
Michael Voss, Principal Engineer
Software and Services Group, Intel

With material used by permission
from J.D. Patel, Intel
ĥıĮĬ ŕĕıĮĦıĠĬ ĔįĳĨĬĨĹĠĳĨĮĭ ęħıĮĴĦħ đĮĮį ěĤĢĳĮıĨĹĠĳĨĮĭŖ īĤĢĳĴıĤ ĲīĨģĤĲ ġĸ
María Garzarán, Saeed Maleki, William Gropp and David Padua, University of Illinois at Urbana -Champaign
ĥıĮĬ ŕđĮĶ-īĤĵĤī ĕĤıĥĮıĬĠĭĢĤ ĆĭĠīĸĲĨĲ#Ŗ īĤĢĳĴıĤ ĲīĨģĤĲ ġĸ ĕĠġīĮ ėĤġīĤ!

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Outline
Å What is vectorization and why is it important

Å The different ways we can vectorize our code

Å The two main challenges in vectorization

Å Determining that vectorization is legal (the results will be the same)

Å Dependence analysis

Å Obstacles to vectorization and how to deal with them

Å Optimizing performance

Å Memory issues (alignment, layout)

Å Telling the compiler what you know (about your code & about your platform)

Å Using compiler intrinsics

Å Using OpenMP simd pragmas

Å A case study (after Spring Break)

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Outline
Å What is vectorization and why is it important

Å The different ways we can vectorize our code

Å The two main challenges in vectorization

Å Determining that vectorization is legal (the results will be the same)

Å Dependence analysis

Å Obstacles to vectorization and how to deal with them

Å Optimizing performance

Å Memory issues (alignment, layout)

Å Telling the compiler what you know (about your code & about your platform)

Å Using compiler intrinsics

Å Using OpenMP simd pragmas

Å A case study

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Hardware and software have evolved together

Å There are different styles / models for expressing
parallelism in applications

Å These styles are often mixed in applications because
they each best exploit a particular level of parallelism in
the hardware

Å For example MPI for message passing, OpenMP for
fork -join parallelism and SIMD intrinsics for SIMD layer.

Arch D. Robison and Ralph E. Johnson. 2010. Three layer cake for shared -memory programming .
In Proceedings of the 2010 Workshop on Parallel Programming Patterns (ParaPLoP'10). ACM, New
York, NY, USA, , Article 5 , 8 pages. DOI=http://dx.doi.org/10.1145/1953611.1953616

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Different levels of parallelism in hardware

Å Instruction Level Parallelism (ILP) -- Needs no user intervention

ÝMicro-architectural techniques
Pipelined Execution Super-scalar execution
Out-of/In -order execution ćıĠĭĢħ įıĤģĨĢĳĨĮĭ,

Å Vector Level Parallelism (VLP)

ÝUsing Single Instruction, Multiple Data (SIMD) vector processing instructions
ï Intel has introduced extensions over time: SSE , AVX/AVX2, AVX-512
ï SIMD registers width:

Ý Intel CPUs: 64-bit (MMX) Č 128-bit (SSE) Č 256-bit (AVX,CORE-AVX2) Č 512-bit (CORE-AVX512)

Å Thread-Level Parallelism (TLP)

ÝMulti/many -core architectures

ÝHyper threading (HT)

Å Node Level Parallelism (NLP) (Distributed/Cluster/Grid Computing)

5

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

What Defined
Tools of the
trade

Thread
Scaling

Increase concurrent thread
use across coherent
shared memory

OpenMP, TBB, Cilk Plus

Vector
Scaling

Use many wide-vector
(512-bit) instructions

Vector loops, vector
functions, array
notations

Cache
Blocking

Use algorithms to reduce
memory bandwidth
pressure and improve
cache hit rate

Blocking algorithms

Fabric
Scaling

Tune workload to
increased node count

MPI

Data
Layout

Optimize data layout for
unconstrained
performance

AoSĄSoA, directives for
alignment

X4

Y4

Z4

X3

Y3

Z3

X2

Y2

Z2

X1

Y1

Z1

0
X8

Y8

Z8

X7

Y7

Z7

X6

Y6

Z6

X5

Y5

Z5

X12

Y12

Z12

X11

Y11

Z11

X10

Y10

Z10

X9

Y9

Z9

X16

Y16

Z16

X15

Y15

Z15

X14

Y14

Z14

X13

Y13

Z13

512

1

2

3

4

5

Ćĳ ĎĭĳĤī# ĶĤ ĳĠīĪ ĠġĮĴĳ ŕĒĮģĤıĭĨĹĤģŖ Code

6

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

What Defined
Tools of the
trade

Thread
Scaling

Increase concurrent thread
use across coherent
shared memory

OpenMP,TBB, Cilk Plus

Vector
Scaling

Use many wide-vector
(512-bit) instructions

Vector loops, vector
functions, array
notations

Cache
Blocking

Use algorithms to reduce
memory bandwidth
pressure and improve
cache hit rate

Blocking algorithms

Fabric
Scaling

Tune workload to
increased node count

MPI

Data
Layout

Optimize data layout for
unconstrained
performance

AoSĄSoA, directives for
alignment

X4

Y4

Z4

X3

Y3

Z3

X2

Y2

Z2

X1

Y1

Z1

0
X8

Y8

Z8

X7

Y7

Z7

X6

Y6

Z6

X5

Y5

Z5

X12

Y12

Z12

X11

Y11

Z11

X10

Y10

Z10

X9

Y9

Z9

X16

Y16

Z16

X15

Y15

Z15

X14

Y14

Z14

X13

Y13

Z13

512

1

2

3

4

5

Ćĳ ĎĭĳĤī# ĶĤ ĳĠīĪ ĠġĮĴĳ ŕĒĮģĤıĭĨĹĤģŖ Code

7

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Loop vectorization applies the same operation at the same
time to several vector elements

Used by permission: María Garzarán, Saeed Maleki, William Gropp and David Padua

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Loop vectorization applies the same operation at the same
time to several vector elements

Used by permission: María Garzarán, Saeed Maleki, William Gropp and David Padua

Done 4
times faster!

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

SIMD => Single Instruction Multiple Data
VLP / Vectorization

Vectorization is the process of transforming a scalar operation acting on single data

elements at a time (Single Instruction Single Data ÝSISD), to an operation acting on
multiple data elements at once (Single Instruction Multiple Data ÝSIMD)

SIMD extensions Width
(bits)

DP (64-bit)
calculations

FP (32-bit)
calculations

Years
introduced

SSE2/SSE3/SSE4 128 2 4 ~2001 -2007

AVX/AVX2 256 4 8 ~2011/2015

AVX-512 512 8 18 ~2017

These are the Intel supported ISA extensions. Other platforms that support SIMD
have different extensions.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

SIMD => Single Instruction Multiple Data
VLP / Vectorization

double *a,*b,*c; é

for (i = 0; i < size; i++)

c[i] = a[i] + b[i];

a

b

a+b

+

çScalar mode
ïone instruction produces one result

ïe.g. vaddsd / vaddss (s => scalar)

+
a[i]

b[i]

a[i]+b[i]

çSIMD processing

ïone instruction can produce multiple results (SIMD)

ïe.g. vaddpd / vaddps (p => packed)

+

c[i+7] c[i+6] c[i+5] c[i+4]

b[i+7] b[i+6] b[i+5] b[i+4]

a[i+7] a[i+6] a[i+5] a[i+4]

AVX-512

c[i+3] c[i+2]

b[i+3] b[i+2]

a[i+3] a[i+2]

AVX/AVX2

c[i+1] c[i]

b[i+1] b[i]

a[i+1] a[i]

SSE

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

The combined effect of vectorization and threading

The Difference Is Growing With Each New Generation of Hardware

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Perfo rmance tests, such as SYSmarkand MobileMark ,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those fact ors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more information go to http://www.intel.com/performance Configurations at the end of this presentation.

http://www.intel.com/performance

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Outline
Å What is vectorization and why is it important

Å The different ways we can vectorize our code

Å The two main challenges in vectorization

Å Determining that vectorization is legal (the results will be the same)

Å Dependence analysis

Å Patterns that inhibit vectorization and how to deal with them

Å Optimizing performance

Å Memory issues (alignment, layout)

Å Telling the compiler what you know (about your code & about your platform)

Å Using compiler intrinsics

Å Using OpenMP simd pragmas

Å A case study

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
Intel Confidential 14

Code snippets used by permission: María Garzarán, Saeed Maleki, William Gropp and David Padua

How to write code to use the SIMD units

Hardest to use /
Most Control

Easiest to use /
Least Control

Assembly Language

Macros / Intrinsics

Vectorizing Compiler

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

How to write code to use the SIMD units?
1. Inline Assembly Language support

Ý Most control but much harder to learn, code, debug, maintain ,

2. SIMD intrinsics

Ý Access to low level details similar to assembler but same issues

3. Compiler based Vectorization
The fastest & easiest way; recommended for most cases

Ý Auto -Vectorization
ï No code-changes; compiler vectorizes automatically for specified processor(s)

Ý Semi-Auto -Vectorization*
ï Use simple pragmas to guide compiler for missed auto -vectorization opportunities
ï Still hints to compiler, NOT mandatory!

Ý Explicit Vector Programming
ï OpenMP SIMD-pragma, SIMD functions Ķá įĮĶĤıĥĴī ĢīĠĴĲĤĲ, ĤķįıĤĲĲ ĢĮģĤ ġĤħĠĵĨĮı ġĤĳĳĤı
ï Go after the performance opportunities that are missed by auto and semi -auto vectorization

Or, use a library that exploits the SIMD capabilities for you
e.g. the Intel® Math Kernel Library (Intel® MKL)

Hardest to use /
Most Control

Easiest to use /
Least Control

15

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

How to write code to use the SIMD units?
1. Inline Assembly Language support

Ý Most control but much harder to learn, code, debug, maintain ,

2. SIMD intrinsics

Ý Access to low level details similar to assembler but same issues

3. Compiler based Vectorization
The fastest & easiest way; recommended for most cases

Ý Auto -Vectorization
ï No code-changes; compiler vectorizes automatically for specified processor(s)

Ý Semi-Auto -Vectorization*
ï Use simple pragmas to guide compiler for missed auto -vectorization opportunities
ï Still hints to compiler, NOT mandatory!

Ý Explicit Vector Programming
ï OpenMP SIMD-pragma, SIMD functions Ķá įĮĶĤıĥĴī ĢīĠĴĲĤĲ, ĤķįıĤĲĲ ĢĮģĤ ġĤħĠĵĨĮı ġĤĳĳĤı
ï ČĮ ĠĥĳĤı ĳħĤ įĤıĥĮıĬĠĭĢĤ ĮįįĮıĳĴĭĨĳĨĤĲ ĳħĠĳœıĤ ĬĨĲĲĤģ ġĸ ĠĴĳĮ Ġĭģ ĲĤĬĨ-auto vectorization

Or, use a library that exploits the SIMD capabilities for you
e.g. the Intel® Math Kernel Library (Intel® MKL)

Hardest to use /
Most Control

Easiest to use /
Least Control

Will talk about
this briefly

Main focus

16

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Outline
Å What is vectorization and why is it important

Å The different ways we can vectorize our code

Å The two main challenges in vectorization

Å Determining that vectorization is legal (the results will be the same)

Å Dependence analysis

Å Obstacles to vectorization and how to deal with them

Å Optimizing performance

Å Memory issues (alignment, layout)

Å Telling the compiler what you know (about your code & about your platform)

Å Using compiler intrinsics

Å Using OpenMP simd pragmas

Å A case study

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Some slides are taken from:

Data dependences

ÅThe notion of dependence is the foundation of the process of vectorization.

ÅIt is used to build a calculus of program transformations that can be applied

manually by the programmer or automatically by a compiler.

19

Definition of Dependence

ÅA statement S is said to be data dependent on statement T if
ïT executes before S in the original sequential/scalar program

ïS and T access the same data item

ïAt least one of the accesses is a write.

20

Data Dependence

Flow dependence (True dependence)

Anti

dependence

Output dependence

S1: X = A+B

S2: C= X+A

S1: A = X + B

S2: X= C + D

S1: X = A+B

S2: X= C + D

S1

S2

S1

S2

S1

S2

21

Data Dependence

ÅDependences indicate an execution order that must be honored.

ÅExecuting statements in the order of the dependences guarantee correct

results.

ÅStatements not dependent on each other can be reordered, executed in parallel,

or coalesced into a vector operation.

22

Dependences in Loops (I)

Å Dependences in loops are easy to understand if the loops are unrolled. Now the dependences are between

statement ñexecutionsò.

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

23

S2

Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

i=0

24

S1: a[0] = b[0] + 1

S2: c[0] = a[0] + 2

S1: a[1] = b[1] + 1

S2: c[1] = a[1] + 2

S1: a[2] = b[2] + 1

S2: c[2] = a[2] + 2

i=1 i=2

Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

i=0

25

S1: a[0] = b[0] + 1

S2: c[0] = a[0] + 2

S1: a[1] = b[1] + 1

S2: c[1] = a[1] + 2

S1: a[2] = b[2] + 1

S2: c[2] = a[2] + 2

i=1 i=2

Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 é

é

26

Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 é

é

27

Loop independent dependence

Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 é

é

28

S1

S2

For the whole loop

Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 é

é

29

S1

S2

For the whole loop

0

Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 é

é

30

S1

S2

For the whole loop

0

distance

Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

31

For the dependences shown here, we assume

that arrays do not overlap in memory (no aliasing).

Compilers must know that there is no aliasing in order to

vectorize.

Dependences in Loops (II)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement ñexecutionsò

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i - 1] + 2;

}

S1

32

S2

Dependences in Loops (II)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement ñexecutionsò

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i - 1] + 2;

}

S1

S2

i=1

33

S1: a[1] = b[1] + 1

S2: c[1] = a[0] + 2

S1: a[2] = b[2] + 1

S2: c[2] = a[1] + 2

S1: a[3] = b[3] + 1

S2: c[3] = a[2] + 2

i=2 i=3

Dependences in Loops (II)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement ñexecutionsò

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i - 1] + 2;

}

S1

34

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

1 2 3 4 é

é

S2

Dependences in Loops (II)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement ñexecutionsò

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i - 1] + 2;

}

S1

35

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

1 2 3 4 é

é

Loop carried dependence

S2

Dependences in Loops (II)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement ñexecutionsò

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i - 1] + 2;

}

S1

36

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

1 2 3 4 é

é

S1

S2

For the whole loop

S2

Dependences in Loops (II)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between

statement ñexecutionsò

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i - 1] + 2;

}

S1

37

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

1 2 3 4 é

é

S1

S2

For the whole loop

1

S2

