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Outline

A What is vectorization and why is it important
A The different ways we can vectorize our code

A The two main challenges in vectorization
A Determining that vectorization is legal (the results will be the same)

A Dependence analysis
A Obstacles to vectorization and how to deal with them

A Optimizing performance
A Memory issues (alignment, layout)
A Telling the compiler what you know (about your code & about your platform)

A Using compiler intrinsics
A Using OpenMP simd pragmas
A A case study (after Spring Break)
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Hardware and software have evolved together

message driven layer A There are different styles / models for expressing

parallelism in applications

A These styles are often mixed in applications because
forkciomlaver they each best exploit a particular level of parallelism in
the hardware

A A For example MPI for message passing,OpenMP for
SIMD layer fork -join parallelism and SIMD intrinsics for SIMD layer.

CITT):C0TT

Arch D. Robison and Ralph E. Johnson. 2010.Three layer cake for shared -memory programming .
In Proceedings of the 2010 Workshop on Parallel Programming Patterns (ParaPLoP'10). ACM, New
York, NY, USA, , Article 5, 8 pages. DOI=http://dx.doi.org/10.1145/1953611.1953616
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Different levels of parallelism in hardware

A Instruction Level Parallelism (ILP) -- Needs no user intervention

Y Micro-architectural techniques
o Pipelined Execution »Super-scalar execution
» Out-of/In -order execution 61 GT Gh j 1 AgT GijT |71,
A Vector Level Parallelism (VLP)

Y Using Single Instruction, Multiple Data (SIMD) vector processinginstructions
I Intel has introduced extensions over time: SSE , AVX/AVX2, AVX-512
i SIMDregisters width:

Y Intel CPUs: 64-bit (MMX) C 128-bit (SSE)C 256-bit (AVX,COREAVX2)C 512-bit (COREAVX512)

A Thread-Level Parallelism (TLP)
Y Multi/many -core architectures
Y Hyper threading (HT)

A Node Level Parallelism (NLP) (Distributed/Cluster/Grid Computing)
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Loop vectorization applies the same operation at the same
time to several vector elements

ldv vr1, addr1

n [ ldr, addr for (i=0; i<n; i++) n/4 | Idv vr2, addr2
times| !d r2, addr2 c[i] = a[i] + b[i]: times | addv vr3, vr1, vr2
add r3, r1, r2 ’
, I, stv vr3, addr3
st r3, addr3
Y 32 bits 1zshu;/
, 128bits
[ 732 bits I 73
Y1 Y1 | Y2 | Y3 | Y4 |
—>| X1 — x| | xe|] x]] x|

)2 G A A A Al A J
Register File Scalar Unit ("j VLejcii?\g) <+ ) (+) (4)
- \ ni

Vector Register File

A 4

71 | Z1 | 72 Z3 | Z4 |
T =
/

" 32
bits

Used by permission: Maria Garzaran, Saeed Maleki, William Gropp and David Padua
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Loop vectorization applies the same operation at the same
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SIMD =>Single Instruction Multiple Data

VLP [/ Vectorization

Vectorization is the process of transforming a scalar operation acting on single data
elements at a time (Single Instruction Single Data Y SISD), to an operation acting on
multiple data elements at once (Single Instruction Multiple Data Y SIMD)

(bits) calculations | calculations introduced
SSE2/SSE3/SSE4 128 2 4 ~2001-2007
AVX/AVX2 256 4 8 ~2011/2015
AVX-512 512 8 18 ~2017

These are the Intel supported ISA extensions. Other platforms that support SIMD
have different extensions.




SIMD =>Single Instruction Multiple Data

VLP [/ Vectorization

¢ Scalar mode ¢ SIMD processing
i one instruction produces one result I one instruction can produce multiple results (SIMD)
i e.g.vaddsd / vaddss (s => scalar) i e.g.vaddpd / vaddps (p => packed)
double *a, *b, *c; &
“ for (i=0; i < size; i++) “ csE
cfil = afi] + biJ; — A ——
< AVX-512 >

a Maﬂ--rS]la[i—-r:SJ afi+a] lalied]| afi+2] afi+1] el
+ +

y 4

b Mb[]-}*ﬁ]lb[]-%] bli+4] B[i%8]| bi+2] bfi+1] PB[i
y 4

afi]+bli] S 0 B B i (oiia)l civ2) civu [
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The combined effect of vectorization and threading

<= VVectorized
& Threaded

200,000

187X
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Binomial Options Per Sec. 5P
(Higher is Better)

led

] — Three
R Vectorized
e — . — . y- Serial
Intel® Xeon™ 2007 2009 2010 2012 2013 2014 2016

Processor:  X5472 X5570 X5680 E5-2600  E5-2600 v2 E5-2600 v3 ES-2600 v4
codenamed: Harpertown Nehalem Westmere Sandy Bridge Ivy Bridge Haswell Broadwell

The Difference Is Growing With Each New Generation of Hardware

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Perfo  rmance tests, such asSYSmarkand MobileMark ,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those fact ors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more information go to  http://www.intel.com/performance Configurations at the end of this presentation.
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How to write code to use the SIMD units

Hardest to use /
Most Control

Easiest to use /
Least Control

..B8.5
movaps a(,%rdx,4), %xmmO
addps b(,%rdx,4), %xmm0
movaps %xmm0, c(,%rdx,4)
addq $4, %rdx
cmpq $Srdi, %rdx
j ..B8.5

void example(){
__ml28 rA, rB, rcC;
for (int i = 0; i <LEN; i+=4){

rA = _mm_load_ps(&a[i]);
re = _mm_load_ps(&b[i]);
rc = _mm_add_ps(rA,rB);

_mm_store_ps(&C[i], rc);

i3

4

for (i=0; i<LEN; i++)
cli] = a[i] + b[i]; J

Assembly Language

Macros / Intrinsics

Vectorizing Compiler

Code snippets used by permission: Maria Garzaran, Saeed Maleki, William Gropp and David Padua
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How to write code to use the SIMD units?

Hardest to use / 1

Most Control Inline Assembly Language support

Y Most control but much harder to learn, code, debug, maintain

2. SIMD intrinsics
Y Access to low level details similar to assembler but same issues

3. Compiler based Vectorization
The fastest & easiest way; recommended for most cases

Y Auto -Vectorization
T No code-changes; compiler vectorizes automatically for specified processor(s)

Y Semi-Auto -Vectorization*
i Usesimple pragmas to guide compiler for missed auto -vectorization opportunities

i Still hints to compiler, NOT mandatory!

Y Explicit Vector Programming A
i OpenMP SIMD-pragma, SIMD functonsKa | | KA1 hJ1 Gi GIJWHID, HAkj 1 AHIJWD
T Go after the performance opportunities that are missed by auto and semi -auto vectorization

Easiest to use / Or, use a library that exploits the SIMD capabilities for you
Least Control e.g. the Intel® Math Kernel Library (Intel® MKL)
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Some slides are taken from:

Program Optimization
Through Loop Vectorization

Maria Garzaran, Saeed Maleki
William Gropp and David Padua

Department of Computer Science
University of lllinois at Urbana-Champaign
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Data dependences

A The notion of dependence is the foundation of the peatessation

A It is used to build a calculus of program transformations that can be ap
manually by the programmer or automatically by a compiler.



Definition of Dependence

A A statement S is said to be data dependent on statement T if
i T executes before S in the original sequential/scalar program
I S and T access the same data item
I At least one of the accesses is a write.



Data Dependence

Flow dependence (True dependence)

S1: X =A+B

82: C: X+A @
Anti
dependence

S1:A=X+B P @

S2: X=C+D @
Output dependence

S1: X = A+B @

S2: X=C+D S



Data Dependence

A Dependences indicate an execution order that must be honored.

A Executing statements in the order of the dependences guarantee corre
results.

A Statements not dependent on each other can be reordered, executed i
or coalesced into a vector operation.



Dependences in Loops (1)

A Dependences in loops are easy to understand if the loops are unrolled. Now the dependences are |
statement fAexecutionso.

for (i=0; i<n; i++){
S1 ai] =b[i] +1;
S2 c[i] =ali] + 2;

}



Dependences in Loops (1)

A Dependences in loops are easy to understand if loops are unrolled. Now the dependences are betv
statement fAexecutionso

for (i=0; i<n; i++){
S1 ai] =b[i] +1;
S2 cli]j=ali] +2;

}
i=0 =1 =2
S1:a[0]=b[0] +1 Sl:a[l]=Db[1]+1 Sl:al2]=Db[2]+1
S2:c[0]=a[0] + 2 S2:c[l]=a[l]+2 S2:c[2]=a[2] + 2

I 24



Dependences in Loops (1)

A Dependences in loops are easy to understand if loops are unrolled. Now the dependences are betv
statement fAexecutionso

for (i=0; i<n; i++){
S1 ai] =b[i] +1;
S2 cli]j=ali] +2;

}

i=0 I=1 =2

S1l:alOpg b[0] +1 S1:a[lxz b[1]+1 Sl:al2hgb[2] +1
S2: c[O]}}a[O] + 2 S2: c[li}S a[l)+ 2 S2: c[2]}§a[2] + 2

1 .
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—>» Loop independent dependence
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o distance
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For the whole loop



Dependences in Loops (1)

A Dependences in loops are easy to understand if loops are unrolled. Now the dependences are betv
statement fAexecutionso

for (i=0; i<n; i++){
S1 ai] =b[i] +1;
S2 cli]j=ali] +2;

}

For the dependences shown here, we assume
that arrays do not overlap in memory (no aliasing).
Compilers must know that there is no aliasing in order to

vectorize.



Dependences in Loops (Il)

A Dependences in loops are easy to understand if loops are unrolled. Now the dependences are betv
statement fAexecutionso

for (i=1; i<n; i++){

S1 ai] =b[i] +1;

S2 clij=a] -1] + 2;
}



Dependences in Loops (Il)

A Dependences in loops are easy to understand if loops are unrolled. Now the dependences are betv

statement Afexecuti onso

for (i=1; i<n; i++){
S1 ai] =b[i] +1;

S2  cfi] = afi 1]+ 2;
}
i=1 i=2
S1¢ allp=bfll+ ] S1: a[2p=h[2] + 1

=3

S1:a[3]=Db[3]+1

S2:c[1] = a[0] + 2 SZTer2P= all] + 2

ST i a[2] + 2



Dependences in Loops (Il)
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for (i=1; i<n; i++){

S1 ai] =b[i] +1;

S2 clij=a] -1] + 2;
}

iteration:

instances of S1:
instances of S2: @ @ @ @



Dependences in Loops (Il)

A Dependences in loops are easy to understand if loops are unrolled. Now the dependences are betv
statement fAexecutionso

for (i=1; i<n; i++){

S1 ai] =b[i] +1;

S2 clij=a] -1] + 2;
}

iteration:

1 2 3 4 e
instances of S1: @ @ @
é
instances of S2: @ @ @ @
—)f Loop carried dependence

1 5




Dependences in Loops (Il)
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