Goal of lecture

- Develop abstractions of real caches for understanding program performance
- Study the cache performance of matrix-vector multiplication (MVM)
 - simple but important computational science kernel
- Understand MVM program transformations for improving performance

Matrix-vector product

- Code:
 for i = 1,N
 for j = 1,N
 y(i) = y(i) + A(i,j)*x(j)
 Total number of references = 4N^2
 – This assumes that all elements of A, x, y are stored in memory
 – Smart compilers nowadays can register-allocate y(i) in the inner loop
 – You can get this effect manually
 for i = 1,N
 temp = y(i)
 for j = 1,N
 temp = temp + A(i,j)*x(j)
 y(i) = temp
 – To keep things simple, we will not do this but our approach applies to this optimized code as well

Cache abstractions

- Real caches are very complex
- Science is all about tractable and useful abstractions (models) of complex phenomena
 – models are usually approximations
- Can we come up with cache abstractions that are both tractable and useful?
- Focus:
 – two-level memory model: cache + memory
 – ignore prefetching: more significant omission
Stack distance

- r_1, r_2: two memory references
 - r_1 occurs earlier than r_2
- stackDistance(r_1, r_2): number of distinct cache lines referenced between r_1 and r_2
- Stack distance was defined by Mattson et al (IBM Systems Journal paper)

Modeling approach

- First approximation:
 - ignore conflict misses
 - only cold and capacity misses
- Most problems have some notion of "problem size"
 - (eg) in MVM, the size of the matrix (N) is a natural measure of problem size
- Question: how does the miss ratio change as we increase the problem size?
- Even this is hard, but we can often estimate miss ratios at two extremes
 - large cache model: problem size is small compared to cache capacity
 - small cache model: problem size is large compared to cache capacity
 - we will define these more precisely in the next slide.

Large and small cache models

- Large cache model
 - no capacity misses
 - only cold misses
- Small cache model
 - cold misses: first reference to a line
 - capacity misses: possible for succeeding references to a line
 - let r_1 and r_2 be two successive references to a line
 - assume r_2 will be a capacity miss if stackDistance(r_1, r_2) is some function of problem size
 - argument: as we increase problem size, the second reference will become a miss sooner or later
- For many problems, we can compute
 - miss ratios for small and large cache models
 - problem size transition point from large cache model to small cache model

MVM study

- We will study five scenarios
 - Scenario I
 - i,j loop order, line size = 1 number
 - Scenario II
 - j,i loop order, line size = 1 number
 - Scenario III
 - i,j loop order, line size = b numbers
 - Scenario IV
 - j,i loop order, line size = b numbers
 - Scenario V
 - blocked code, line size = b numbers
Scenario I

- Code:
 \[
 \text{for } i = 1, N \\
 \text{for } j = 1, N \\
 y(i) = y(i) + A(i,j) \times x(j)
 \]

- Inner loop is known as DDOT in NA literature if working on doubles:
 - Double-precision DOT product

- Cache line size:
 - 1 number

- Large cache model:
 - Misses:
 - A: N \times N misses
 - x: N misses
 - y: N misses
 - Total = N + 2N
 - Miss ratio = (N + 2N)/4N^2
 - \approx 0.25 + 0.5/N

Scenario I (contd.)

- Small cache model:
 - A: N misses
 - x: N + N(N-1) misses (reuse distance=O(N))
 - y: N misses (reuse distance=O(1))
 - Total = 2N^2 + N
 - Miss ratio = (2N^2 + N)/4N^2
 - \approx 0.5 + 0.25/N

- Transition from large cache model to small cache model
 - As problem size increases, when do capacity misses begin to occur?
 - Subtle issue: depends on replacement policy (see next slide)

Scenario I (contd.)

- Question: as problem size increases, when do capacity misses begin to occur?
- Depends on replacement policy:
 - Optimal replacement:
 - Only needs to be cache resident
 - Elements of A can be "streamed in" and tossed out of cache after use
 - So we need room for (N+2) numbers
 - Transition: N ~ C
 - LRU replacement:
 - By the time we get to end of a row of A, first few elements of x
 will have since been replaced
 - Transition: (2N+2) ~ C

- Note:
 - Optimal replacement requires perfect knowledge about future
 - Most real caches use LRU or something close to it
 - Some architectures support "streaming"
 - In hardware
 - In software: hints to tell processor not to cache certain references

Miss ratio graph

- Jump from large cache model to small cache model will be more gradual in reality because of conflict misses
Scenario II

- **Code:**

  ```
  for j = 1,N
  for i = 1,N
  y(i) = y(i) + A(i,j)*x(j)
  ```

 - Inner loop is known as AXPY in NA literature
 - Miss ratio picture exactly the same as Scenario I
 - roles of x and y are interchanged

Scenario III

- **Code:** assume A is stored in row-major order in memory

  ```
  for i = 1,N
  for j = 1,N
  y(i) = y(i) + A(i,j)*x(j)
  ```

 - Cache line size
 - b numbers
 - Large cache model:
 - Misses:
 - x: N/b misses
 - y: N/b misses
 - Total = (N^2+2N)/b
 - Miss ratio = (N^2+2N)/4bN^2
 \~ 0.25/b + 0.5/bN

- **Small cache model:**
 - A: N^2/b misses
 - x: N/b + N(N-1)/b misses (reuse distance=O(N))
 - y: N/b misses (reuse distance=O(1))
 - Total = (2N^2+N)/b
 - 0.5b + 0.25bN

- **Transition from large cache model to small cache model**
 - As problem size increases, when do capacity misses begin to occur?
 - LRU: roughly when (2N+2b) = C
 - Optimal: roughly when (N+2b) \sim N = C
 - So miss ratio picture for Scenario III is similar to that of Scenario I but the y-axis is scaled down by b
 - Typical value of b = 4 (SGI Octane)

Address stream

- Jump from large cache model to small cache model will be more gradual in reality because of conflict misses
Scenario IV

- **Code:**
  ```
  for i = 1,N
  for j = 1,N
  y(i) = y(i) + A(i,j)*x(j)
  ```

- **Large cache model:**
 - Same as Scenario III

- **Small cache model:**
 - Misses:
 - A: N^2
 - x: N/b
 - y: N/b + N(N-1)/b = N^2/b
 - Total: N^2(1+1/b) + N/b
 - Miss ratio = 0.25(1+1/b) + 0.25/bN

- **Transition from large cache to small cache model:**
 - LRU: Nb + N + C → N ~ C/(b+1)
 - Optimal: N + 2b + C → N ~ C

- Transition happens much sooner than in Scenario III (with LRU replacement)

Miss ratios

- **DAXPY**
 - Miss ratio
 - 0.75/b
 - 0.50/b
 - 0.25/b
 - 0.25(1+1/b)

- **DDOT**
 - Miss ratio
 - C/(b+1)
 - C/2

Scenario V

- **Intuition:** perform blocked MVM so that data for each blocked MVM fits in cache
 - One estimate for B: all data for block MVM must fit in cache
 - B^2 + 2B ~ C
 - B ~ sqrt(C)
 - Actually we can do better than this

- **Code:** blocked code
  ```
  for i = 1,N,B
  for j = 1,N,B
  for i = bi,min(bi+B-1,N)
  for j = bj,min(bj+B-1,N)
  y(i)=y(i)+A(i,j)*x(j)
  ```

- **Choose block size B so:**
 - you have large cache model while executing block
 - B as large as possible (to reduce loop overhead)
 - For our example, this means B~c/2 for row-major order of storage and LRU replacement

- Since entire MVM computation is a sequence of block MVMs, this means miss ratio will be 0.25/b independent of N

Scenario V (contd.)

- **Code:** blocked code
  ```
  for i = 1,N,B
  for j = 1,N,B
  for i = bi,min(bi+B-1,N)
  for j = bj,min(bj+B-1,N)
  y(i)=y(i)+A(i,j)*x(j)
  ```

- Better code: interchange the two outermost loops and fuse blocks together
  ```
  for bj = 1,N,B
  for i = 1,N
  for j = bi,min(bi+B-1,N)
  y(i)=y(i)+A(i,j)*x(j)
  ```

- This has the same memory behavior as double-blocked loop but less loop overhead.
Miss ratios

Key transformations

- **Loop permutation**

 \[
 \begin{align*}
 &\text{for } i = 1, N \\
 &\text{for } j = 1, N \\
 &\text{S} \\
 &\text{for } j = 1, N \\
 &\text{S}
 \end{align*}
 \]

- **Strip-mining**

 \[
 \begin{align*}
 &\text{for } i = 1, N \\
 &\text{for } j = 1, N, B \\
 &\text{S} \\
 &\text{for } i = j, \min(j+B-1, N) \\
 &\text{S}
 \end{align*}
 \]

- **Loop tiling = strip-mine and interchange**

 \[
 \begin{align*}
 &\text{for } i = 1, N \\
 &\text{for } j = 1, N \\
 &\text{S} \\
 &\text{for } i = j, \min(j+B-1, N) \\
 &\text{S}
 \end{align*}
 \]

Notes

- Strip-mining does not change the order in which loop body instances are executed
 - so it is always legal
- Loop permutation and tiling do change the order in which loop body instances are executed
 - so they are not always legal
- For MVM and MMM, they are legal, so there are many variations of these kernels that can be generated by using these transformations
 - different versions have different memory behavior as we have seen

Matrix multiplication

- We have studied MVM in detail.
- In dense linear algebra, matrix-matrix multiplication is more important.
- Everything we have learnt about MVM carries over to MMM fortunately, but there are more variations to consider since there are three matrices and three loops.
for I = 1, N/row-major storage
for J = 1, N
for K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

UK version of matrix multiplication

• Three loops: I,J,K
• You can show that all six permutations of these three loops compute the same values.
• As in MVM, the cache behavior of the six versions is different.

for I = 1, N/row-major storage
for J = 1, N
for K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

UK version of matrix multiplication

• K loop innermost
 – A: good spatial locality
 – C: good temporal locality
• I loop innermost
 – B: good temporal locality
• J loop innermost
 – B:C: good spatial locality
 – A: good temporal locality
• So we would expect IKJ/KJU versions to perform best, followed by UKIJKU, followed by JIKIKJ

Observations

• Miss ratios depend on which loop is in innermost position
 – so there are three distinct miss ratio graphs
• Large cache behavior can be seen very clearly and all six version perform similarly in that region
• Big spikes are due to conflict misses for particular matrix sizes
 – notice that versions with J loop innermost have few conflict misses (why?)
IJK version (large cache)

for I = 1, N/row-major storage
for J = 1, N
for K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Large cache scenario:
 – Matrices are small enough to fit into cache
 – Only cold misses, no capacity misses
 – Miss ratio:
 • Data size = 3 N²
 • Each miss brings in b floating-point numbers
 • Miss ratio = 3 N²/b*4N² = 0.75bN = 0.019 (b = 4, N=10)

IJK version (small cache)

for I = 1, N
for J = 1, N
for K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Small cache scenario:
 – Matrices are large compared to cache
 – stack distance is not O(1) => miss
 – Cold and capacity misses
 – Miss ratio:
 • C: N²/b misses (good temporal locality)
 • A: N³/b misses (good spatial locality)
 • B: N³ misses (poor temporal and spatial locality)
 • Miss ratio → 0.25 (b+1)/b = 0.3125 (for b = 4)

Miss ratios for other versions

for I = 1, N/row-major storage
for J = 1, N
for K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

IJK version of matrix multiplication

• K loop innermost
 – A: good spatial locality
 – C: good temporal locality
 0.25(b+1)b
• I loop innermost
 – B: good temporal locality
 (N²/b + N³/b+4N²) → 0.5
• J loop innermost
 – B:C: good spatial locality
 (N²/b + N³/b+4N²) → 0.5b
 – A: good temporal locality

So we would expect IKJ/KIJ versions to perform best, followed by IJK/JIK, followed by JKI/KJI.

MMM experiments

L1 Cache Miss Ratio for Intel Pentium III
 – MMM with N = 1…1300
 – 16KB 32B/Block 4-way 8-byte elements

Can we predict this?
Transition out of large cache

for I = 1, N/row-major storage
for J = 1, N
for K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

- Find the data element(s) that are reused with the largest stack distance
- Determine the condition on N for that to be less than C
- For our problem:
 - $N^2 + N + b < C$ (with optimal replacement)
 - $N^2 + 2N < C$ (with LRU replacement)
 - In either case, we get $N \approx \sqrt{C}$
 - For our cache, we get $N \approx 45$ which agrees quite well with data.

Blocked code

As in blocked MVM, we actually need to stripmine only two loops

for $i = 1, N, b$
for $j = 1, N, b$
for $k = 1, N, b$
for $i = bi, \min(bi+1, N)$
for $j = k, \min(k+1, N)$
for $k = bk, \min(k+1, N)$
y(i) = y(i) + a(i,j)x(j)

Notes

- So far, we have considered a two-level memory hierarchy
- Real machines have multiple level memory hierarchies
- In principle, we need to block for all levels of the memory hierarchy
- In practice, matrix multiplication with really large matrices is very rare
 - MMM shows up mainly in blocked matrix factorizations
 - therefore, it is enough to block for registers, and L1/L2 cache levels
- How do we organize such a code?
 - We will study the code produced by ATLAS.
 - ATLAS also introduces us to self-optimizing programs.