int i=0;i<LEN;i++){  
  a[i] = a[i] + a[0]; 
} 
 

S1 

a[0]= a[0] + a[0]; 
for (int i=1;i<LEN;i++){  
  a[i] = a[i] + a[0] 
} 
 

126 

S127 S127_1 

S127 S127_1 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. Existence of vector 
dependence 
Exec. Time scalar code: 6.7 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
Compiler report: Loop was 
vectorized.  
Exec. Time scalar code: 6.6 
Exec. Time vector code: 1.2 
Speedup: 5.2 



Loop Peeling 

for (int i=0;i<LEN;i++) 
{  
  a[i] = a[i] + a[0]; 
} 

 

a[0]= a[0] + a[0]; 
float t = a[0]; 
for (int i=1;i<LEN;i++) 
{  
  a[i] = a[i] + t; 
} 

 

127 

S127 S127_2 

S127 S127_2 

IBM Power 7 
Compiler report: Loop 
was not SIMD vectorized 
Time scalar code: 2.4 
Time vector code: -- 
Speedup: -- 

IBM Power 7 
Compiler report: Loop 
was vectorized 
Exec. scalar code: 1.58 
Exec. vector code: 0.62 
Speedup: 2.54 

a[0]= a[0] + a[0]; 
for (int i=1;i<LEN;i++) 
{  
  a[i] = a[i] + a[0]; 
} 

 

S127_1 

IBM Power 7 
Compiler report: Loop 
was not SIMD vectorized 
Exec. scalar code: 2.4 
Exec. vector code: -- 
Speedup: -- 

S127_1 

Presenter
Presentation Notes
Middle column, t -> a[0]
Last column Loop was vectorized



Loop Interchanging 
• This transformation switches the positions of one loop 

that is tightly nested within another loop.  
 

for (i=0; i<LEN; i++)  
  for (j=0; j<LEN; j++)  
    A[i][j]=0.0; 

 
 
 

for (j=0; j<LEN; j++)  
  for (i=0; i<LEN; i++)  
    A[i][j]=0.0; 

 
 
 

128 



Loop Interchanging 

 for (j=1; j<LEN; j++){ 
  for (i=j; i<LEN; i++){ 
    A[i][j]=A[i-1][j]+(float) 1.0; 
  }} 

 

1 2 3 

1 

2 

3 

j 

i 

129 

i=1 
i=2 
i=3 

i=2 
i=3 
 

j=3 i=3 
 

A[1][1]=A[0][1] +1 
A[2][1]=A[1][1] + 1 
A[3][1]=A[2][1] + 1 
 
A[2][2]=A[1][2] +1 
A[3][2]=A[2][2] +1 
 
A[3][3]=A[2][3] +1 

j=1 

j=2 



Loop Interchanging 

 for (j=1; j<LEN; j++){ 
  for (i=j; i<LEN; i++){ 
    A[i][j]=A[i-1][j]+(float) 1.0; 
  }} 

 

1 2 3 

1 

2 

3 

j 

i 

130 

A[1][1]=A[0][1] +1 
A[2][1]=A[1][1] + 1 
A[3][1]=A[2][1] + 1 
 
A[2][2]=A[1][2] +1 
A[3][2]=A[2][2] +1 
 
A[3][3]=A[2][3] +1 

j=1 

j=2 

i=1 
i=2 
i=3 

i=2 
i=3 
 

Inner loop cannot be vectorized  
because of self-dependence  

j=3 i=3 
 



Loop Interchanging 

 for (i=1; i<LEN; i++){ 
  for (j=1; j<i+1; j++){ 
    A[i][j]=A[i-1][j]+(float) 1.0; 
  }} 

 

1 2 3 

1 

2 

3 

j 

i 

131 

A[1][1]=A[0][1] +1 
 
A[2][1]=A[1][1] + 1 
A[2][2]=A[1][2] + 1 
 
A[3][1]=A[2][1] +1 
A[3][2]=A[2][2] +1 
A[3][3]=A[2][3] +1 
 

i=1 

i=3 

j=1 
 
j=1 
j=2 

j=1 
j=2 
j=3 

i=2 

Loop interchange is legal 
No dependences in inner loop 
 



Loop Interchanging 

132 

S228 S228_1 

S228 S228_1 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. 
Exec. Time scalar code: 2.3 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
Compiler report: Loop was 
vectorized.  
Exec. Time scalar code: 0.6 
Exec. Time vector code: 0.2 
Speedup: 3 

 for (j=1; j<LEN; j++){ 
  for (i=j; i<LEN; i++){ 
    A[i][j]=A[i-1][j]+(float)1.0; 
  }} 

 

 for (i=1; i<LEN; i++){ 
  for (j=1; j<i+1; j++){ 
    A[i][j]=A[i-1][j]+(float)1.0; 
  }} 

 

Presenter
Presentation Notes
Original code access the code by columns. 
New code access the code by rows. 



Loop Interchanging 

133 

S228 S228_1 

S228 S228_1 

IBM Power 7 
Compiler report: Loop was not 
SIMD vectorized 
Exec. Time scalar code: 0.5 
Exec. Time vector code: -- 
Speedup: -- 

IBM Power 7 
Compiler report: Loop was SIMD  
vectorized  
Exec. Time scalar code: 0.2 
Exec. Time vector code: 0.14 
Speedup: 1.42 

 for (j=1; j<LEN; j++){ 
  for (i=j; i<LEN; i++){ 
    A[i][j]=A[i-1][j]+(float)1.0; 
  }} 

 

 for (i=1; i<LEN; i++){ 
  for (j=1; j<i+1; j++){ 
    A[i][j]=A[i-1][j]+(float)1.0; 
  }} 

 

Presenter
Presentation Notes
Original code access the code by columns. 
New code access the code by rows. 



Outline 
 

1. Intro 
2. Data Dependences (Definition)   
3. Overcoming limitations to SIMD-Vectorization 

– Data Dependences 
• Reductions 

– Data Alignment 
– Aliasing 
– Non-unit strides 
– Conditional Statements 

4. Vectorization using intrinsics  
 134 



Reductions 
 
 

135 

x = a[0]; 
index = 0; 
for (int i=0;i<LEN;++i){ 
  if (a[i] > x) { 
    x = a[i]; 
    index = i; 
}} 

sum =0; 
for (int i=0;i<LEN;++i){ 
  sum+= a[i]; 
} 

S1 

Sum Reduction Max Loc Reduction  

• Reduction is an operation, such as addition, which is 
applied to the elements of an array to produce a result of 
a lesser rank.  



Reductions 
 
 

136 

x = a[0]; 
index = 0; 
for (int i=0;i<LEN;++i){ 
  if (a[i] > x) { 
    x = a[i]; 
    index = i; 
}} 

sum =0; 
for (int i=0;i<LEN;++i){ 
  sum+= a[i]; 
} 

S131 S132 

Intel Nehalem 
Compiler report: Loop was 
vectorized.  
Exec. Time scalar code: 5.2 
Exec. Time vector code: 1.2 
Speedup: 4.1 

Intel Nehalem 
Compiler report: Loop was 
vectorized. 
Exec. Time scalar code: 9.6 
Exec. Time vector code: 2.4 
Speedup: 3.9 

S131 S132 



Reductions 
 
 

137 

x = a[0]; 
index = 0; 
for (int i=0;i<LEN;++i){ 
  if (a[i] > x) { 
    x = a[i]; 
    index = i; 
}} 

sum =0; 
for (int i=0;i<LEN;++i){ 
  sum+= a[i]; 
} 

S131 S132 

S131 S132 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 1.1 
Exec. Time vector code: 0.4 
Speedup: 2.4 

IBM Power 7 
Compiler report: Loop was not 
SIMD  vectorized 
Exec. Time scalar code: 4.4 
Exec. Time vector code: -- 
Speedup: -- 



Reductions 
 
 

138 

for (int i = 0; i < 64; i++){       
  max[i] = a[i];       
  loc[i] = i; }     
for (int i = 0; i < LEN; i+=64){      
 for (int j=0, k=i; k<i+64; 
k++,j++){        
     int cmp = max[j] < a[k];         
     max[j] = cmp ? a[k] : max[j];         
     loc[j] = cmp ? k : loc[j];       
} }     
MAX = max[0];     
LOC = 0;    
for (int i = 0; i < 64; i++){       
  if (MAX < max[i]){         
     MAX = max[i];         
     LOC = loc[i];     
 } } 

S141_2 

S141_1 S141_1 

IBM Power 7 
A version written with intrinsics 

runs in 1.6 secs. 

IBM Power 7 
Compiler report: Loop was SIMD  
vectorized 
Exec. Time scalar code: 10.2 
Exec. Time vector code: 2.7 
Speedup: 3.7 



Outline 
 

1. Intro 
2. Data Dependences (Definition)   
3. Overcoming limitations to SIMD-Vectorization 

– Data Dependences 
• Induction variables 

– Data Alignment 
– Aliasing 
– Non-unit strides 
– Conditional Statements 

4. Vectorization with intrinsics  
 139 



Induction variables 

• Induction variable is a variable that can be expressed as 
a function of the loop iteration variable 

140 

for (int i=0;i<LEN;i++){ 
  a[i] = (float)2.*(i+1)*b[i]; 
} 

S1 

S2 

float s = (float)0.0; 
for (int i=0;i<LEN;i++){ 
  s += (float)2.; 
  a[i] = s * b[i]; 
} 



Induction variables 

141 

for (int i=0;i<LEN;i++){ 
  a[i] = (float)2.*(i+1)*b[i]; 
} 

float s = (float)0.0; 
for (int i=0;i<LEN;i++){ 
  s += (float)2.; 
  a[i] = s * b[i]; 
} 

S133 S133_1 

S133 S133_1 

Intel Nehalem 
Compiler report: Loop was 
vectorized.  
Exec. Time scalar code: 6.1 
Exec. Time vector code: 1.9 
Speedup: 3.1 

Intel Nehalem 
Compiler report: Loop was 
vectorized. 
Exec. Time scalar code: 8.4 
Exec. Time vector code: 1.9 
Speedup: 4.2 

The Intel ICC compiler generated the same vector code in both cases 



Induction variables 

142 

for (int i=0;i<LEN;i++){ 
  a[i] = (float)2.*(i+1)*b[i]; 
} 

float s = (float)0.0; 
for (int i=0;i<LEN;i++){ 
  s += (float)2.; 
  a[i] = s * b[i]; 
} 

S133 S133_1 

S133 S133_1 

IBM Power 7 
Compiler report: Loop was not 
SIMD vectorized  
Exec. Time scalar code: 2.7 
Exec. Time vector code: -- 
Speedup: -- 

IBM Power 7 
Compiler report: Loop was SIMD  
vectorized  
Exec. Time scalar code: 3.7 
Exec. Time vector code: 1.4 
Speedup: 2.6 



Induction Variables 

• Coding style matters: 

143 

for (int i=0;i<LEN;i++) { 
  *a = *b + *c; 
  a++; b++; c++; 
} 

for (int i=0;i<LEN;i++){ 
  a[i] = b[i] + c[i]; 
} 

These codes are equivalent, but …  



Induction Variables 

144 

for (int i=0;i<LEN;i++) { 
  *a = *b + *c; 
  a++; b++; c++; 
} 

for (int i=0;i<LEN;i++){ 
  a[i] = b[i] + c[i]; 
} 

S134 S134_1 

S134 S134_1 

Intel Nehalem 
Compiler report: Loop was not 
vectorized.  
Exec. Time scalar code: 5.5 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
Compiler report: Loop was 
vectorized. 
Exec. Time scalar code: 6.1 
Exec. Time vector code: 3.2 
Speedup: 1.8 



Induction Variables 

145 

for (int i=0;i<LEN;i++) { 
  *a = *b + *c; 
  a++; b++; c++; 
} 

for (int i=0;i<LEN;i++){ 
  a[i] = b[i] + c[i]; 
} 

S134 S134_1 

S134 S134_1 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized  
Exec. Time scalar code: 2.2 
Exec. Time vector code: 1.0 
Speedup: 2.2 

IBM Power 7 
Compiler report: Loop was SIMD  
vectorized  
Exec. Time scalar code: 2.2 
Exec. Time vector code: 1.0 
Speedup: 2.2 

The IBM XLC compiler generated the same code in both cases 



Outline 
 

1. Intro 
2. Data Dependences (Definition)   
3. Overcoming limitations to SIMD-Vectorization 

– Data Dependences 
– Data Alignment 
– Aliasing 
– Non-unit strides 
– Conditional Statements 

4. Vectorization with intrinsics  
 

146 



Data Alignment 
• Vector loads/stores load/store 128 consecutive bits to a vector 

register.  
• Data addresses need to be 16-byte (128 bits) aligned to be 

loaded/stored   
- Intel platforms support aligned and unaligned load/stores 
- IBM platforms do not support unaligned load/stores 

147 

 
void test1(float *a,float *b,float *c) 
{  
for (int i=0;i<LEN;i++){   
  a[i] = b[i] + c[i]; 
} 

b 
0  1  2  3  

Is &b[0] 16-byte aligned? 

vector load loads b[0] … b[3] 
 

Presenter
Presentation Notes
16-byte aligned means you have a memory address that is a multiple of 16. 
The last four fits of the address are 0. 





Data Alignment 

• To know if a pointer is 16-byte aligned, the last 
digit of the pointer address in hex must be 0. 

• Note that if &b[0] is 16-byte aligned, and is a 
single precision array, then &b[4] is also 16-byte 
aligned 

148 

Output: 
0x7fff1e9d8580, 0x7fff1e9d8590 

__attribute__ ((aligned(16))) float  B[1024]; 
 
int main(){   
  printf("%p, %p\n", &B[0], &B[4]); 
} 



Data Alignment 

• In many cases, the compiler cannot statically know the 
alignment of the address in a pointer 

• The compiler assumes that the base address of the 
pointer is 16-byte aligned and adds a run-time checks for it 
– if the runtime check is false, then it uses another code 

(which may be scalar) 
 

149 



Data Alignment 
• Manual 16-byte alignment can be achieved by forcing 

the base address to be a multiple of 16.  
 

150 

__attribute__ ((aligned(16))) float b[N]; 
float* a = (float*) memalign(16,N*sizeof(float)); 

• When the pointer is passed to a function, the compiler 
should be aware of where the 16-byte aligned address of 
the array starts.  
 void func1(float *a, float *b, 

float *c) { 
  __assume_aligned(a, 16);  
  __assume_aligned(b, 16); 
  __assume_aligned(c, 16); 
for int (i=0; i<LEN; i++) { 
  a[i] = b[i] + c[i]; 
} 

  

Presenter
Presentation Notes
Even if a, b, and c where declared with the align attribute, the compiler may not know. 
float *a = (float*) memalign(16, N*sizeof(float));
….

func1(a,b,c)



Data Alignment - Example 

151 

float A[N] __attribute__((aligned(16)));  
float B[N] __attribute__((aligned(16)));  
float C[N] __attribute__((aligned(16))); 
 
void test(){   
for (int i = 0; i < N; i++){ 
  C[i] = A[i] + B[i]; 
}} 
 



Data Alignment - Example 

152 

float A[N] __attribute__((aligned(16)));  
float B[N] __attribute__((aligned(16)));  
float C[N] __attribute__((aligned(16))); 
 
void test1(){   
__m128 rA, rB, rC;  
 for (int i = 0; i < N; i+=4){     
  rA = _mm_load_ps(&A[i]);     
  rB = _mm_load_ps(&B[i]);     
  rC = _mm_add_ps(rA,rB); 
  _mm_store_ps(&C[i], rC);   
}} 
 

 
void test2(){ 
__m128 rA, rB, rC; 
for (int i = 0; i < N; i+=4){   
  rA = _mm_loadu_ps(&A[i]);     
  rB = _mm_loadu_ps(&B[i]);     
  rC = _mm_add_ps(rA,rB); 
  _mm_storeu_ps(&C[i], rC);   
}} 

void test3(){   
__m128 rA, rB, rC;   
for (int i = 1; i < N-3; i+=4){     
  rA = _mm_loadu_ps(&A[i]); 
  rB = _mm_loadu_ps(&B[i]); 
  rC = _mm_add_ps(rA,rB); 
  _mm_storeu_ps(&C[i], rC);   
}} 

Nanosecond per iteration 

Core 2 Duo Intel i7 Power 7 

Aligned 0.577 0.580 0.156 

Aligned (unaligned ld) 0.689 0.581 0.241 

Unaligned 2.176 0.629 0.243 



Alignment in a struct  

• Arrays B and D are not 16-bytes aligned (see the 
address) 

153 

struct st{  
  char A;   
  int B[64];  
  float C;   
  int D[64]; 
}; 
 
int main(){   
  st s1;  
  printf("%p, %p, %p, %p\n", &s1.A, s1.B, &s1.C, s1.D);} 

Output: 
0x7fffe6765f00, 0x7fffe6765f04, 0x7fffe6766004, 0x7fffe6766008 



Alignment in a struct  

• Arrays A and B are aligned to 16-byes  (notice the 
0 in the 4 least significant bits of the address) 

• Compiler automatically does padding 
154 

struct st{  
  char A;   
  int B[64] __attribute__ ((aligned(16)));  
  float C;   
  int D[64] __attribute__ ((aligned(16))); 
}; 
 
int main(){   
  st s1;  
  printf("%p, %p, %p, %p\n", &s1.A, s1.B, &s1.C, s1.D);} 

Output: 
0x7fff1e9d8580, 0x7fff1e9d8590, 0x7fff1e9d8690, 0x7fff1e9d86a0 



Outline 
 

1. Intro 
2. Data Dependences (Definition)   
3. Overcoming limitations to SIMD-Vectorization 

– Data Dependences 
– Data Alignment 
– Aliasing 
– Non-unit strides 
– Conditional Statements 

4. Vectorization withintrinsics  
 

155 



Aliasing 
• Can the compiler vectorize this loop? 
 

156 

void func1(float *a,float *b, float *c){  
   for (int i = 0; i < LEN; i++) {  
       a[i] = b[i] + c[i];  
} 



Aliasing 
• Can the compiler vectorize this loop? 
 

157 

void func1(float *a,float *b, float *c) 
{  
   for (int i = 0; i < LEN; i++)  
       a[i] = b[i] + c[i];  
} 

float* a  = &b[1]; 

… 

b[1]= b[0] + c[0] 
b[2] = b[1] + c[1] 

Presenter
Presentation Notes
a[0] = b[0] + c[0]
a[1] = b[1]+ c[1] 



Aliasing 
• Can the compiler vectorize this loop? 
 

158 

void func1(float *a,float *b, float *c) 
{  
   for (int i = 0; i < LEN; i++)   
       a[i] = b[i] + c[i];  
} 

float* a  = &b[1]; 

… 

a and b are aliasing 
There is a self-true dependence 
Vectorizing this loop would  
be illegal 



void func1(float *a, float *b, float *c){ 
for (int i=0; i<LEN; i++)  
  a[i] = b[i] + c[i]; 
} 
 

• To vectorize, the compiler needs to guarantee that the 
pointers are not aliased. 

• When the compiler does not know if two pointer are 
alias, it still vectorizes, but needs to add up-to 𝑂 𝑛2  run-
time checks, where n is the number of pointers 
 When the number of pointers is large, the compiler 

may decide to not vectorize 
 

Aliasing 

159 

Presenter
Presentation Notes
Explain what the runtiem check will do



Aliasing 

• Two solutions can be used to avoid the run-time 
checks 

1. static and global arrays   
2. __restrict__ attribute  
       
 

 
 

 
 
 
 

 
 

160 

Presenter
Presentation Notes
Also, too many checks for the runtime to include checks. 



Aliasing 
1. Static and Global arrays 
 

 

161 

__attribute__ ((aligned(16))) float a[LEN];   
__attribute__ ((aligned(16))) float b[LEN];  
__attribute__ ((aligned(16))) float c[LEN];  
 
void func1(){ 
for (int i=0; i<LEN; i++)  
  a[i] = b[i] + c[i]; 
} 

  
int main() {           
…                
   func1(); 
}  

Presenter
Presentation Notes
Also, too many checks for the runtime to include checks. 



Aliasing 
1. __restrict__ keyword 

 
 

 
 

162 

void func1(float* __restrict__ a,float* __restrict__ b, 
float* __restrict__ c) { 
  __assume_aligned(a, 16);  
  __assume_aligned(b, 16); 
  __assume_aligned(c, 16); 
  for int (i=0; i<LEN; i++)  
       a[i] = b[i] + c[i]; 
} 

  int main() {           
   float* a=(float*) memalign(16,LEN*sizeof(float)); 
   float* b=(float*) memalign(16,LEN*sizeof(float)); 
   float* c=(float*) memalign(16,LEN*sizeof(float)); 
   … 
   func1(a,b,c); 
}  

Presenter
Presentation Notes
Also, too many checks for the runtime to include checks. 



Aliasing – Multidimensional 
arrays 
• Example with 2D arrays: pointer-to-pointer declaration.  

163 

void func1(float** __restrict__ a,float** 
__restrict__ b, float** __restrict__ c) { 
for (int i=0; i<LEN; i++) 
    for (int j=1; j<LEN; j++) 
       a[i][j] = b[i][j-1] * c[i][j];  
 
} 

  



Aliasing – Multidimensional arrays 
• Example with 2D arrays: pointer-to-pointer declaration.  

164 

void func1(float** __restrict__ a,float** __restrict__ 
b, float** __restrict__ c) { 
for (int i=0; i<LEN; i++)  
   for (int j=1; j<LEN; j++) 
       a[i][j] = b[i][j-1] * c[i][j];  
} 

  c c[0] 

c[1] 
c[2] 
c[3] 

c[0][0]  c[0][1] … 
c[1][0]  c[1][1] … 

c[2][0]  c[2][1] … 

c[3][0]  c[3][1] … 

__restrict__ only qualifies 
the first dereferencing of c; 
 
Nothing is said about the  
arrays that can be accessed 
through c[i]  
 



Aliasing – Multidimensional arrays 
• Example with 2D arrays: pointer-to-pointer declaration.  

165 

void func1(float** __restrict__ a,float** __restrict__ 
b, float** __restrict__ c) { 
for (int i=0; i<LEN; i++)  
   for (int j=1; j<LEN; j++) 
       a[i][j] = b[i][j-1] * c[i][j];  
} 

  c c[0] 

c[1] 
c[2] 
c[3] 

c[0][0]  c[0][1] … 
c[1][0]  c[1][1] … 

c[2][0]  c[2][1] … 

c[3][0]  c[3][1] … 

__restrict__ only qualifies 
the first dereferencing of c; 
 
Nothing is said about the  
arrays that can be accessed 
through c[i]  
 

Intel ICC compiler, version 11.1 will vectorize this code. 
 
Previous versions of the Intel compiler or compilers from 
other vendors, such as IBM XLC, will not vectorize it.  



Aliasing – Multidemensional 
Arrays  

• Three solutions when __restrict__ does not enable 
vectorization 
 

1.  Static and global arrays  
  
2. Linearize the arrays and use __restrict__ keyword 
 
3. Use compiler directives 

 
       
 

 
 

 
 
 
 

 
 

166 

Presenter
Presentation Notes
Also, too many checks for the runtime to include checks. 



Aliasing – Multidimensional 
arrays 
1. Static and Global declaration 

167 

__attribute__ ((aligned(16))) float a[N][N]; 
void t(){       
     
    a[i][j]….      
}         
 
int main() {           
    
   …                
   t(); 
}  

 



Aliasing – Multidimensional 
arrays 
2. Linearize the arrays  

168 

void t(float* __restrict__ A){       
    //Access to Element A[i][j] is now A[i*128+j]          
    ….      
}         

 
 
int main() {           
   float* A = (float*) memalign(16,128*128*sizeof(float));           
   …                
   t(A); 
}  

 



Aliasing – Multidimensional 
arrays 
3. Use compiler directives: 
  

#pragma ivdep (Intel ICC) 

#pragma disjoint(IBM XLC) 

 

 
 

169 

void func1(float **a, float **b, float **c) { 
  for (int i=0; i<m; i++) {  
 
     for (int j=0; j<LEN; j++)  
       c[i][j] = b[i][j] * a[i][j]; 
}} 

 

#pragma ivdep   



Outline 
 

1. Intro 
2. Data Dependences (Definition)   
3. Overcoming limitations to SIMD-Vectorization 

– Data Dependences 
– Data Alignment 
– Aliasing 
– Non-unit strides 
– Conditional Statements 

4. Vectorization with intrinsics  
 

170 



Non-unit Stride – Example I 

• Array of a struct  

171 

typedef struct{int x, y, z} 
point; 
point pt[LEN];  
 
for (int i=0; i<LEN; i++) {  
  pt[i].y *= scale; 
} 

 

point pt[N] x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 

pt[0] pt[1] pt[2] pt[3] 

Presenter
Presentation Notes
I need to change this example since XLC doesn’t do a good job on splat!



Non-unit Stride – Example I 

• Array of a struct  

172 

typedef struct{int x, y, z} 
point; 
point pt[LEN];  
 
for (int i=0; i<LEN; i++) {  
  pt[i].y *= scale; 
} 

 

point pt[N] x0 y0 z0 x1 y1 z1 x2 y2 z2 

vector load  vector load  

x3 y3 z3 

vector load  

pt[0] pt[1] pt[2] pt[3] 



Non-unit Stride – Example I 

• Array of a struct 

173 

typedef struct{int x, y, z} 
point; 
point pt[LEN]; 
 
for (int i=0; i<LEN; i++) {  
  pt[i].y *= scale; 
} 

 

point pt[N] x0 y0 z0 x1 y1 z1 x2 y2 z2 

vector load  

vector register 
(I need) 

y0 y1 y2 

vector load  

y3 

x3 y3 z3 

vector load  



Non-unit Stride – Example I 

• Array of a struct 

174 

typedef struct{int x, y, z} 
point; 
point pt[LEN]; 
 
for (int i=0; i<LEN; i++) {  
  pt[i].y *= scale; 
} 

 

point pt[N] x0 y0 z0 x1 y1 z1 x2 y2 z2 

vector load  

vector register 
(I need) 

y0 y1 y2 

vector load  

y3 

int ptx[LEN], int pty[LEN],  
int ptz[LEN]; 
 
for (int i=0; i<LEN; i++) {  
  pty[i] *= scale; 
} 

 

• Arrays   

y0 y1 y3 y4 y5 y6 y7 

y0 y1 y2 y3 

y2 

vector load  vector load  



Non-unit Stride – Example I 

175 

typedef struct{int x, y, z} 
point; 
point pt[LEN]; 
 
for (int i=0; i<LEN; i++) {  
  pt[i].y *= scale; 
} 

 

int ptx[LEN], int pty[LEN],  
int ptz[LEN]; 
 
for (int i=0; i<LEN; i++) {  
  pty[i] *= scale; 
} 

 

S135 S135_1 

S135 S135_1 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. Vectorization possible 
but seems inefficient 
Exec. Time scalar code: 6.8 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
Compiler report: Loop was 
vectorized. 
Exec. Time scalar code: 4.8 
Exec. Time vector code: 1.3 
Speedup: 3.7 



Non-unit Stride – Example I 

176 

typedef struct{int x, y, z} 
point; 
point pt[LEN]; 
 
for (int i=0; i<LEN; i++) {  
  pt[i].y *= scale; 
} 

 

int ptx[LEN], int pty[LEN],  
int ptz[LEN]; 
 
for (int i=0; i<LEN; i++) {  
  pty[i] *= scale; 
} 

 

S135 S135_1 

S135 S135_1 

IBM Power 7 
Compiler report: Loop was not 
SIMD vectorized because it is not 
profitable to vectorize 
Exec. Time scalar code: 2.0 
Exec. Time vector code: -- 
Speedup: -- 

IBM Power 7 
Compiler report: Loop was SIMD  
vectorized  
Exec. Time scalar code: 1.8 
Exec. Time vector code: 1.5 
Speedup: 1.2 



Non-unit Stride – Example II 

177 

 
     for (int i=0;i<LEN;i++){   
    sum = 0;   
    for (int j=0;j<LEN;j++){     
 sum += A[j][i];   
    }   
    B[i] = sum; 
   } 

j 

i 

 
  for (int i=0;i<size;i++){ 
    sum[i] = 0;   
    for (int j=0;j<size;j++){     
 sum[i] += A[j][i];   
    }   
    B[i] = sum[i]; 
   } 



Non-unit Stride – Example II 

178 

 
  for (int i=0;i<LEN;i++){ 
    sum = (float) 0.0;   
    for (int j=0;j<LEN;j++){     
 sum += A[j][i];   
    }   
    B[i] = sum; 
   } 

S136 S136_1 S136_2 

S136 S136_1 S136_2 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. Vectorization 
possible but seems inefficient 
Exec. Time scalar code: 3.7 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
report: Permuted loop 
was vectorized. 
scalar code: 1.6 
vector code: 0.6 
Speedup: 2.6 

Intel Nehalem 
report: Permuted loop 
was vectorized. 
scalar code: 1.6 
vector code: 0.6 
Speedup: 2.6 

 
   for (int i=0;i<LEN;i++)    
    sum[i] = (float) 0.0; 
    for (int j=0;j<LEN;j++){     
 sum[i] += A[j][i]; 
    }  
    B[i]=sum[i];    
   } 
    
   

 
   for (int i=0;i<LEN;i++)   
    B[i] = (float) 0.0; 
    for (int j=0;j<LEN;j++){     
 B[i] += A[j][i];   
    }     
   } 

      



Non-unit Stride – Example II 

179 

 
  for (int i=0;i<LEN;i++){ 
    sum = (float) 0.0;   
    for (int j=0;j<LEN;j++){     
 sum += A[j][i];   
    }   
    B[i] = sum; 
   } 

S136 S136_1 S136_2 

S136 S136_1 S136_2 

IBM Power 7 
Compiler report: Loop was 
not SIMD vectorized 
Exec. Time scalar code: 2.0 
Exec. Time vector code: -- 
Speedup: -- 

IBM Power 7 
report: Loop 
interchanging applied. 
Loop was SIMD 
scalar code: 0.4 
vector code: 0.16 
Speedup: 2.7 

IBM Power 7 
report: Loop 
interchanging applied. 
Loop was SIMD 
vectorized 
scalar code: 0.4 
vector code: 0.2 
Speedup: 2.0 

 
   for (int i=0;i<LEN;i++)    
    sum[i] = (float) 0.0; 
    for (int j=0;j<LEN;j++){     
 sum[i] += A[j][i]; 
    } 
    B[i]=sum[i];      
   } 
    

 
   for (int i=0;i<LEN;i++)   
    B[i] = (float) 0.0; 
    for (int j=0;j<LEN;j++){     
 B[i] += A[j][i];   
    }     
   } 

      



Outline 
 

1. Intro 
2. Data Dependences (Definition)   
3. Overcoming limitations to SIMD-Vectorization 

– Data Dependences 
– Data Alignment 
– Aliasing 
– Non-unit strides 
– Conditional Statements 

4. Vectorization with intrinsics  
 

180 



#pragma vector always 
for (int i = 0; i < LEN; i++){ 
  if (c[i] < (float) 0.0) 
    a[i] = a[i] * b[i] + d[i]; 
} 

Conditional Statements – I  
• Loops with conditions need #pragma vector always 

– Since the compiler does not know if vectorization will be 
profitable  

– The condition may prevent from an exception 

181 

Presenter
Presentation Notes
Branches are eliminated. 
The speedup will depend of the contents of c[i]


rcmp result of  compare rc with r0

do allways the computation ra*rb + rd
And the resultof 1)  with rcmp. 
Complementary and ra with rcmp
Or the restuls of these two things. 







 
for (int i = 0; i < LEN; i++){ 
  if (c[i] < (float) 0.0) 
    a[i] = a[i] * b[i] + d[i]; 
} 

Conditional Statements – I  

182 

S137 S137_1 

S137 S137_1 

Intel Nehalem 
Compiler report: Loop was  not 
vectorized. Condition may protect 
exception 
Exec. Time scalar code: 10.4 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
Compiler report: Loop was 
vectorized. 
Exec. Time scalar code: 10.4 
Exec. Time vector code:   5.0 
Speedup: 2.0 

#pragma vector always 
for (int i = 0; i < LEN; i++){ 
  if (c[i] < (float) 0.0) 
    a[i] = a[i] * b[i] + d[i]; 
} 

Presenter
Presentation Notes
S137, s137_1

Branches are eliminated. 
The speedup will depend of the contents of c[i]


rcmp result of  compare rc with r0

do allways the computation ra*rb + rd
And the resultof 1)  with rcmp. 
Complementary and ra with rcmp
Or the restuls of these two things. 







 
for (int i = 0; i < LEN; i++){ 
  if (c[i] < (float) 0.0) 
    a[i] = a[i] * b[i] + d[i]; 
} 

Conditional Statements – I  

183 

S137 S137_1 

S137 S137_1 

 
for (int i = 0; i < LEN; i++){ 
  if (c[i] < (float) 0.0) 
    a[i] = a[i] * b[i] + d[i]; 
} 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 4.0 
Exec. Time vector code: 1.5 
Speedup: 2.5 

IBM Power 7 
Compiler report: Loop was SIMD  
vectorized 
Exec. Time scalar code: 4.0 
Exec. Time vector code: 1.5 
Speedup: 2.5 

compiled with flag -qdebug=alwaysspec 

Presenter
Presentation Notes
S137, s137_1

Branches are eliminated. 
The speedup will depend of the contents of c[i]


rcmp result of  compare rc with r0

do allways the computation ra*rb + rd
And the resultof 1)  with rcmp. 
Complementary and ra with rcmp
Or the restuls of these two things. 







for (int i = 0; i < LEN; i++){ 
  if (c[i] < (float) 0.0) 
    a[i] = a[i] * b[i] + d[i]; 
} 

Conditional Statements 

• Compiler removes if conditions when 
generating vector code 

184 

Presenter
Presentation Notes
Branches are eliminated. 
The speedup will depend of the contents of c[i]


rcmp result of  compare rc with r0

do allways the computation ra*rb + rd
And the resultof 1)  with rcmp. 
Complementary and ra with rcmp
Or the restuls of these two things. 







for (int i=0;i<1024;i++){ 
  if (c[i] < (float) 0.0) 
    a[i]=a[i]*b[i]+d[i]; 
} 

vector bool char = rCmp 
vector float r0={0.,0.,0.,0.}; 
vector float rA,rB,rC,rD,rS, rT, 
rThen,rElse; 
for (int i=0;i<1024;i+=4){ 
  // load rA, rB, and rD;  
  rCmp = vec_cmplt(rC, r0); 
  rT= rA*rB+rD; 
  rThen = vec_and(rT.rCmp); 
  rElse = vec_andc(rA.rCmp); 
  rS = vec_or(rthen, relse); 
  //store rS  
} 

Conditional Statements 

185 

rThen 

rElse 

rC 

rS 

2 -1 1 -2 

rCmp True True False False 

0 3.2 3.2 

1. 0 1. 

3.2 3.2 

0 

0 

1. 1. 

Presenter
Presentation Notes
Branches are eliminated. 
The speedup will depend of the contents of c[i]


rcmp result of  compare rc with r0

do allways the computation ra*rb + rd
And the resultof 1)  with rcmp. 
Complementary and ra with rcmp
Or the restuls of these two things. 







    Speedups will depend on the 
values on c[i] 

 
     Compiler tends to be 

conservative, as the condition 
may prevent from segmentation 
faults 

Conditional Statements 

186 

for (int i=0;i<1024;i++){ 
  if (c[i] < (float) 0.0) 
    a[i]=a[i]*b[i]+d[i]; 
} 

vector bool char = rCmp 
vector float r0={0.,0.,0.,0.}; 
vector float rA,rB,rC,rD,rS, rT, 
rThen,rElse; 
for (int i=0;i<1024;i+=4){ 
  // load rA, rB, and rD;  
  rCmp = vec_cmplt(rC, r0); 
  rT= rA*rB+rD; 
  rThen = vec_and(rT.rCmp); 
  rElse = vec_andc(rA.rCmp); 
  rS = vec_or(rthen, relse); 
  //store rS  
} 

Presenter
Presentation Notes
Branches are eliminated. 

rcmp result of  compare rc with r0

do allways the computation ra*rb + rd
And the resultof 1)  with rcmp. 
Complementary and ra with rcmp
Or the restuls of these two things. 







Compiler Directives  

• Compiler vectorizes many loops, but many more can be 
vectorized if the appropriate directives are used 
 

187 

Compiler Hints for Intel ICC Semantics 

#pragma ivdep Ignore assume data dependences 

#pragma vector always  override efficiency heuristics 

#pragma novector disable vectorization  

__restrict__ assert exclusive access through 
pointer 

__attribute__ ((aligned(int-val))) request memory alignment 

memalign(int-val,size); malloc aligned memory 

__assume_aligned(exp, int-val) assert alignment property 



Compiler Directives  

• Compiler vectorizes many loops, but many more can be 
vectorized if the appropriate directives are used 
 

188 

Compiler Hints for IBM XLC Semantics 

#pragma ibm independent_loop Ignore assumed data dependences 

#pragma nosimd disable vectorization  

__restrict__ assert exclusive access through 
pointer 

__attribute__ ((aligned(int-val))) request memory alignment 

memalign(int-val,size); malloc aligned memory 

__alignx (int-val, exp) assert alignment property 



Outline 
 

1. Intro 
2. Data Dependences (Definition)   
3. Overcoming limitations to SIMD-Vectorization 

– Data Dependences 
– Data Alignment 
– Aliasing 
– Non-unit strides 
– Conditional Statements 

4. Vectorization with intrinsics  
 

189 



Access the SIMD through intrinsics 
 

• Intrinsics are vendor/architecture specific 
 

• We will focus on the Intel vector intrinsics 
 

• Intrinsics are useful when 
–  the compiler fails to vectorize  
– when the programmer thinks it is possible to generate 

better code than the one produced by the compiler 

190 



The Intel SSE intrinsics Header file 
• SSE can be accessed using intrinsics. 

 
• You must use one of the following header files: 

#include <xmmintrin.h> (for SSE) 
#include <emmintrin.h> (for SSE2)  
#include <pmmintrin.h> (for SSE3) 
#include <smmintrin.h> (for SSE4) 
 

• These include the prototypes of the intrinsics. 

191 



Intel SSE intrinsics Data types 
• We will use the following data types: 

__m128 packed single precision (vector XMM register) 
__m128d packed double precision (vector XMM register) 
__m128i packed integer (vector XMM register) 

• Example 
 
#include <xmmintrin.h>  

int main ( ) { 

  ... 

  __m128 A, B, C;  /* three packed s.p. variables */ 

  ... 

} 

 
 192 



 
Intel SSE intrinsic Instructions 
 • Intrinsics operate on these types and have the format: 
 _mm_instruction_suffix(…) 

• Suffix can take many forms. Among them: 
ss scalar single precision 
ps packed (vector) singe precision 
sd scalar double precision 
pd packed double precision 
si# scalar integer (8, 16, 32, 64, 128 bits) 
su# scalar unsigned integer (8, 16, 32, 64, 128 bits) 

193 



Intel SSE intrinsics 
Instructions – Examples 

• Load four 16-byte aligned single precision values in a 
vector: 

    float a[4]={1.0,2.0,3.0,4.0};//a must be 16-byte aligned 

    __m128 x = _mm_load_ps(a); 

 

 

• Add two vectors containing four single precision values: 
    __m128 a, b; 
  __m128 c = _mm_add_ps(a, b); 

194 



 
Intrinsics (SSE) 
 

#include <xmmintrin.h> 

#define n 1024 

__attribute__((aligned(16))) float  

a[n], b[n], c[n]; 

 

int main() { 

__m128 rA, rB, rC; 

for (i = 0; i < n; i+=4) { 

  rA = _mm_load_ps(&a[i]); 

  rB = _mm_load_ps(&b[i]); 

  rC= _mm_mul_ps(rA,rB); 

  _mm_store_ps(&c[i], rC); 

}} 

 

195 

#define n 1024 

__attribute__ ((aligned(16))) 
float a[n], b[n], c[n]; 

 

 

int main() { 

for (i = 0; i < n; i++) { 

  c[i]=a[i]*b[i]; 

 } 

} 

 



Intel SSE intrinsics 
A complete example 

196 

Header file #define n 1024 

 

 

int main() { 

float a[n], b[n], c[n]; 

for (i = 0; i < n; i+=4) { 

  c[i:i+3]=a[i:i+3]+b[i:i+3]; 

 } 

} 

 

#include <xmmintrin.h> 

#define n 1024 

__attribute__((aligned(16))) float  

a[n], b[n], c[n]; 

 

int main() { 

__m128 rA, rB, rC; 

for (i = 0; i < n; i+=4) { 

  rA = _mm_load_ps(&a[i]); 

  rB = _mm_load_ps(&b[i]); 

  rC= _mm_mul_ps(rA,rB); 

  _mm_store_ps(&c[i], rC); 

}} 

 



Intel SSE intrinsics 
A complete example 

197 

#define n 1024 

 

 

int main() { 

float a[n], b[n], c[n]; 

for (i = 0; i < n; i+=4) { 

  c[i:i+3]=a[i:i+3]+b[i:i+3]; 

 } 

} 

 

Declare 3 vector 
registers 

#include <xmmintrin.h> 

#define n 1024 

__attribute__((aligned(16))) float  

a[n], b[n], c[n]; 

 

int main() { 

__m128 rA, rB, rC; 

for (i = 0; i < n; i+=4) { 

  rA = _mm_load_ps(&a[i]); 

  rB = _mm_load_ps(&b[i]); 

  rC= _mm_mul_ps(rA,rB); 

  _mm_store_ps(&c[i], rC); 

}} 

 



Intel SSE intrinsics 
A complete example 

198 

Execute vector 
statements 

#define n 1000 

 

 

int main() { 

float a[n], b[n], c[n]; 

for (i = 0; i < n; i+=4) { 

  c[i:i+3]=a[i:i+3]+b[i:i+3]; 

 } 

} 

 

#include <xmmintrin.h> 

#define n 1024 

__attribute__((aligned(16))) float  

a[n], b[n], c[n]; 

 

int main() { 

__m128 rA, rB, rC; 

for (i = 0; i < n; i+=4) { 

  rA = _mm_load_ps(&a[i]); 

  rB = _mm_load_ps(&b[i]); 

  rC= _mm_mul_ps(rA,rB); 

  _mm_store_ps(&c[i], rC); 

}} 

 



Node Splitting  

for (int i=0;i<LEN-1;i++){  
  a[i]=b[i]+c[i]; 
  d[i]=(a[i]+a[i+1])*(float)0.5;  
} 

 

S1 
S2 

for (int i=0;i<LEN-1;i++){  
  temp[i]=a[i+1]; 
  a[i]=b[i]+c[i]; 
  d[i]=(a[i]+temp[i])*(float) 0.5   
} 

 

S1 
S2 

S1 

S2 

S0 

S0 S1 

S2 

199 



Node Splitting with intrinsics 

for (int i=0;i<LEN-1;i++){  
  a[i]=b[i]+c[i]; 
  d[i]=(a[i]+a[i+1])*(float)0.5;  
} 

 

for (int i=0;i<LEN-1;i++){  
  temp[i]=a[i+1]; 
  a[i]=b[i]+c[i]; 
  d[i]=(a[i]+temp[i])*(float)0.5;  
} 

 

200 

#include <xmmintrin.h> 

#define n 1000 

 

int main() { 

__m128 rA1, rA2, rB, rC, rD; 

__m128 r5=_mm_set1_ps((float)0.5) 

for (i = 0; i < LEN-4; i+=4) { 

  rA2= _mm_loadu_ps(&a[i+1]); 

  rB= _mm_load_ps(&b[i]); 

  rC= _mm_load_ps(&c[i]); 

  rA1= _mm_add_ps(rB, rC); 

  rD= _mm_mul_ps(_mm_add_ps(rA1,rA2),r5); 

  _mm_store_ps(&a[i], rA1); 

  _mm_store_ps(&d[i], rD); 

}} 

 

Which code runs faster ? 

Why? 



Node Splitting with intrinsics 

for (int i=0;i<LEN-1;i++){  
  a[i]=b[i]+c[i]; 
  d[i]=(a[i]+a[i+1])*(float)0.5;  
} 

 

for (int i=0;i<LEN-1;i++){  
  temp[i]=a[i+1]; 
  a[i]=b[i]+c[i]; 
  d[i]=(a[i]+temp[i])*(float)0.5;  
} 

 

201 

#include <xmmintrin.h> 

#define n 1000 

 

int main() { 

__m128 rA1, rA2, rB, rC, rD; 

__m128 r5=_mm_set1_ps((float)0.5) 

for (i = 0; i < LEN-4; i+=4) { 

  rA2= _mm_loadu_ps(&a[i+1]); 

  rB= _mm_load_ps(&b[i]); 

  rC= _mm_load_ps(&c[i]); 

  rA1= _mm_add_ps(rB, rC); 

  rD= _mm_mul_ps(_mm_add_ps(rA1,rA2),r5); 

  _mm_store_ps(&a[i], rA1); 

  _mm_store_ps(&d[i], rD); 

}} 

 

S126 S126_2 

S126_1 



Node Splitting with intrinsics 

202 

S126_2 

S126 S126_1 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. Existence of vector 
dependence 
Exec. Time scalar code: 12.6 
Exec. Time vector code: -- 
Speedup: -- 

Intel Nehalem 
Compiler report: Loop was 
vectorized.  
Exec. Time scalar code: 13.2 
Exec. Time vector code: 9.7 
Speedup: 1.3 

Intel Nehalem 
Exec. Time intrinsics: 6.1 
Speedup (versus vector code): 1.6 



Node Splitting with intrinsics 

203 

S126 S126_1 

S126_2 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 3.8 
Exec. Time vector code: 1.7 
Speedup: 2.2 

IBM Power 7 
Compiler report: Loop was SIMD  
vectorized 
Exec. Time scalar code: 5.1 
Exec. Time vector code: 2.4 
Speedup: 2.0 

IBM Power 7 
Exec. Time intrinsics: 1.6 
Speedup (versus vector code): 1.5 



Summary 
• Microprocessor vector extensions can contribute to improve program performance 

and the amount of this contribution is likely to increase in the future as vector 
lengths grow. 
 

• Compilers are only partially successful at vectorizing  
 

• When the compiler fails, programmers can 
– add compiler directives  
– apply loop transformations 

 
• If after transforming the code, the compiler still fails to vectorize (or the performance 

of the generated code is poor), the only option is to program the vector extensions 
directly using intrinsics or assembly language. 

204 



 
Data Dependences 
  

 
 

• The correctness of many many loop transformations including 
vectorization can be decided using dependences.  
 
 

• A good introduction to the notion of dependence and its applications 
can be found in D. Kuck, R. Kuhn, D. Padua, B. Leasure, M. Wolfe: 
Dependence Graphs and Compiler Optimizations. POPL 1981. 
 

205 205 



Compiler Optimizations 
 

•  For a longer discussion see:  
– Kennedy, K. and Allen, J. R. 2002 Optimizing Compilers for Modern 

Architectures: a Dependence-Based Approach. Morgan Kaufmann Publishers 
Inc. 
 

– U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic 
Publishers, Norwell, Mass., 1988. 
 

– Advanced Compiler Optimizations for Supercomputers, by David Padua and 
Michael Wolfe in Communications of the ACM, December 1986, Volume 29, 
Number 12.  

 
– Compiler Transformations for High-Performance Computing, by David Bacon, 

Susan Graham and Oliver Sharp, in ACM Computing Surveys, Vol. 26, No. 4, 
December 1994.  

 
206 206 



Algorithms 
• W. Daniel Hillis and Guy L. Steele, Jr.. 1986. 

Data parallel algorithms. Commun. ACM 29, 12 
(December 1986), 1170-1183. 
 

• Shyh-Ching Chen, D.J. Kuck, "Time and Parallel 
Processor Bounds for Linear Recurrence 
Systems," IEEE Transactions on Computers, pp. 
701-717, July, 1975  

 

207 



Thank you 
 

Questions? 

María Garzarán, Saeed Maleki  
William Gropp and David Padua 

{garzaran,maleki,wgropp,padua}@illinois.edu  



Program Optimization 
Through Loop Vectorization 

María Garzarán, Saeed Maleki  
William Gropp and David Padua 

{garzaran,maleki,wgropp,padua}@illinois.edu  
Department of Computer Science 

University of Illinois at Urbana-Champaign 



 
 
 
    Back-up Slides 

210 



Measuring execution time 
 

211 

time1 = time(); 

 for (i=0; i<32000; i++)  
  c[i] = a[i] + b[i]; 
  

time2 = time(); 



Measuring execution time 
• Added an outer loop that runs (serially) 

– to increase the running time of the loop 

212 

time1 = time(); 
for (j=0; j<200000; j++){
 for (i=0; i<32000; i++)  
  c[i] = a[i] + b[i]; 
  
} 
time2 = time(); 



Measuring execution times 
• Added an outer loop that runs (serially) 

– to increase the running time of the loop 
• Call a dummy () function that is compiled separately  

• to avoid loop interchange or dead code elimination 
 

213 

time1 = time(); 
for (j=0; j<200000; j++){  
 for (i=0; i<32000; i++)  
  c[i] = a[i] + b[i]; 
 dummy(); 
} 
time2 = time(); 



Measuring execution times 
• Added an outer loop that runs (serially) 

– to increase the running time of the loop 
• Call a dummy () function that is compiled separately  

• to avoid loop interchange or dead code elimination 
• Access the elements of one output array and print the result  

– to avoid dead code elimination  

214 

time1 = time(); 
for (j=0; j<200000; j++){  
 for (i=0; i<32000; i++)  
  c[i] = a[i] + b[i]; 
 dummy(); 
} 
time2 = time(); 
for (j=0; j<32000; j++) 
   ret+= a[i]; 
printf (“Time %f, result %f”, (time2 –time1), ret); 



Compiling 
• Intel icc scalar code  
 icc -O3 –no-vec dummy.o tsc.o –o runnovec 
• Intel icc vector code  
 icc -O3 –vec-report[n] –xSSE4.2 dummy.o tsc.o –o runvec 
  
 [n] can be 0,1,2,3,4,5  
 – vec-report0, no report is generated 
 – vec-report1, indicates the line number of the loops that were 

vectorized 
 – vec-report2 .. 5, gives a more detailed report that includes the 

loops that were not vectorized and the reason for that.  
 
 

215 



Compiling 
flags = -O3 –qaltivec -qhot -qarch=pwr7 -qtune=pwr7  
    -qipa=malloc16 -qdebug=NSIMDCOST  
    -qdebug=alwaysspec –qreport 
 
• IBM xlc scalar code  
 xlc -qnoenablevmx dummy.o tsc.o –o runnovec 
• IBM vector code  
 xlc –qenablevmx dummy.o tsc.o –o runvec 
  
 

216 



Strip Mining 
 
 This transformation improves locality and is usually 

combined with vectorization 

217 



Strip Mining 

- first statement can be vectorized 
- second statement cannot be  
   vectorized because of self-true  
   dependence 
  

218 

for (i=1; i<LEN; i++) 
{ 
  a[i]= b[i]; 
  c[i] = c[i-1] + 
a[i]; 
} 

 
 

for (i=1; i<LEN; i++)  
  a[i]= b[i]; 
 
for (i=1; i<LEN; i++)  
  c[i] = c[i-1] + a[i]; 

 
 By applying loop distribution the  

compiler will vectorize the first  
statement 
 

But, … loop distribution will increase  
the cache miss ratio if array a[] is large 

S1 

S2 

Presenter
Presentation Notes
Second statement cannot be vectorized 
Loop distribution helps the compiler realize this. 



Strip Mining 

  
 

219 

for (i=1; i<LEN; 
i+=strip_size){  
  for (j=i; j<strip_size; j++)  
    a[j]= b[j]; 
  for (j=i; j<strip_size; j++)  
    c[j] = c[j-1] + a[j]; 
} 

 
    

for (i=1; i<LEN; i++)  
  a[i]= b[i]; 
for (i=1; i<LEN; i++)  
  c[i] = c[i-1] + a[i]; 

 
 

Loop Distribution  Strip Mining 

strip_size is usually a small value (4, 8, 16 or 32). 

Presenter
Presentation Notes
Second statement cannot be vectorized 
Loop distribution helps the compiler realize this. 



Strip Mining 

• Another example 

220 

int v[N]; 
… 
for (int i=0;i<N;i++){ 
  Transform (v[i]); 
} 
for (int i=0;i<N;i++){ 
  Light (v[i]); 
} 

 

int v[N]; 
… 
for (int i=0;i<N;i+=strip_size){ 
  for (int j=i;j<strip_size;j++){ 
    Transform (v[j]);  
   } 
  for (int j=i;i<strip_size;j++){ 
    Light (v[j]); 
   } 
} 



Evolution of Intel Vector Instructions 
• MMX (1996, Pentium) 

– CPU-based MPEG decoding 
– Integers only, 64-bit divided into 2 x 32 to 8 x 8 
– Phased out with SSE4 

• SSE (1999, Pentium III) 
– CPU-based 3D graphics  
– 4-way float operations, single precision 
– 8 new 128 bit Register, 100+ instructions 

• SSE2 (2001, Pentium 4) 
– High-performance computing 
– Adds 2-way float ops, double-precision; same registers as 4-way single-precision 
– Integer SSE instructions make MMX obsolete 

• SSE3 (2004, Pentium 4E Prescott) 
– Scientific computing 
– New 2-way and 4-way vector instructions for complex arithmetic 

• SSSE3 (2006, Core Duo) 
– Minor advancement over SSE3 

• SSE4 (2007, Core2 Duo Penryn) 
– Modern codecs, cryptography 
– New integer instructions 
– Better support for unaligned data, super shuffle engine 

225 
More details at http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions 

http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions


Run-Time Symbolic Resoltuion 

for (int i=3;i<n;i++){  
  a[i+t] = a[i]+b[i]; 
} 

 

S1 

If (t > 0)  self true dependence 

If (t <=0)  no dependence or  
                   self anti-depence 

a[4]=a[3]+b[3] 
a[5]=a[4]+b[4] 
a[6]=a[5]+b[5] 

Cannot be vectorized t =1 

a[2]=a[3]+b[3] 
a[3]=a[4]+b[4] 
a[4]=a[5]+b[5] 

Can be vectorized t =-1 

226 



Loop Vectorization – Example I  

for (i=0; i<LEN; i++) { 
  a[i]= b[i] + c[i] 
  d[i] = a[i] + (float) 1.0; 
} 

 
 

for (i=0; i<LEN; i++)  
  a[i]= b[i] + c[i] 
for (i=0; i<LEN; i++)  
  d[i] = a[i] + (float) 1.0; 
 

 
 

227 

Intel Nehalem 
Compiler report: Loop was 
vectorized in both cases 
Exec. Time scalar code: 10.2 
Exec. Time vector code:   6.3 
Speedup: 1.6 

The Intel ICC compiler generated the same code in both cases 

Intel Nehalem 
Compiler report: Fused loop was 
vectorized 
Exec. Time scalar code: 10.2 
Exec. Time vector code:   6.3 
Speedup: 1.6 

S113 S113_1 

S113 S113_1 

Presenter
Presentation Notes

The 



Loop Vectorization – Example I  

for (i=0; i<LEN; i++) { 
  a[i]= b[i] + c[i] 
  d[i] = a[i] + (float) 1.0; 
} 

 
 

for (i=0; i<LEN; i++)  
  a[i]= b[i] + c[i] 
for (i=0; i<LEN; i++)  
  d[i] = a[i] + (float) 1.0; 
 

 
 

228 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 3.1 
Exec. Time vector code: 1.5 
Speedup: 2.0 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 3.7 
Exec. Time vector code: 2.3 
Speedup: 1.6 

S113 S113_1 

S113 S113_1 

Presenter
Presentation Notes

The 



How do we access the SIMD  units? 
• Three choices 

 
1. C code and a vectorizing compiler 

 
 
1. Macros or Vector Intrinsics 

 
 

1. Assembly Language 

229 



How do we access the SIMD  units? 
• Three choices 

 
1. C code and a vectorizing compiler 

 
 
1. Macros or Vector Intrinsics 

 
 

1. Assembly Language 

230 

for (i=0; i<32000; i++)  
  c[i] = a[i] + b[i]; 



How do we access the SIMD  units? 
• Three choices 

 
1. C code and a vectorizing compiler 

 
 
1. Macros or Vector Intrinsics 

 
 

1. Assembly Language 

231 

void example(){   
__m128 rA, rB, rC;  
 for (int i = 0; i < 32000; i+=4){     
    rA = _mm_load_ps(&a[i]);     
    rB = _mm_load_ps(&b[i]);     
    rC = _mm_add_ps(rA,rB);    
   _mm_store_ps(&C[i], rC);   
}} 

 



How do we access the SIMD  units? 
• Three choices 

 
1. C code and a vectorizing compiler 

 
 
1. Macros or Vector Intrinsics 

 
 

1. Assembly Language 

232 

     ..B8.5  
 movaps    a(,%rdx,4), %xmm0 
 movaps    16+a(,%rdx,4), %xmm1 
 addps     b(,%rdx,4), %xmm0 
 addps     16+b(,%rdx,4), %xmm1 
 movaps    %xmm0, c(,%rdx,4) 
 movaps    %xmm1, 16+c(,%rdx,4) 
 addq      $8, %rdx 
 cmpq      $32000, %rdx 
 jl        ..B8.5 



What are the speedups? 
• Speedups obtained by XLC compiler 

237 

Test Suite Collection Average Speed Up 
Automatically by XLC 1.73 
By adding classic transformations 3.48 
By adding new transformations 3.64 
By adding manual vectorization 3.78 



Another example: matrix-matrix multiplication 

240 

void MMM(float** a,float** b, float** c) { 
for (int i=0; i<LEN; i++)  
   for (int j=0; j<LEN; j++){ 
      c[i][j] = (float) 0.; 
      for (int k=0; k<LEN; k++) 
          c[i][j] += a[i][k] * b[k][j];  
}} 

Intel Nehalem 
Compiler report: Loop was not 
vectorized: existence of vector 
dependence 
Exec. Time scalar code: 2.5 sec 
Exec. Time vector code: -- 
Speedup: -- 

 
 

IBM Power 7 
Compiler report: Loop was not SIMD 
vectorized because a data dependence  
prevents SIMD  vectorization. 
Exec. Time scalar code: 0.74 sec 
Exec. Time vector code: -- 
Speedup: -- 

 
 

S111 



Another example: matrix-matrix multiplication 

 
  

241 

void MMM(float** __restrict__ a,float** __restrict__ b,  
float** __restrict__ c) { 
for (int i=0; i<LEN; i++)  
   for (int j=0; j<LEN; j++){ 
 c[i][j] = (float) 0.; 
 for (int k=0; k<LEN; k++) 
          c[i][j] += a[i][k] * b[k][j];  
}} 

Added compiler 
directives  

S111_1 

 
 

IBM Power 7 
Compiler report: Loop was not SIMD 
vectorized because a data dependence  
prevents SIMD  vectorization. 
Exec. Time scalar code: 0.74 sec 
Exec. Time vector code: -- 
Speedup: -- 

 
 

Intel Nehalem 
Compiler report: Loop was not 
vectorized: existence of vector 
dependence 
Exec. Time scalar code: 2.5 sec 
Exec. Time vector code: -- 
Speedup: -- 



 
 

242 

void MMM(float** __restrict__ a,float** __restrict__ b,  
float** __restrict__ c) { 
for (int i = 0; i < LEN2; i++)      
   for (int j = 0; j < LEN2; j++)         
       C[i][j] = (float)0.; 
for (int i=0; i<LEN; i++)  
   for (int k=0; k<LEN; j++){ 
 for (int j=0; j<LEN; k++) 
          c[i][j] += a[i][k] * b[k][j];  
}} 

Another example: matrix-matrix multiplication 

Loop 
interchagne 

Intel Nehalem 
Compiler report: Loop was 
vectorized 
Exec. Time scalar code: 0.8 sec 
Exec. Time vector code: 0.3 sec 
Speedup: 2.7 

S111_3 

 
 

IBM Power 7 
Compiler report: Loop was not SIMD 
vectorized because a data dependence  
prevents SIMD  vectorization. 
Exec. Time scalar code: 0.74 sec 
Exec. Time vector code: -- 
Speedup: -- 

 
 



Definition of Dependence 
• A statement S is said to be data dependent on another 

statement T if 
– S accesses the same data being accessed by an earlier execution of T  
– S, T or both write the data.  

 
• Dependence analysis can be used to discover data 

dependences between statements 

243 



Data Dependence 

Flow dependence (True dependence) 

Anti dependence 

Output dependence 

S1: X = A+B 
S2: C= X+A 

S1: A = X + B 
S2: X= C + D 

S1: X = A+B 
S2: X= C + D 

S1 

S2 

S1 

S2 

S1 

S2 

244 

Presenter
Presentation Notes
Anti dependence and output dependence are also called named dependences, because by renaming the variable X we could remove the dependence




Dependences in Loops 
• Dependences in loops are easy to understand if loops are unrolled. 

Now the dependences are between statement “instances” 

for (i=0; i<LEN; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i] + 2; 
} 

S1 
S2 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

0 1 2 3 … 

… 

Unrolled loop  
 
S1: a[0] = b[0] + 1 
S2: c[0] = a[0] + 2 
S1: a[1] = b[1] + 1 
S2: c[1] = a[1] + 2 
S1: a[2] = b[2] + 1 
S2: c[2] = a[2] + 2 
 
 

i=2 

i=0 

i=1 

245 

Presenter
Presentation Notes
We compute dependences between the different executions of the statements. 



Dependences in Loops 
• Dependences in loops are easy to understand if loops are unrolled. 

Now the dependences are between statement “instances” 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

0 1 2 3 … 

Unrolled loop  
 
S1: a[0] = b[0] + 1 
S2: c[0] = a[0] + 2 
S1: a[1] = b[1] + 1 
S2: c[1] = a[1] + 2 
S1: a[2] = b[2] + 1 
S2: c[2] = a[2] + 2 
 
 

i=0 

i=1 

i=2 

Loop independent: 
dependence is within 
the loop iteration boundaries 

for (i=0; i<LEN; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i] + 2; 
} 

S1 
S2 

246 



Dependences in Loops 
• A slightly more complex example 

for (i=1; i<LEN; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i-1] + 2; 
} 

S1 
S2 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

1 2 3 4 … 

… 

Unrolled loop  
 
S1: a[1] = b[1] + 1 
S2: c[1] = a[0] + 2 
S1: a[2] = b[2] + 1 
S2: c[2] = a[1] + 2 
S1: a[3] = b[3] + 1 
S2: c[3] = a[2] + 2 
… 
 

i=1 

i=2 

i=3 

247 



Unrolled loop  
 
S1: a[1] = b[1] + 1 
S2: c[1] = a[0] + 2 
S1: a[2] = b[2] + 1 
S2: c[2] = a[1] + 2 
S1: a[3] = b[2] + 1 
S2: c[3] = a[2] + 2 

Dependences in Loops 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

1 2 3 4 … 

i=1 

i=2 

i=3 

Loop carried dependence: 
across iterations 

for (i=1; i<LEN; i++){ 
  a[i] = b[i] + 1; 
  c[i] = a[i-1] + 2; 
} 

S1 
S2 

248 

• A slightly more complex example 



Dependences in Loops 

• Even more complex 

for (i=0; i<LEN; i++){ 
  a = b[i] + 1; 
  c[i] = a + 2; 
} 

S1 
S2 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

0 1 2 3 … 

… 

Unrolled loop  
 
S1: a = b[0] + 1 
S2: c[0] =  a + 2 
S1: a = b[1] + 1 
S2: c[1] = a + 2 
S1: a = b[2] + 1 
S2: c[2] = a + 2 
… 
 

i=0 

i=1 

i=2 

249 



Dependences in Loops 

• Even more complex 

S1 

S2 

iteration: 

instances of S1: 

instances of S2: 

S1 

S2 

S1 

S2 

S1 

S2 

0 1 2 3 … 

Unrolled loop  
 
S1: a = b[0] + 1 
S2: c[0] =  a + 2 
S1: a = b[1] + 1 
S2: c[1] = a + 2 
S1: a = b[2] + 1 
S2: c[2] = a + 2 

i=0 

i=1 

i=2 

     Loop Independent  
     Loop carried dependence 

for (i=0; i<LEN; i++){ 
  a = b[i] + 1; 
  c[i] = a + 2; 
} 

S1 
S2 

250 



Dependences in Loops 

• Two dimensional 
for (i=1; i<LEN; i++) { 
 for (j=1; j<LEN; j++) { 
   a[i][j]=a[i][j-1]+a[i-1][j]; 
}} 

   
1 2 3 4 … 

1 

2 

3 

4 

i 

j 

Unrolled loop  
 
a[1][1] = a[1][0] + a[0][1]  
a[1][2] = a[1][1] + a[0][2]  
a[1][3] = a[1][2] + a[0][3]  
a[1][4] = a[1][3] + a[0][4]  
a[2][1] = a[2][0] + a[1][1]  
a[2][2] = a[2][1] + a[1][2]  
a[2][3] = a[2][2] + a[1][3]  
a[2][4] = a[2][3] + a[1][4] 
 

i=1 

i=2 

S1 

251 

j=1 
j=2 
j=3 
j=4 

j=1 
j=2 
j=3 
j=4 

Presenter
Presentation Notes
nested loop, with a single statement S1
Each line corresponds to a statement instace of the j iteration. 



Dependences in Loops 

• Two dimensional 

1 2 3 4 … 

1 

2 

3 

4 

i 

j 

Unrolled loop  
 
a[1][1] = a[1][0] + a[0][1]  
a[1][2] = a[1][1] + a[0][2]  
a[1][3] = a[1][2] + a[0][3]  
a[1][4] = a[1][3] + a[0][4]  
a[2][1] = a[2][0] + a[1][1]  
a[2][2] = a[2][1] + a[1][2]  
a[2][3] = a[2][2] + a[1][3]  
a[2][4] = a[2][3] + a[1][4] 
 Loop carried dependence 

for (i=1; i<LEN; i++) { 
 for (j=1; j<LEN; j++) { 
   a[i][j]=a[i][j-1]+a[i-1][j]; 
}} 

   

S1 

252 

i=1 

i=2 

j=1 
j=2 
j=3 
j=4 

j=1 
j=2 
j=3 
j=4 

Presenter
Presentation Notes
Flow dependence from iteration. 



Dependences in Loops 

• Another two dimensional loop  
for (i=1; i<LEN; i++) { 
   for (j=1; j<LEN; j++) { 
      a[i][j]=a[i][j-1]+a[i-1][j+1]; 
}} 

   
1 2 3 4 

1 

2 

3 

4 

i 

j 

Unrolled loop  
 
a[1][1] = a[1][0] + a[0][2]  
a[1][2] = a[1][1] + a[0][3]  
a[1][3] = a[1][2] + a[1][4]  
a[1][4] = a[1][3] + a[1][5]  
a[2][1] = a[2][0] + a[1][2]  
a[2][2] = a[2][1] + a[1][3]  
a[2][3] = a[2][2] + a[1][4]  
a[2][4] = a[2][3] + a[1][5] 
 Loop carried dependence 

253 

i=1 

i=2 

j=1 
j=2 
j=3 
j=4 

j=1 
j=2 
j=3 
j=4 



Dependences in Loops 

• The representation of these dependence graphs inside 
the compiler is a “collapsed” version of the graph where 
the arcs are annotated with direction (or distances) to 
reduce ambiguities.  
 

• In the collapsed version each statement is represented 
by a node and each ordered pair of variable accesses is 
represented by an arc 

254 



S1 

S2 

S1 

S2 

S1 

S2 

S1 

S2 

… 

S1 

S2 

S1 

S2 

S1 

S2 

S1 

S2 

… 

S1 

S2 

S1 

S2 

S1 

S2 

S1 

S2 

… 

S1 

S2 

S1 

S2 

S1 

S2 

= 

< 

< 

< = 

255 

Presenter
Presentation Notes
The dependence flows between instances of statements in different iterations (loop-carried dependence).
The number of dependence distance is 1. The dependence direction is positive (<).




Loop Vectorization 

• When the loop has several statements,  it is better to first 
strip-mine the loop and then distribute 
 
 
 
 
 
 

 
 

 
 

for (i=0; i<LEN; i++){ 
  a[i]=b[i]+(float)1.0; 
  c[i]=b[i]+(float)2.0; 
} 

Scalar code 
for (i=0; i<LEN; i+=strip_size){ 
 for (j=i; j<i+strip_size; j++){  
   a[j]=b[j]+(float)1.0; 
   c[j]=b[j]+(float)2.0; 
}} 

 

Scalar code,  
loops are strip-mined 

256 

for (i=0; i<LEN; i++) 
   a[i]=b[i]+(float)1.0; 
for (i=0; i<LEN; i++) 
   c[i]=b[i]+(float)2.0; 

 

 

Scalar code,  
loops are distributed 

S1 
S2 

for (i=0; i<LEN; i+=strip_size){ 
 for (j=i; j<i+strip_size; j++) 
   a[j]=b[j]+(float)1.0; 
 for (j=i; j<i+strip_size; j++) 
   c[j]=b[j]+(float)2.0; 
} 

 

and then distributed 
loop distribution will increase  
the cache miss ratio if array 
b[] is large 

strip_size is usually a small 
value (4, 8, 16, 32) 

256 



Loop Vectorization 

 
 
 
 
 
 

 
 

 
    

for (i=0; i<LEN; i+=4{ 
 a[i:i+3]=b[i:i+3]+(float)1.0; 
 c[i:i+3]=d[i:i+3]+(float)2.0; 

}  

Scalar code 

Vector code 

Scalar code,  
loops are strip-mined 
and distributed 

257 

Scalar code,  
loops are distributed 

 a[0:LEN-1]=b[0:LEN-1]+(float)1.0; 
 c[0:LEN-1]=d[0:LEN-1]+(float)2.0; 

  

Vector code 

for (i=0; i<LEN; i++){ 
  a[i]=b[i]+(float)1.0; 
  c[i]=b[i]+(float)2.0; 
} 

for (i=0; i<LEN; i++) 
   a[i]=b[i]+(float)1.0; 
for (i=0; i<LEN; i++) 
   c[i]=b[i]+(float)2.0; 

 

 

for (i=0; i<LEN; i+=strip_size){ 
 for (j=i; j<i+strip_size; j++) 
   a[j]=b[j]+(float)1.0; 
 for (j=i; j<i+strip_size; j++) 
   c[j]=b[j]+(float)2.0; 
} 

 

257 



Loop Vectorization 

 
 
 
 
 
 

 
 

 
    

Scalar code Scalar code 
loops are strip-mined 

Scalar code 
loops are distributed 

Intel Nehalem 
Compiler report: Loop was 
vectorized 
Exec. Time scalar code: 9.6 
Exec. Time vector code: 5.5 
Speedup: 1.7 

The Intel ICC generated the same vector code (the 
equivalent to the strip-mined version) in all the cases 

for (i=0; i<LEN; i++){ 
  a[i]=b[i]+(float)1.0; 
  c[i]=b[i]+(float)2.0; 
} 

for (i=0; i<LEN; i+=4){ 
 for (j=i; j<i+4; j++){  
   a[j]=b[j]+(float)1.0; 
   c[j]=b[j]+(float)2.0; 
}} 

 

for (i=0; i<LEN; i++) 
   a[i]=b[i]+(float)1.0; 
for (i=0; i<LEN; i++) 
   c[i]=b[i]+(float)2.0; 

 

 

S112 S112_1 S112_2 

S112 and S112_2 

Intel Nehalem 
Compiler report: Fused loop was 
vectorized 
Exec. Time scalar code: 9.6 
Exec. Time vector code: 5.5 
Speedup: 1.7 

S112_1 

258 

Presenter
Presentation Notes
For case 2, the compiler reports the Fused loop was vectorized. 



Loop Vectorization 

 
 
 
 
 
 

 
 

 
    

Scalar code Scalar code 
loops are strip-mined 

Scalar code 
loops are distributed 

for (i=0; i<LEN; i++){ 
  a[i]=b[i]+(float)1.0; 
  c[i]=b[i]+(float)2.0; 
} 

for (i=0; i<LEN; i+=64){ 
 for (j=i; j<i+64; j++){  
   a[j]=b[j]+(float)1.0; 
   c[j]=b[j]+(float)2.0; 
}} 

 

for (i=0; i<LEN; i++) 
   a[i]=b[i]+(float)1.0; 
for (i=0; i<LEN; i++) 
   c[i]=b[i]+(float)2.0; 

 

 

S112 S112_1 S112_2 

IBM Power 7 
report: Loop was 
SIMD vectorized 
scalar code: 2.9 
vector code: 1.4 
Speedup: 2.07 

S112_1 

IBM Power 7 
report: Loop was  
SIMD vectorized 
scalar code: 2.7 
vector code: 1.2 
Speedup: 2.1 

IBM Power 7 
Compiler report: Loop was 
SIMD vectorized 
Exec. Time scalar code: 2.7 
Exec. Time vector code: 1.2 
Speedup: 2.1 

S112_2 S112 

259 

Presenter
Presentation Notes
IT did not vectorize 112_3 for IBM because the number of iterations in the 
innermost loop is small



Loop Vectoriation 
• Our observations 

 
– Compiler generates vector code when it can apply loop 

distribution.  
• compiler may have to transform the code so that loop distribution  
    is legal 

260 



for (i=0; i<LEN; i++) { 
  a[i]= b[i] + c[i] 
  d[i] = a[i+1] + (float) 1.0; 
} 

 
 

Loop Vectorization – Example II  

261 

S114 

S114 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. Existence of vector 
dependence 
Exec. Time scalar code: 12.6 
Exec. Time vector code: -- 
Speedup: -- 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 3.3 
Exec. Time vector code: 1.8 
Speedup: 1.8 

S114 



for (i=0; i<LEN; i++) { 
  a[i]= b[i] + c[i] 
  d[i] = a[i+1] + (float) 1.0; 
} 

 
 

Loop Vectorization – Example II  

262 

S114 

S114 

Intel Nehalem 
Compiler report: Loop was not 
vectorized. Existence of vector 
dependence 
Exec. Time scalar code: 12.6 
Exec. Time vector code: -- 
Speedup: -- 

IBM Power 7 
Compiler report: Loop was SIMD 
vectorized 
Exec. Time scalar code: 3.3 
Exec. Time vector code: 1.8 
Speedup: 1.8 

S114 

We have observed that  
ICC usually vectorizes only  
if all the dependences  
are forward (except for  
reduction and induction  
variables)  



Loop vectorization – Example IV  

S1 

S2 

for (int i=1;i<LEN;i++){  
  a[i] = b[i] + c[i]; 
  d[i] = a[i] + e[i-1]; 
  e[i] = d[i] + c[i]; 
} 

 

S1 
S2 

A loop can be partially vectorized 

S3 

S3 

for (int i=1;i<LEN;i++){  
  a[i] = b[i] + c[i]; 
} 
for (int i=1;i<LEN;i++){  
  d[i] = a[i] + e[i-1]; 
  e[i] = d[i] + c[i]; 
} 

 

S1 

S2 
S3 

S1 can be vectorized 
S2 and S3 cannot be vectorized  
(A loop with a cycle in the dependence  
graph cannot be vectorized) 

263 



Loop vectorization – Example IV   

S1 

S2 

for (int i=1;i<LEN;i++){  
  a[i] = b[i] + c[i]; 
  d[i] = a[i] + e[i-1]; 
  e[i] = d[i] + c[i]; 
} 

 

S1 
S2 

A loop can be partially vectorized 

S3 

S3 

for (int i=1;i<LEN;i++){  
  a[i] = b[i] + c[i]; 
} 
for (int i=1;i<LEN;i++){  
  d[i] = a[i] + e[i-1]; 
  e[i] = d[i] + c[i]; 
} 

 

S1 

S2 
S3 

S1 can be vectorized 
S2 and S3 cannot be vectorized  
(A loop with a cycle in the dependence  
graph cannot be vectorized) 

264 



Loop vectorization – Example IV 

for (int i=1;i<LEN;i++){  
  a[i] = b[i] + c[i]; 
  d[i] = a[i] + e[i-1]; 
  e[i] = d[i] + c[i]; 
} 

 

for (int i=1;i<LEN;i++){  
  a[i] = b[i] + c[i]; 
} 
for (int i=1;i<LEN;i++){  
  d[i] = a[i] + e[i-1]; 
  e[i] = d[i] + c[i]; 

} 

 

266 

S116 S116_1 

Intel Nehalem 
Compiler report: Loop was 
partially vectorized 
Exec. Time scalar code: 14.7 
Exec. Time vector code: 18.1 
Speedup: 0.8 

Intel Nehalem 
Compiler report: Loop was 
vectorized 
Exec. Time scalar code: 14.7 
Exec. Time vector code: 18.1 
Speedup: 0.8 

S116 S116_1 

The INTEL ICC compiler generates 
the same code in both cases 



Loop vectorization – Example IV 

for (int i=1;i<LEN;i++){  
  a[i] = b[i] + c[i]; 
  d[i] = a[i] + e[i-1]; 
  e[i] = d[i] + c[i]; 
} 

 

for (int i=1;i<LEN;i++){  
  a[i] = b[i] + c[i]; 
} 
for (int i=1;i<LEN;i++){  
  d[i] = a[i] + e[i-1]; 
  e[i] = d[i] + c[i]; 
} 

 

267 

S116 S116_1 

S116 S116_1 

IBM Power 7 
Compiler report: Loop was not  
SIMD vectorized because a data  
dependence prevents SIMD 
vectorization 
Exec. Time scalar code: 13.5 
Exec. Time vector code: -- 
Speedup: -- 

IBM Power 7 
Compiler report: Loops were fused. 
Loop was not SIMD vectorized 
because a data dependence  prevents 
SIMD  vectorization. 
Exec. Time scalar code: 13.5 
Exec. Time vector code: -- 
Speedup: -- 



Blue Water 
• Illinois has a long tradition in vectorization. 
• Most recent work: vectorization for Blue Waters 

280 
Source: Thom Dunning: Blue Waters Project 

Presenter
Presentation Notes
Blue Waters is expected to be one of the most powerful supercomputers in the world. It will have a peak performance of 10 petaflops. and will achieve sustained performance of 1 petaflop running a range of science and engineering. 
It is a joint effort between the University of uiuc, its National center for Supercomputing and IBM, It is funded by by NSF and the University of Illinois. 

It is based on the Power7 chip




Compiler work  

281 

Communications of the ACM, December 1986 Volume 29, Number 12  



Compiler work  
  

282 

Communications of the ACM, December 1986 Volume 29, Number 12  


	Program Optimization Through Loop Vectorization
	Program Optimization Through Loop Vectorization
	Topics covered in this tutorial
	Outline
	Simple Example
	SIMD Vectorization
	Executing Our Simple Example
	How do we access the SIMD  units?
	Why should the compiler vectorize?
	How well do compilers vectorize?
	How well do compilers vectorize?
	How much programmer intervention?
	Experimental results 
	Compiler directives
	Compiler directives
	Compiler directives
	Loop Transformations
	Loop Transformations
	Loop Transformations
	�Intrinsics (SSE)�
	Intrinsics (Altivec)
	Outline
	Data dependences
	Definition of Dependence
	Data Dependence
	Data Dependence
	Dependences in Loops (I)
	Dependences in Loops (I)
	Dependences in Loops (I)
	Dependences in Loops (I)
	Dependences in Loops (I)
	Dependences in Loops (I)
	Dependences in Loops (I)
	Dependences in Loops (I)
	Dependences in Loops (I)
	Dependences in Loops (II)
	Dependences in Loops (II)
	Dependences in Loops (II)
	Dependences in Loops (II)
	Dependences in Loops (II)
	Dependences in Loops (II)
	Dependences in Loops (II)
	Dependences in Loops (III)
	Dependences in Loops (III)
	Dependences in Loops (III)
	Dependences in Loops (III)
	Dependences in Loops (III)
	Dependences in Loops (IV)
	Dependences in Loops (IV)
	Dependences in Loops (IV)
	Dependences in Loops (IV)
	Dependences in Loops (IV)
	Data dependences and vectorization
	Data dependences and vectorization
	Data dependences and transformations
	Distributing
	Removing dependences
	Freezing Loops
	Changing the algorithm
	Changing the algorithm (cont.)
	Stripmining
	Stripmining (cont.)
	Outline
	Loop Vectorization
	Simple Example
	Loop Vectorization 
	Loop Vectorization 
	Dependence Graphs and Compiler Vectorization
	Acyclic Dependence Graphs:�Forward Dependences
	Acyclic Dependence Graphs:�Forward Dependences
	Acyclic Dependenden Graphs� Backward Dependences (I)
	Acyclic Dependenden Graphs� Backward Dependences (I)
	Acyclic Dependenden Graphs� Backward Dependences (I)
	Acyclic Dependenden Graphs� Backward Dependences (I)
	Acyclic Dependenden Graphs� Backward Dependences (II)
	Acyclic Dependenden Graphs� Backward Dependences (II)
	Acyclic Dependenden Graphs� Backward Dependences (II)
	Cycles in the DG (I)
	Cycles in the DG (I)
	Cycles in the DG (I)
	Cycles in the DG (I) 
	Cycles in the DG (I) 
	Cycles in the DG (I)
	Slide Number 84
	Cycles in the DG (II)
	Cycles in the DG (II)
	Cycles in the DG (III)
	Cycles in the DG (III)
	Cycles in the DG (III) 
	Cycles in the DG (IV) 
	Cycles in the DG (IV)
	Cycles in the DG (IV) 
	Cycles in the DG (V)
	Cycles in the DG (V)
	Cycles in the DG (V)
	Cycles in the DG (VI)
	Cycles in the DG (VI) 
	Cycles in the DG (VI) 
	Cycles in the DG (VI)
	Dependence Graphs and Compiler Vectorization
	Loop Transformations	
	Compiler Directives (I)
	Compiler Directives (I)
	Compiler Directives (I)
	Compiler Directives (I)
	Compiler Directives (I)
	Compiler Directives (I)
	Compiler Directives (II)
	Compiler Directives (II)
	Compiler Directives (II)
	Loop Distribution 
	Loop Distribution 
	Loop Distribution 
	Reordering Statements
	Reordering Statements
	Reordering Statements
	Node Splitting
	Node Splitting
	Node Splitting
	Scalar Expansion
	Scalar Expansion
	Scalar Expansion
	Loop Peeling
	Loop Peeling
	Loop Peeling
	Loop Peeling
	Loop Peeling
	Loop Interchanging
	Loop Interchanging
	Loop Interchanging
	Loop Interchanging
	Loop Interchanging
	Loop Interchanging
	Outline
	Reductions
	Reductions
	Reductions
	Reductions
	Outline
	Induction variables
	Induction variables
	Induction variables
	Induction Variables
	Induction Variables
	Induction Variables
	Outline
	Data Alignment
	Data Alignment
	Data Alignment
	Data Alignment
	Data Alignment - Example
	Data Alignment - Example
	Alignment in a struct 
	Alignment in a struct 
	Outline
	Aliasing
	Aliasing
	Aliasing
	Aliasing
	Aliasing
	Aliasing
	Aliasing
	Aliasing – Multidimensional arrays
	Aliasing – Multidimensional arrays
	Aliasing – Multidimensional arrays
	Aliasing – Multidemensional Arrays 
	Aliasing – Multidimensional arrays
	Aliasing – Multidimensional arrays
	Aliasing – Multidimensional arrays
	Outline
	Non-unit Stride – Example I
	Non-unit Stride – Example I
	Non-unit Stride – Example I
	Non-unit Stride – Example I
	Non-unit Stride – Example I
	Non-unit Stride – Example I
	Non-unit Stride – Example II
	Non-unit Stride – Example II
	Non-unit Stride – Example II
	Outline
	Conditional Statements – I 
	Conditional Statements – I 
	Conditional Statements – I 
	Conditional Statements
	Conditional Statements
	Conditional Statements
	Compiler Directives 
	Compiler Directives 
	Outline
	Access the SIMD through intrinsics
	The Intel SSE intrinsics Header file
	Intel SSE intrinsics Data types
	�Intel SSE intrinsic Instructions�
	Intel SSE intrinsics�Instructions – Examples
	�Intrinsics (SSE)�
	Intel SSE intrinsics�A complete example
	Intel SSE intrinsics�A complete example
	Intel SSE intrinsics�A complete example
	Node Splitting 
	Node Splitting with intrinsics
	Node Splitting with intrinsics
	Node Splitting with intrinsics
	Node Splitting with intrinsics
	Summary
	�Data Dependences�
	Compiler Optimizations
	Algorithms
	Thank you��Questions?
	Program Optimization Through Loop Vectorization
	Slide Number 210
	Measuring execution time
	Measuring execution time
	Measuring execution times
	Measuring execution times
	Compiling
	Compiling
	Strip Mining�
	Strip Mining
	Strip Mining
	Strip Mining
	Evolution of Intel Vector Instructions
	Run-Time Symbolic Resoltuion
	Loop Vectorization – Example I 
	Loop Vectorization – Example I 
	How do we access the SIMD  units?
	How do we access the SIMD  units?
	How do we access the SIMD  units?
	How do we access the SIMD  units?
	What are the speedups?
	Another example: matrix-matrix multiplication
	Another example: matrix-matrix multiplication
	Another example: matrix-matrix multiplication
	Definition of Dependence
	Data Dependence
	Dependences in Loops
	Dependences in Loops
	Dependences in Loops
	Dependences in Loops
	Dependences in Loops
	Dependences in Loops
	Dependences in Loops
	Dependences in Loops
	Dependences in Loops
	Dependences in Loops
	Slide Number 255
	Loop Vectorization
	Loop Vectorization
	Loop Vectorization
	Loop Vectorization
	Loop Vectoriation
	Loop Vectorization – Example II 
	Loop Vectorization – Example II 
	Loop vectorization – Example IV 
	Loop vectorization – Example IV  
	Loop vectorization – Example IV
	Loop vectorization – Example IV
	Blue Water
	Compiler work 
	Compiler work 

