Graph Algorithms

Overview

• Graph: abstract data type
 – \(G = (V,E) \) where \(V \) is set of nodes, \(E \) is set of edges \(\subseteq V \times V \)
• Structural properties of graphs
 – Power-law graphs, uniform-degree graphs
• Graph representations: concrete data type
 – Compressed-row/column, coordinate, adjacency list
• Graph algorithms
 – Operator formulation: abstraction for algorithms
 – Algorithms for single-source shortest-path (SSSP) problem
• Machine learning algorithms
 – Page-rank
 – Matrix-completion for recommendation systems

Structural properties of graphs

Graph-matrix duality

• Graph \((V,E)\) as a matrix
 – Choose an ordering of vertices
 – Number them sequentially
 – Fill in \(|V| \times |V|\) matrix
 • \(A(i,j) = w \) if graph has edge from node \(i \) to node \(j \) with label \(w \)
 – Called adjacency matrix of graph
 – Edge \((u \rightarrow v)\):
 • \(v \) is out-neighbor of \(u \)
 • \(u \) is in-neighbor of \(v \)
• Observations:
 – Diagonal entries: weights on self-loops
 – Symmetric matrix \(\leftrightarrow \) undirected graph
 – Lower triangular matrix \(\leftrightarrow \) no edges from lower numbered nodes to higher numbered nodes
 – Dense matrix \(\leftrightarrow \) clique (edge between every pair of nodes)
Sparse graphs

- **Terminology:**
 - Degree of node: number of edges connected to it
 - (Average) diameter of graph: average number of hops between two nodes

- **Power-law graphs**
 - Small number of very high degree nodes (see next slide for example)
 - Low diameter
 - "Six degrees of separation" (Károlyi 1929, Milgram 1967), on Facebook, it is 4.74
 - Typical of social network graphs like the Internet graph or the Facebook graph

- **Uniform-degree graphs**
 - Nodes have roughly same degree
 - High diameter
 - Road networks, IC circuits, finite-element meshes

- **Random (Erdős-Rényi) graphs**
 - Constructed by random insertion of edges
 - Mathematically interesting but few real-life examples

Airline route map: power-law graph

Node degree distribution of power-law graphs

Road map: uniform-degree graph

Graph representations: how to store graphs in memory
Three storage formats: CSR, CSC, COO

Labels on nodes are stored in a separate vector (not shown)

Adjacency list representation

Permits you to add and remove edges from graph.
Deleting edges: often it is more efficient to just to mark an edge as deleted rather than delete it physically from the list.

Overview

- Algorithms: usually specified by pseudocode
- We take a different approach:
 - operator formulation of algorithms
- Data-centric abstraction in which data structures play central role
- Advantages of operator formulation abstraction:
 - Connections between seemingly unrelated algorithms
 - Sources of parallelism and locality become evident
 - Suggests common set of mechanisms for exploiting parallelism and locality for all algorithms

Graph algorithms

From: https://www.thecrazyprogrammer.com
Operator formulation of algorithms

- **Algorithm** = Operator + Schedule

- **Operator**: local view of algorithm
 - Active node/edge: place in graph where some computation is needed
 - Operator: specification of computation
 - Activity: application of operator to active node
 - Neighborhood: Set of nodes/edges read/written by activity

- **Schedule**: global view of algorithm
 - Unordered algorithms:
 - Active nodes can be processed in any order
 - All schedules produce the same answer but performance may vary
 - Ordered algorithms:
 - Problem-dependent order on active nodes

Graph problem: SSSP

- **Problem**: single-source shortest-path (SSSP) computation
- **Formulation**:
 - Given an undirected graph with positive weights on edges, and a node called the source
 - Compute the shortest distance from source to every other node
- **Variations**:
 - Negative edge weights but no negative weight cycles
 - All-pairs shortest paths
 - Breadth-first search: all edge weights are 1
- **Applications**:
 - GPS devices for driving directions
 - Social network analyses: centrality metrics

SSSP Problem

- **Many algorithms**
 - Dijkstra (1959)
 - Bellman-Ford (1957)
 - Chained relaxation (1959)
 - Delta-stepping (1998)
- **Common structure**:
 - Each node has a label if that is updated repeatedly
 - Initially 0 for source and infinity for all other nodes
 - During algorithm, shortest known distance to that node from source
 - Terminate: shortest distance from source
- **SSSP Problem**
 - All of them use the same operator
 - \(\text{new-label}(u) \)
 - \(\text{if}(d(u) > d(u) + w(u)) \)
 - \(\text{then}(d(u) = d(u) + w(u)) \)
 - Differences between algorithms: structure
Parallelization:

- **Schedule**
 - pick active node at random
 - use a work-set or a priority queue to track active nodes
- **Main inefficiency:** number of node relaxations depends on the schedule
- **Parallelization:**
 - $??$

Chaotic relaxation (1969)

- **Active node**
 - node whose label has been updated
 - initially, only source is active
- **Implementation**
 - can be exponential in the size of graph
- **Algorithm:**
 - $O(|E|*|V|)$
 - prefer nodes with smaller labels since they are more likely to have reached final values
- **Schedule for processing nodes**
 - initial, only source is active
 - do this for all vertices
 - when a node is relaxed, it is moved to the final set
 - nodes in S are processed only once

Dijkstra’s algorithm (1959)

- **Active nodes**
 - node whose label has been updated
 - initially, only source is active
- **Schedule for processing nodes**
 - prefer nodes with smaller labels since they are more likely to have reached final values
 - node is relaxed just once
 - $O(|E|*|V|)$
- **Parallelization:**
 - $??$
- **Main inefficiency:**
 - as we will see later, there is little parallelism for most graphs

Delta-stepping (1998)

- **Controlled chaotic relaxation**
 - Exploit the fact that SSSP is robust to priority inversions
 - "soft" priorities
- **Implementation of work-set:**
 - parameter: Δ
 - sequence of sets
 - nodes whose current distance is between Δ and $(n+1)\Delta$ are put in the n^{th} set
 - nodes in set n are completed before processing of nodes in set $(n+1)$ are started
- **Algorithm:**
 - Initialize all vertices with infinity
 - Relax in each round
 - use a worklist
 - terminate when no change

Bellman-Ford (1957)

- **Algorithm:**
 - Initialize all vertices with infinity
 - Relax in each round
 - use a worklist
 - terminate when no change
 - $O(|E|*|V|)$
- **Main inefficiency:**
 - as we will see later, there is little parallelism for most graphs
Summary of SSSP Algorithms

- **Chaotic relaxation**
 - unordered, data-driven algorithm
 - use sets/multisets for work-set
 - amount of work depends on schedule: can be exponential in size of graph

- **Dijkstra’s algorithm**
 - ordered, data-driven algorithm
 - use priority queue for work-set
 - \(O(|V|\log(|E|)) \): work-efficient but little parallelism

- **Delta-stepping**
 - controlled chaotic relaxation: parameter \(\Delta \)
 - \(\Delta \) permits trade-off between parallelism and work-efficiency

- **Bellman-Ford algorithm**
 - unordered, topology-driven algorithm
 - \(O(|V||E|) \) time

Machine learning

- Many machine learning algorithms are sparse graph algorithms

- Examples:
 - Page rank: used to rank webpages to answer Internet search queries
 - Recommender systems: used to make recommendations to users in Netflix, Amazon, Facebook etc.

Web search

- **When you type a set of keywords to do an Internet search, which web-pages should be returned and in what order?**

 Basic idea:
 - offline:
 - crawl the web and gather webpages into data center
 - build an index from keywords to webpages
 - online:
 - when user types keywords, use index to find all pages containing the keywords
 - key problem:
 - usually you end up with tens of thousands of pages
 - how do you rank these pages for the user?

Ranking pages

- **Manual ranking**
 - Yahoo did something like this initially, but this solution does not scale

- **Word counts**
 - order webpages by how many times keywords occur in webpages
 - problem: easy to mess with ranking by having lots of meaningless occurrences of keyword

- **Citations**
 - analogy with citations to articles
 - if lots of webpages point to a webpage, rank it higher
 - problem: easy to mess with ranking by creating lots of useless pages that point to your webpage

- **PageRank**
 - extension of citations idea
 - weight link from webpage A to webpage B by “importance” of A
 - if A has few links to it, its links are not very “valuable”
 - how do we make this into an algorithm?
Web graph

- Directed graph: nodes represent webpages, edges represent links
 - Edge from u to v represents a link in page u to page v
- Size of graph: commoncrawl.org (2012)
 - 3.5 billion nodes
 - 128 billion links
- Intuitive idea of pageRank algorithm:
 - Each node in graph has a weight (pageRank) that represents its importance
 - Assume all edges out of a node are equally important
 - Importance of edge is scaled by the pageRank of source node

PageRank (simple version)

Graph: $G = (V,E)$
$|V| = N$

- Iterative algorithm:
 - Compute a series PR_0, PR_1, PR_2, \ldots of node labels
- Iterative formula:
 - $\forall v \in V. PR_0(v) = \frac{1}{N}$
 - $\forall v \in V. PR_{i+1}(v) = \frac{1-d}{N} + d \sum_{u \in \text{in-neighbors}(v)} \frac{PR(u)}{\text{out-degree}(u)}$

- Implement with two fields PR_{current} and PR_{next} in each node

Page Rank (contd.)

- Small twist needed to handle nodes with no outgoing edges
- Damping factor: d
 - Small constant: 0.85
 - Assume each node may also contribute its pageRank to a randomly selected node with probability (1-d)
- Iterative formula:
 - $\forall v \in V. PR_0(v) = \frac{1}{N}$
 - $\forall v \in V. PR_{i+1}(v) = \frac{1-d}{N} + d \sum_{u \in \text{in-neighbors}(v)} \frac{PR(u)}{\text{out-degree}(u)}$

PageRank example

- Nice example from Wikipedia
- Note
 - B and E have many in-edges but pageRank of B is much greater
 - C has only one in-edge but high pageRank because its in-edge is very valuable
- Caveat:
 - Search engines use many criteria in addition to pageRank to rank webpages
Matrix-vector multiplication

- Matrix computation: $y = Ax$
- Graph interpretation:
 - Each node i has two values (labels) $x(i)$ and $y(i)$
 - Each node i updates its label y using the x value from each out-neighbor j scaled by the label on edge (i,j)
 - Topology-driven, unordered algorithm
- Observation:
 - Graph perspective shows dense MVM is special case of sparse MVM
 - What is the interpretation of $y = ATx$?
- Page-rank can be expressed as generalized MVM
 - Reinterpret $+$ and $*$ operations

PageRank discussion

- Vertex program (Pregel):
 - value at node is updated using values at immediate neighbors
 - very limited notion of neighborhood but adequate for pageRank and some ML algorithms
- CombBlas: combinatorial BLAS
 - generalized sparse MVM: $+* \text{ in MVM are generalized to other operations like } \lor \text{ and } \land$
 - adequate for pageRank
- Interesting application of TAO
 - standard pageRank is topology-driven
 - can you think of a data-driven version of pageRank?

Recommender system

- Problem
 - given a database of users, items, and ratings given by each user to some of the items
 - predict ratings that user might give to items he has not rated yet (usually, we are interested only in the top few items in this set)
- Netflix challenge
 - in 2006, Netflix released a subset of their database and offered 1 million prize to anyone who improved their algorithm by 10
 - triggered a lot of interest in recommender systems
 - prize finally given to BellKor’s Pragmatic Chaos team in 2009

Data structure for database

- Sparse matrix view:
 - rows are users
 - columns are movies
 - $A(u,m) = v$ is user u has given rating v to movie m
- Graph view:
 - bipartite graph
 - two sets of nodes, one for users, one for movies
 - edge (u,m) with label v
- Recommendation problem:
 - predict missing entries in sparse matrix
 - predict labels of missing edges in bipartite graph
One approach: matrix completion

- Optimization problem
 - Find $m \times k$ matrix W and $k \times n$ matrix H ($k << \min(m,n)$) such that $A \approx WH$
 - Low-rank approximation
 - H and W are dense so all missing values are predicted
- Graph view
 - Label of user nodes i is vector corresponding to row W_i
 - Label of movie node j is vector corresponding to column H_j
 - If graph has edge (u,m), inner product of labels on u and m must be approximately equal to label on edge

One algorithm: SGD

- Stochastic gradient descent (SGD)
- Iterative algorithm:
 - Initialize all node labels to some arbitrary values
 - Iterate until convergence
 - Visit all edges (u,m) in some order and update node labels at u and m based on the residual
- TAO analysis:
 - Active edges: topology-driven, unordered
 - What algorithm does this remind you of?
 - Bellman-Ford

What we have learned

- Operator formulation:
 - Data-centric view of algorithms
- TAO classification
- Location of active nodes
 - Topology-driven algorithms
 - Data-driven algorithms
 - Data-driven algorithm may be more work-efficient than topology-driven one
- Ordering of active nodes
 - Unordered algorithms
 - Ordered algorithms
- Some problems
 - Have both ordered and unordered algorithms (e.g. SSSP)
 - Have both topology-driven and data-driven algorithms (e.g. SSSP, pagerank)
Questions

• What are the sources of parallelism and locality in algorithms?
• Can the operator formulation help us in answering this question?
• How do we exploit parallelism and locality efficiently?