
Mike Voss, Principal Engineer

Core and Visual Computing Group, Intel



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

We’ve already talked about threading with 
pthreads and the OpenMP* API

• POSIX threads (pthreads) lets us express threading but makes us do a lot of 
the hard work

• OpenMP is higher-level model and is widely used in C/C++ and Fortran

• It takes care of many of the low-level error prone details for us

• OpenMP has weaknesses, especially for C++ developers…

• It uses #pragmas and so doesn’t look like C++

• It is not a composable parallelism model



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Agenda

• What is composability and why is it important?

• An introduction to the Threading Building Blocks (TBB) library

• What it is and what it contains

• TBB’s high-level execution interfaces

• The generic parallel algorithms, the flow graph and Parallel STL

• Synchronization primitives and concurrent containers

• The TBB scalable memory allocator



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

There are different ways parallel software components can 
be combined with other parallel software components



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Nested composition

int main() {
#pragma omp parallel
f();

}

void f() { 
#pragma omp parallel
g(); 

}

void g() {
#pragma omp parallel 
h(); 

}



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Nested composition

Nested parallelism can lead to an exponential growth in the available 
parallelism, great!  Or the number of threads, very bad!

…



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Concurrent Composition

#pragma omp parallel for

for (int i = 0; i < N; ++i) {

b[i] = f( a[i] );

}

#pragma omp parallel for

for (int i = 0; i < M; ++i) {

d[i] = g( c[i] );

}



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Serial Composition

#pragma omp parallel for

for (int i = 0; i < N; ++i) {

b[i] = f( a[i] );

}

#pragma some_other_kind_of_parallel_for

for (int i = 0; i < N; ++i) {

c[i] = f( b[i] );

}



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Serial Composition



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

A composable threading model

• Executes efficiently when its constructs are composed with other constructs 
from the same threading model

• nested, concurrent and serial

• Doesn’t negatively impact other threading models too much when 
composed with constructs in the other threading model

• nested, concurrent and serial

• it can’t control the other model, but it can be a “good citizen”



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

Agenda

• What is composability and why is it important?

• An introduction to the Threading Building Blocks (TBB) library

• What it is and what it contains

• TBB’s high-level execution interfaces

• The generic parallel algorithms, the flow graph and Parallel STL

• Synchronization primitives and concurrent containers

• The TBB scalable memory allocator



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Threading Building Blocks (TBB)
Celebrated it’s 10 year anniversary in 2016

A widely used C++ template library for shared-memory parallel programming

What
Parallel algorithms and data structures
Threads and synchronization primitives
Scalable memory allocation and task scheduling

Benefits
Is a library-only solution that does not depend on special compiler support
Is both a commercial product and an open-source project
Supports C++, Windows*, Linux*, OS X*, Android* and other OSes
Commercial support for Intel® AtomTM, CoreTM, Xeon® processors and for Intel® Xeon PhiTM

coprocessors

http://threadingbuildingblocks.org   http://software.intel.com/intel-tbb  



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

The Components in Threading Building Blocks (TBB)



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

High-level execution interfaces map to parallelism 
in applications

Task Parallelism / 
Message Passing

fork-join

SIMD SIMD SIMD

fork-join

SIMD SIMD SIMD

Intel TBB helps to develop composable levels



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

High-level execution interfaces map to parallelism 
in applications

Task Parallelism / 
Message Passing

fork-join

SIMD SIMD SIMD

fork-join

SIMD SIMD SIMD

Intel TBB helps to develop composable levels

Flow Graph



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

High-level execution interfaces map to parallelism 
in applications

Task Parallelism / 
Message Passing

fork-join

SIMD SIMD SIMD

fork-join

SIMD SIMD SIMD

Intel TBB helps to develop composable levels

Generic Algorithms
Parallel STL (par policy)



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

High-level execution interfaces map to parallelism 
in applications

Task Parallelism / 
Message Passing

fork-join

SIMD SIMD SIMD

fork-join

SIMD SIMD SIMD

Intel TBB helps to develop composable levels

Parallel STL (unseq policy)



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Agenda

• What is composability and why is it important?

• An introduction to the Threading Building Blocks (TBB) library

• What it is and what it contains

• TBB’s high-level execution interfaces

• The generic parallel algorithms, the flow graph and Parallel STL

• Synchronization primitives and concurrent containers

• The TBB scalable memory allocator



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

But before we do that… a quick overview of C++ 
lambda expressions
• Lambda expressions are anonymous function objects

[ capture-list ] ( params ) -> ret { body }

• capture-list
• a list of variables to capture from the enclosing scope
• e.g. [x,y] or to capture a reference then [&x,y]

• params
• The parameters of the function, just like for a named function

• ret is the return type

• body is the function body



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Mandelbrot Example
Threading Building Blocks (TBB)

parallel_for( 0, max_row,
[&](int i) {
for (int j = 0; j < max_col; j++)
p[i][j]=mandel(Complex(scale(i),scale(j)),depth);

}
);

int mandel(Complex c, int max_count) {
int count = 0; Complex z = 0;
for (int i = 0; i < max_count; i++) {
if (abs(z) >= 2.0) break;
z = z*z + c; count++;

}
return count;

}

Parallel algorithm

Use C++ lambda functions to define function object in-line

Task is a function object 

20



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

TBB Generic Parallel Algorithms

Loop parallelization

parallel_for

parallel_reduce

parallel_scan

Parallel sorting

parallel_sort

Parallel function invocation

parallel_invoke

Streaming

parallel_do

parallel_for_each

pipeline / parallel_pipeline

The most common patterns used in parallel programming



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

TBB is a composable library because it uses tasks, 
a thread pool and a work-stealing task scheduler

(thread pool)



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

TBB is a composable library because it uses tasks, 
a thread pool and a work-stealing task scheduler

Simplified work-stealing task dispatcher used by each worker thread



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

A very nice distribution of a loop across 4 threads 
uses recursive splitting

tbb::parallel_for(0, N, 1, [a](int i) { 

f(a[i]); 

});

Thread 1

t0

t1 t2

t3 t4

t7 t8



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

A very nice distribution of a loop across 4 threads 
uses recursive splitting

tbb::parallel_for(0, N, 1, [a](int i) { 

f(a[i]); 

});

Thread 1

t0

t1 t2

t3 t4

t7 t8

But while thread 1 is doing this, along comes another 
thread that wants to help out…



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

A very nice distribution of a loop across 4 threads 
uses recursive splitting

tbb::parallel_for(0, N, 1, [a](int i) { 

f(a[i]); 

});

Thread 1

t0

t1 t2

t3 t4

t7 t8

t5 t6

t11 t12

Thread 2steal



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

A very nice distribution of a loop across 4 threads 
uses recursive splitting

tbb::parallel_for(0, N, 1, [a](int i) { 

f(a[i]); 

});

Thread 1

t0

t1 t2

t3 t4

t7 t8

t5 t6

t1

1

t12

Thread 2

t9 t10

Thread 3

steal

steal



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

A very nice distribution of a loop across 4 threads 
uses recursive splitting

tbb::parallel_for(0, N, 1, [a](int i) { 

f(a[i]); 

});

Thread 1

t0

t1 t2

t3 t4

t7 t8

t5 t6

t11 t12

Thread 2

t9 t10 t13 t14

Thread 3 Thread 4

steal

steal steal



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
29



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

TBB is a composable library because it uses tasks, 
a thread pool and a work-stealing task scheduler

• Nested parallelism just works

• We create lots of small tasks but they execute on a the limited number of 
threads in the thread pools – no explosion of threads

• Concurrent composition just works 

• Tasks are scheduled to the same threads – no problem

• Serial composition just works 

• The thread pool stays alive and as work becomes available, idle worker 
threads steal it 



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Agenda

• What is composability and why is it important?

• An introduction to the Threading Building Blocks (TBB) library

• What it is and what it contains

• TBB’s high-level execution interfaces

• The generic parallel algorithms, the flow graph and Parallel STL

• Synchronization primitives and concurrent containers

• The TBB scalable memory allocator



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Graph-based parallelism

Can exploit functional parallelism:

x

x

Can exploit pipeline parallelism:

y0

z0x1

x1

img2

Can exploit data parallelism:

x0
x1

f1 f2 f3 f4
img x

y

z

Graphs express the operations and their 
input and output dependencies:

while ( img = get_image() ) {
x = f1(img);
y = f2(x);
z = f3(x);

f4(y,z);
}

Given the operations and their input and output dependencies, a runtime scheduler:

32



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Threading Building Blocks flow graph
Efficient implementation of dependency graph and data flow algorithms

Enables developers to exploit parallelism at higher levels

Nodes execute as TBB tasks

graph g;

continue_node< continue_msg > h( g, 

[]( const continue_msg & ) { 

cout << “Hello “; 

} );

continue_node< continue_msg > w( g, 

[]( const continue_msg & ) { 

cout << “World\n“; 

} );

make_edge( h, w );

h.try_put(continue_msg());

g.wait_for_all();

Hello World

33



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

An example feature detection algorithm

buffer

get_next_image
preprocess

detect_with_A

detect_with_B

make_decision

Can express pipelining, task parallelism and data parallelism

34



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
35

graph g;
function_node< int, int > n( g, unlimited, []( int v ) -> int { 

cout << v;
spin_for( v );
cout << v;
return v;

} );
function_node< int, int > m( g, serial, []( int v ) -> int {

v *= v;
cout << v;
spin_for( v );
cout << v;
return v;

} );
make_edge( n, m );
n.try_put( 1 );
n.try_put( 2 );
n.try_put( 3 );
g.wait_for_all();

How flow graph nodes map to TBB tasks

One possible execution – stealing is random



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
36

Agenda

• What is composability and why is it important?

• An introduction to the Threading Building Blocks (TBB) library

• What it is and what it contains

• TBB’s high-level execution interfaces

• The generic parallel algorithms, the flow graph and Parallel STL

• Synchronization primitives and concurrent containers

• The TBB scalable memory allocator



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
37

The C++ Standard Template Library

Container Algorithm

std::vector<float> float* transform

Iterator

#include <algorithm>

void increment( float *in, float *out, int N ) {
using namespace std;
transform( in, in + N, out, []( float f ) {

return f+1;
});

}



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Enter Parallel STL

38

 Extension of C++ Standard Template 
Library algorithms with the “execution 
policy” argument

 Support for parallel execution policies is 
approved for C++17

 Support for vectorization policies is 
being developed in Parallelism Technical 
Specification (TS) v2

C++17 Parallelism TS v2

seq

par

par_unseq

unseq

vec

SIMD

Preserve Fwd. 

Dep.

threaded



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
39

The different execution policies for Parallel STL



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Parallel STL Examples
// standard sequential sort
sort(v.begin(), v.end());

// explicitly sequential sort
sort(execution::seq,v.begin(), v.end());

// permitting parallel execution
sort(execution::par,v.begin(), v.end());

// permitting vectorization as well
sort(execution::par_unseq,v.begin(), v.end());

// Parallelism TS v2
// permitting vectorization only (no parallel execution)
sort(execution::unseq,v.begin(), v.end());

40



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Parallel STL Examples
// standard sequential sort
sort(v.begin(), v.end());

// explicitly sequential sort
sort(execution::seq,v.begin(), v.end());

// permitting parallel execution
sort(execution::par,v.begin(), v.end());

// permitting vectorization as well
sort(execution::par_unseq,v.begin(), v.end());

// Parallelism TS v2
// permitting vectorization only (no parallel execution)
sort(execution::unseq,v.begin(), v.end());

41

Intel’s Parallel STL executes using TBB tasks

Intel’s Parallel STL uses OpenMP simd



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
42

Parallel STL includes many algorithms

• These are more specialized than the TBB generic algorithms

• Like fill, find_if, etc…

• But contains some powerful functions

• for_each, transform, reduce, transform_reduce, etc…

• Even so, they are less expressive than TBB since they work on sequences or 
containers

• But they have standardized C++ interfaces



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
43

Agenda

• What is composability and why is it important?

• An introduction to the Threading Building Blocks (TBB) library

• What it is and what it contains

• TBB’s high-level execution interfaces

• The generic parallel algorithms, the flow graph and Parallel STL

• Synchronization primitives and concurrent containers

• The TBB scalable memory allocator



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
44

TBB includes C++ versions of many of the 
synchronization primitives we’ve learned about

• atomic variables

• atomic<int> i;

• supports compare_and_swap, fetch_and_add, etc…

• Mutexes & locks

• spin_mutex, queuing_mutex, speculative_spin_mutex, etc…



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
45

But it also provides high-level thread friendly data 
structures

• maps, sets, queues and vectors

extern std::queue q;

if (!q.empty()) {

item = q.front();

q.pop();

}

At this instant, another thread might pop the last element

TBB provides a try_pop function instead.



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
46

But it also provides high-level thread friendly data 
structures

• maps, sets, queues and vectors

extern concurrent_queue<T> MyQueue;

T item;

if( MyQueue.try_pop(item) ) {

...process item...

} 

TBB provides a try_pop function instead.



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
47

Agenda

• What is composability and why is it important?

• An introduction to the Threading Building Blocks (TBB) library

• What it is and what it contains

• TBB’s high-level execution interfaces

• The generic parallel algorithms, the flow graph and Parallel STL

• Synchronization primitives and concurrent containers

• The TBB scalable memory allocator



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
48

TBB provides useful memory allocators

• cache_aligned_allocator

• Helps to prevent false sharing by doing the right padding

• scalable_allocator

• Some OSes use a single global heap for memory allocator, that is protected 
by a lock

• If many threads starting allocating in parallel there is contention on the lock

• The TBB scalable memory allocator uses per-thread heaps to avoid locking



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
49

To Learn More:
See Intel’s The Parallel Universe Magazine

https://software.intel.com/en-us/intel-parallel-universe-magazine

http://threadingbuildingblocks.org   http://software.intel.com/intel-tbb  



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel 
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the 
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent 
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture 
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the 
specific instruction sets covered by this notice.

Notice revision #20110804

50

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance 
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any 
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully 
evaluating your contemplated purchases, including the performance of that product when combined with other products.  For more complete 
information visit www.intel.com/benchmarks.  

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY 
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS 
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS 
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY 
RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of 
Intel Corporation in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks





