
Michael Voss, Principal Engineer
Software and Services Group, Intel

With material used by permission 
from J.D. Patel, Intel
ĥıĮĬ ŕĕıĮĦıĠĬ ĔįĳĨĬĨĹĠĳĨĮĭ ęħıĮĴĦħ đĮĮį ěĤĢĳĮıĨĹĠĳĨĮĭŖ īĤĢĳĴıĤ ĲīĨģĤĲ ġĸ
María Garzarán, Saeed Maleki, William Gropp and David Padua, University of Illinois at Urbana -Champaign
ĥıĮĬ ŕđĮĶ-īĤĵĤī ĕĤıĥĮıĬĠĭĢĤ ĆĭĠīĸĲĨĲ#Ŗ īĤĢĳĴıĤ ĲīĨģĤĲ ġĸ ĕĠġīĮ ėĤġīĤ!



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Outline
Å What is vectorization and why is it important

Å The different ways we can vectorize our code

Å The two main challenges in vectorization

Å Determining that vectorization is legal (the results will be the same)

Å Dependence analysis 

Å Obstacles to vectorization and how to deal with them

Å Optimizing performance

Å Memory issues (alignment, layout)

Å Telling the compiler what you know (about your code & about your platform)

Å Using compiler intrinsics

Å Using OpenMP simd pragmas

Å A case study (after Spring Break)
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Outline
Å What is vectorization and why is it important

Å The different ways we can vectorize our code

Å The two main challenges in vectorization

Å Determining that vectorization is legal (the results will be the same)

Å Dependence analysis 

Å Obstacles to vectorization and how to deal with them

Å Optimizing performance

Å Memory issues (alignment, layout)

Å Telling the compiler what you know (about your code & about your platform)

Å Using compiler intrinsics

Å Using OpenMP simd pragmas

Å A case study
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Hardware and software have evolved together

Å There are different styles / models for expressing 
parallelism in applications

Å These styles are often mixed in applications because 
they each best exploit a particular level of parallelism in 
the hardware

Å For example MPI for message passing, OpenMP for  
fork -join parallelism and SIMD intrinsics for SIMD layer.

Arch D. Robison and Ralph E. Johnson. 2010. Three layer cake for shared -memory programming . 
In Proceedings of the 2010 Workshop on Parallel Programming Patterns (ParaPLoP'10). ACM, New 
York, NY, USA, , Article 5 , 8 pages. DOI=http://dx.doi.org/10.1145/1953611.1953616
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Different levels of parallelism in hardware

Å Instruction Level Parallelism (ILP) -- Needs no user intervention 

ÝMicro-architectural techniques
Pipelined Execution                                       Super-scalar execution
Out-of/In -order execution ćıĠĭĢħ įıĤģĨĢĳĨĮĭ,

Å Vector Level Parallelism (VLP)

ÝUsing Single Instruction, Multiple Data (SIMD) vector processing instructions 
ï Intel has introduced extensions over time: SSE , AVX/AVX2, AVX-512
ï SIMD registers width:

Ý Intel CPUs: 64-bit (MMX) Č 128-bit (SSE) Č 256-bit (AVX,CORE-AVX2) Č 512-bit (CORE-AVX512)

Å Thread-Level Parallelism (TLP)

ÝMulti/many -core architectures

ÝHyper threading (HT)

Å Node Level Parallelism (NLP) (Distributed/Cluster/Grid Computing)

5
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What Defined
Tools of the 
trade

Thread 
Scaling

Increase concurrent thread
use across coherent 
shared memory

OpenMP, TBB, Cilk Plus

Vector 
Scaling

Use many wide-vector 
(512-bit) instructions

Vector loops, vector 
functions, array 
notations

Cache 
Blocking

Use algorithms to reduce 
memory bandwidth 
pressure and improve 
cache hit rate

Blocking algorithms

Fabric 
Scaling

Tune workload to 
increased node count

MPI

Data 
Layout

Optimize data layout for
unconstrained 
performance

AoSĄSoA, directives for 
alignment
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Ćĳ ĎĭĳĤī# ĶĤ ĳĠīĪ ĠġĮĴĳ ŕĒĮģĤıĭĨĹĤģŖ Code
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Loop vectorization applies the same operation at the same 
time to several vector elements

Used by permission: María Garzarán, Saeed Maleki, William Gropp and David Padua
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Loop vectorization applies the same operation at the same 
time to several vector elements

Used by permission: María Garzarán, Saeed Maleki, William Gropp and David Padua

Done 4 
times faster!
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SIMD => Single Instruction Multiple Data
VLP  / Vectorization

Vectorization is the process of transforming a scalar operation acting on single data 

elements at a time (Single Instruction Single Data ÝSISD), to an operation acting on 
multiple data elements at once (Single Instruction Multiple Data ÝSIMD)

SIMD extensions Width 
(bits)

DP (64-bit) 
calculations

FP (32-bit) 
calculations

Years 
introduced

SSE2/SSE3/SSE4 128 2 4 ~2001 -2007

AVX/AVX2 256 4 8 ~2011/2015

AVX-512 512 8 18 ~2017

These are the Intel supported ISA extensions.  Other platforms that support SIMD 
have different extensions.
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SIMD => Single Instruction Multiple Data
VLP  / Vectorization

double *a,*b,*c; é

for (i = 0; i < size; i++)

c[i] = a[i] + b[i];

a

b

a+b

+

çScalar mode
ïone instruction produces one result

ïe.g. vaddsd / vaddss (s => scalar)

+
a[i]

b[i]

a[i]+b[i]

çSIMD processing

ïone instruction can produce multiple results (SIMD)

ïe.g. vaddpd / vaddps (p => packed)

+

c[i+7] c[i+6] c[i+5] c[i+4]

b[i+7] b[i+6] b[i+5] b[i+4]

a[i+7] a[i+6] a[i+5] a[i+4]

AVX-512

c[i+3] c[i+2]

b[i+3] b[i+2]

a[i+3] a[i+2]

AVX/AVX2

c[i+1] c[i]

b[i+1] b[i]

a[i+1] a[i]

SSE
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The combined effect of vectorization and threading

The Difference Is Growing With Each New Generation of Hardware

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Perfo rmance tests, such as SYSmarkand MobileMark , 
are measured using specific computer systems, components, software, operations and functions. Any change to any of those fact ors may cause the results to vary. You should 
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with 
other products. For more information go to http://www.intel.com/performance Configurations at the end of this presentation.

http://www.intel.com/performance
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Outline
Å What is vectorization and why is it important

Å The different ways we can vectorize our code

Å The two main challenges in vectorization

Å Determining that vectorization is legal (the results will be the same)

Å Dependence analysis 

Å Patterns that inhibit vectorization and how to deal with them

Å Optimizing performance

Å Memory issues (alignment, layout)

Å Telling the compiler what you know (about your code & about your platform)

Å Using compiler intrinsics

Å Using OpenMP simd pragmas

Å A case study
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Code snippets used by permission: María Garzarán, Saeed Maleki, William Gropp and David Padua

How to write code to use the SIMD units

Hardest to use /
Most Control

Easiest to use /
Least Control

Assembly Language

Macros / Intrinsics

Vectorizing Compiler
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How to write code to use the SIMD units?
1. Inline Assembly Language support

Ý Most control but much harder to learn, code, debug, maintain ,

2. SIMD intrinsics

Ý Access to low level details similar to assembler but same issues

3. Compiler based Vectorization
The fastest & easiest way; recommended for most cases

Ý Auto -Vectorization
ï No code-changes; compiler vectorizes automatically for specified processor(s)

Ý Semi-Auto -Vectorization*
ï Use simple pragmas to guide compiler for missed auto -vectorization opportunities
ï Still hints to compiler, NOT mandatory!

Ý Explicit Vector Programming
ï OpenMP SIMD-pragma, SIMD functions Ķá įĮĶĤıĥĴī ĢīĠĴĲĤĲ, ĤķįıĤĲĲ ĢĮģĤ ġĤħĠĵĨĮı ġĤĳĳĤı
ï Go after the performance opportunities that are missed by auto and semi -auto vectorization

Or, use a library that exploits the SIMD capabilities for you 
e.g. the Intel® Math Kernel Library (Intel® MKL)

Hardest to use /
Most Control

Easiest to use /
Least Control

15



Copyright ©  2018, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

How to write code to use the SIMD units?
1. Inline Assembly Language support

Ý Most control but much harder to learn, code, debug, maintain ,

2. SIMD intrinsics

Ý Access to low level details similar to assembler but same issues

3. Compiler based Vectorization
The fastest & easiest way; recommended for most cases

Ý Auto -Vectorization
ï No code-changes; compiler vectorizes automatically for specified processor(s)

Ý Semi-Auto -Vectorization*
ï Use simple pragmas to guide compiler for missed auto -vectorization opportunities
ï Still hints to compiler, NOT mandatory!

Ý Explicit Vector Programming
ï OpenMP SIMD-pragma, SIMD functions Ķá įĮĶĤıĥĴī ĢīĠĴĲĤĲ, ĤķįıĤĲĲ ĢĮģĤ ġĤħĠĵĨĮı ġĤĳĳĤı
ï ČĮ ĠĥĳĤı ĳħĤ įĤıĥĮıĬĠĭĢĤ ĮįįĮıĳĴĭĨĳĨĤĲ ĳħĠĳœıĤ ĬĨĲĲĤģ ġĸ ĠĴĳĮ Ġĭģ ĲĤĬĨ-auto vectorization

Or, use a library that exploits the SIMD capabilities for you 
e.g. the Intel® Math Kernel Library (Intel® MKL)

Hardest to use /
Most Control

Easiest to use /
Least Control

Will talk about 
this briefly

Main focus

16
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Outline
Å What is vectorization and why is it important

Å The different ways we can vectorize our code

Å The two main challenges in vectorization

Å Determining that vectorization is legal (the results will be the same)

Å Dependence analysis 

Å Obstacles to vectorization and how to deal with them

Å Optimizing performance

Å Memory issues (alignment, layout)

Å Telling the compiler what you know (about your code & about your platform)

Å Using compiler intrinsics

Å Using OpenMP simd pragmas

Å A case study
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Some slides are taken from:



Data dependences

ÅThe notion of dependence is the foundation of the process of vectorization.

ÅIt is used to build a calculus of program transformations that can be applied 

manually by the programmer or automatically by a compiler.

19



Definition of Dependence

ÅA statement S is said to be data dependent on statement T if
ïT executes before S in the original sequential/scalar program

ïS and T access the same data item

ïAt least one of the accesses is a write. 

20



Data Dependence

Flow dependence (True dependence)

Anti 

dependence

Output dependence

S1: X = A+B

S2: C= X+A

S1: A = X + B

S2: X= C + D

S1: X = A+B

S2: X= C + D

S1

S2

S1

S2

S1

S2

21



Data Dependence

ÅDependences indicate an execution order that must be honored.

ÅExecuting statements in the order of the dependences guarantee correct 

results.

ÅStatements not dependent on each other can be reordered, executed in parallel, 

or coalesced into a vector operation.

22



Dependences in Loops (I)

Å Dependences in loops are easy to understand if the loops are unrolled. Now the dependences are between 

statement ñexecutionsò.

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

23

S2



Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between 

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

i=0

24

S1: a[0] = b[0] + 1

S2: c[0] = a[0] + 2

S1: a[1] = b[1] + 1

S2: c[1] = a[1] + 2

S1: a[2] = b[2] + 1

S2: c[2] = a[2] + 2

i=1 i=2



Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between 

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

i=0

25

S1: a[0] = b[0] + 1

S2: c[0] = a[0] + 2

S1: a[1] = b[1] + 1

S2: c[1] = a[1] + 2

S1: a[2] = b[2] + 1

S2: c[2] = a[2] + 2

i=1 i=2



Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between 

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 é

é
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Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between 

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 é

é

27

Loop independent dependence



Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between 

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 é

é
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S1

S2

For the whole loop



Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between 

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 é

é
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S1

S2

For the whole loop

0



Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between 

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

0 1 2 3 é

é
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S1

S2

For the whole loop

0

distance



Dependences in Loops (I)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between 

statement ñexecutionsò

for (i=0; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i] + 2;

}

S1

S2

31

For the dependences shown here, we assume 

that arrays do not overlap in memory (no aliasing). 

Compilers must know that there is no aliasing in order to 

vectorize. 



Dependences in Loops (II)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between 

statement ñexecutionsò

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i - 1] + 2;

}

S1

32

S2



Dependences in Loops (II)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between 

statement ñexecutionsò

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i - 1] + 2;

}

S1

S2

i=1

33

S1: a[1] = b[1] + 1

S2: c[1] = a[0] + 2

S1: a[2] = b[2] + 1

S2: c[2] = a[1] + 2

S1: a[3] = b[3] + 1

S2: c[3] = a[2] + 2

i=2 i=3



Dependences in Loops (II)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between 

statement ñexecutionsò

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i - 1] + 2;

}

S1

34

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

1 2 3 4 é

é

S2



Dependences in Loops (II)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between 

statement ñexecutionsò

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i - 1] + 2;

}

S1

35

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

1 2 3 4 é

é

Loop carried dependence

S2



Dependences in Loops (II)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between 

statement ñexecutionsò

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i - 1] + 2;

}

S1

36

S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

1 2 3 4 é

é

S1

S2

For the whole loop

S2



Dependences in Loops (II)

Å Dependences in loops are easy to understand if loops are unrolled. Now the dependences are between 

statement ñexecutionsò

for (i=1; i<n; i++){
a[i] = b[i] + 1;
c[i] = a[i - 1] + 2;

}

S1
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S1

S2

iteration:

instances of S1:

instances of S2:

S1

S2

S1

S2

S1

S2

1 2 3 4 é

é

S1

S2

For the whole loop

1

S2


