
An Experimental Comparison of
Cache-oblivious and Cache-aware Programs

DRAFT: DO NOT DISTRIBUTE

Kamen Yotov
IBM T. J. Watson Research Center

kyotov@us.ibm.com

Tom Roeder, Keshav Pingali
Cornell University

{tmroeder,pingali}@cs.cornell.edu

John Gunnels,Fred Gustavson
IBM T. J. Watson Research Center
{gunnels,fg2}@us.ibm.com

Abstract
Cache-oblivious algorithms have been advanced as a way of circum-
venting some of the difficulties of optimizing applications to take ad-
vantage of the memory hierarchy of modern microprocessors. These
algorithms are based on the divide-and-conquer paradigm – each divi-
sion step creates sub-problems of smaller size, and when the working
set of a sub-problem fits in some level of the memory hierarchy, the
computations in that sub-problem can be executed without suffering
capacity misses at that level. In this way, divide-and-conquer algo-
rithms adapt automatically to all levels of the memory hierarchy; in
fact, for problems like matrix multiplication, matrix transpose, and
FFT, these recursive algorithms are optimal to within constant factors
for some theoretical models of the memory hierarchy.

An important question is the following: how well do carefully
tuned cache-oblivious programs perform compared to carefully tuned
cache-conscious programs for the same problem? Is there a price
for obliviousness, and if so, how much performance do we lose?
Somewhat surprisingly, there are few studies in the literature that have
addressed this question.

This paper reports the results of such a study in the domain of
dense linear algebra. Our main finding is that in this domain, even
highly optimized cache-oblivious programs perform significantly
worse than corresponding cache-conscious programs. We provide in-
sights into why this is so, and suggest research directions for making
cache-oblivious algorithms more competitive with cache-conscious
algorithms.

1. Introduction
The contributions of this paper are the following.

• We present detailed experiments on a number of high-performance
platforms that show that even highly tuned recursive cache-
oblivious programs may perform significantly worse than highly
tuned cache-conscious programs for the same problem.

• We argue that the performance problem arises in part because
the schedule of operations in recursive codes may be sub-optimal
for exploiting processor pipelines. We show that the schedule of
operations in iterative codes can make better use of processor
pipelines.

• We argue that the rest of the performance problem arises from
memory latency. Using analytical models, we point out that cache
blocking serves two purposes: it can reduce the effective latency
of memory requests and it can reduce the bandwidth required
from memory. We argue quantitatively that I/O optimality [28]
addresses bandwidth concerns but not memory latency necessar-
ily; therefore, recursive cache-oblivious codes may be I/O opti-
mal but their performance may still be hurt by memory latency.
In highly tuned iterative cache-conscious codes, the effective la-
tency of memory requests is reduced by pre-fetching. We believe

that this is needed in cache-oblivious programs as well; however,
pre-fetching appears to be more complicated for cache-oblivious
programs because of their complex control structure.

1.1 Memory Hierarchy Problem

The performance of many programs on modern computers is limited
by the performance of the memory system in two ways. First, the
latency of memory accesses can be many hundreds of cycles, so
the processor may be stalled most of the time, waiting for loads to
complete. Second, the bandwidth from memory is usually far less than
the rate at which the processor can consume data.

Both problems can be addressed by using caching – if most mem-
ory requests are satisfied by some cache level, the effective memory
latency as well as the bandwidth required from memory are reduced.
As is well known, the effectiveness of caching for a problem depends
both on the algorithm used to solve the problem, and on the program
used to express that algorithm (simply put, an algorithm defines only
the dataflow of the computation, while a program for a given algo-
rithm also specifies the schedule of operations and may perform stor-
age allocation consistent with that schedule). One useful quantity in
thinking about these issues isalgorithmic data reuse, which is an ab-
stract measure of the number of accesses made to a typical mem-
ory location by the algorithm. For example, the standard algorithm
for multiplying matrices of sizen × n performsO(n3) operations
on O(n2) data, so it has excellent algorithmic data reuse since each
data element is accessedO(n) times; in contrast, matrix transpose per-
forms O(n2) operations onO(n2) data, so it has poor algorithmic
data reuse. When an algorithm has substantial algorithmic data reuse,
the challenge is to write the program so that the memory accesses
made by that program exhibit both spatial and temporal locality. In
contrast, programs that encode algorithms with poor algorithmic data
reuse are concerned largely with exploiting spatial locality.

1.2 Programming styles

Two programming styles are common in the domain of dense linear
algebra:iterativeandrecursive.

In the iterative programming style, computations are implemented
as nested loops. It is well known that naı̈ve programs written in this
style exhibit poor temporal locality and do not exploit caches effec-
tively. Temporal locality can be improved by tiling the loops either
manually or with restructuring compilers [30, 37]. The resulting pro-
gram can be viewed as a computation over block matrices; tile sizes
must be chosen so that the working set of each block computation
fits in cache [12, 33]. If there are multiple cache levels, it may be
necessary to tile for each one. Tiling for registers requires loop un-
rolling [2]. Since tile sizes are a function of cache capacity, and loop
unroll factors depend on the number of available registers and on in-
struction cache capacity, this style of coding is calledcache-conscious
programming because the code either explicitly or implicitly embod-

ies parameters whose optimal values depend on the architecture1.
Simple architectural models or empirical search can be used to deter-
mine these optimal values [38, 35, 13]. Cache-conscious programs for
dense linear algebra problems have been investigated extensively by
the numerical linear algebra community and the restructuring com-
piler community. The Basic Linear Algebra Subroutine (BLAS [1])
libraries produced by most vendors are cache-conscious iterative pro-
grams, as are the matrix factorization routines in libraries like LA-
PACK [3].

In the recursive programming style, computations are imple-
mented with divide-and-conquer. For example, to multiply two ma-
tricesA andB, we can divide one of the matrices (sayA) into two
sub-matricesA1 andA2, and multiplyA1 andA2 by B; the base case
of this recursion is reached when bothA andB have a single element.
Programs written in this divide-and-conquer style performapproxi-
mateblocking in the following sense. Each division step generates
sub-problems of smaller size, and when the working set of some sub-
problem fits in a given level of cache, the computation can take place
without suffering capacity misses at that level. The resulting blocking
is only approximate since the size of the working set may be smaller
than the capacity of the cache.

An important theoretical result about divide-and-conquer algo-
rithms was obtained by Hong and Kung [28] who also introduced
the I/O modelto study the memory hierarchy performance of algo-
rithms. This model considers a two level memory hierarchy consisting
of a cache and main memory. The processor can compute only with
values in the cache, so it is necessary to move data between cache
and memory during program execution. TheI/O complexityof a pro-
gram is an asymptotic measure of the total volume of data movement
when that program is executed. Hong and Kung showed that divide-
and-conquer programs for matrix multiplication and FFT are optimal
under this measure. This result was extended to matrix transposition
by Frigo et al., who also coined the adjectivecache-obliviousto de-
scribe these programs because cache parameters are not reflected in
the code [20].

A natural question is the following:in domains like dense linear
algebra in which it is important to exploit caches, how well do highly-
optimized recursive programs perform compared to highly-optimized
iterative cache-conscious programs? Is there a performance penalty,
in other words, that cache-oblivious recursive programs pay for the
ability to adapt automatically to the memory hierarchy? Somewhat
surprisingly, we have not found any definitive studies of this ques-
tion in the literature; the few comparative studies that we have found
have compared the performance of optimized recursive programs with
that ofunoptimizediterative programs. For example, Figure 1 shows
the results of one study that found that a recursive implementation
of matrix multiplication on an Itanium-2 outperforms an iterative im-
plementation [29]. However, careful examination of this graph shows
that the cache-oblivious implementation runs at about 30 Mflops; in
comparison, the cache-conscious iterative native BLAS on this ma-
chine runs at almost 6 GFlops, as we discuss later in this paper.

1.3 Organization of this paper

In this paper, we describe the results of a study of the relative perfor-
mance of highly-optimized recursive and iterative programs for ma-
trix multiplication and matrix transpose on four modern architectures:
IBM Power 5, Sun UltraSPARC IIIi, Intel Itanium 2, and Intel Pen-
tium 4 Xeon. The Power 5 is an out-of-order RISC processor, the Ul-
traSPARC is an in-order RISC processor, the Itanium is a long instruc-
tion word processor, and the Pentium is a CISC processor. Between
them, these machines cover the spectrum of current high-performance
processors. Key parameters of these machines are shown in Table 1.
The programs we evaluate are generated by a domain-specific com-

1 Strictly speaking, these codes are both processor-conscious and cache-
conscious, but we will use standard terminology and just call them cache-
conscious.

Figure 1. An empirical study of recursive and iterative matrix multi-
plication codes [29]

Pentium 4 Xeon Itanium 2 Power 5 UltraSPARC IIIi

Vendor CC Intel C 9.0 Intel C 9.0 IBM XLC 7.0 Sun C 5.5
GCC gcc 3.4.3 gcc 3.4.3 gcc 3.4.3 gcc 3.2.2
OS Version Linux 2.6.9 Linux 2.6.9 IBM AIX 5.3 Sun Solaris 9
PAPI Version 3.0.8.1 3.0.8.1 3.0.8.1 3.0.8.1
BLAS Version Intel MKL 8.0 Intel MKL 8.0 ESSL 4.2.0.2 Sun Studio 8

CPU Frequency 3.6 GHz 1.5 GHz 1.65 GHz 1.06 GHz
CPU Peak Rate 7.2 GFlops 6.0 GFlops 6.6 GFlops 2.12 GFlops
Has FMA No Yes Yes No
Has RegRelAddr Yes No Yes Yes
of Registers 8 128 32 32
L1 Size 16 kB 16 kB 32 kB 64 kB
L1 Line Size 64 B 64 B 128 B 32 B
L2 Size 2 MB 256 kB 1.875 MB 1 MB
L2 Line Size 128 B 128 B 128 B 32 B
L3 Size n/a 3 MB 36 MB n/a
L3 Line Size n/a 128 B 512 B n/a
I-Cache Size 12 k micro-ops 16 kB 64 kB 32 kB

Table 1. Software and Hardware parameters

piler we are building called BRILA (Block Recursive Implementation
of Linear Algebra). The compiler takes recursive descriptions of lin-
ear algebra problems, and produces optimized iterative or recursive
programs as output. It also implements key optimizations like scalar
replacement [10], register allocation and operation scheduling at the
level of the C program; these optimizations can be turned on or off
as desired. Wherever appropriate, we compared the code produced by
BRILA with code in libraries like ATLAS [35].

In Section 2, we motivate approximate blocking by giving a quan-
titative analysis of how blocking can reduce the required bandwidth
from memory. This analysis provides a novel way of thinking about
the I/O optimality of recursive algorithms for problems like matrix
multiplication.

In Section 3, we discuss the performance of naı̈ve iterative and
recursive programs. These programs areprocessor-obliviousbecause
they do not exploit registers and pipelines in the processor; they are
also cache-oblivious. Therefore, neither program performs well on
any architecture.

In Sections 4 and 5, we evaluate approaches for making the re-
cursive and iterative programs processor-aware. The goal is to enable
these programs to exploit registers and processor pipelines. This is
accomplished by generating long basic blocks of instructions, using
unrolling of loops and of recursive calls respectively, which are called
from the main computations. These long basic blocks are calledmi-
crokernelsin this paper. Microkernels also serve to reduce loop and
recursive call overhead. We discuss a number of algorithms for reg-
ister allocation and scheduling of the microkernels, which we have
implemented in the BRILA compiler. The main finding in this sec-
tion is that we were unable to produce a microkernel for the recursive
code that performed well, even after considerable effort. In contrast,
microkernels from the iterative code obtain near peak performance.
Therefore, in the rest of our studies, we only used microkernels ob-
tained from the iterative code.

In Section 6, we study the impact of adding cache-awareness to the
processor-aware code obtained in the previous section. We study the
performance of programs obtained by wrapping recursive and cache-
blocked iterative outer control structures around the iterative micro-
kernels from the previous section. We also measure the performance
obtained by using the native BLAS on these machines. The main find-
ing in this section is that prefetching is important to obtain better per-
formance. While prefetching is easy if the outer control structure is
iterative, it is not clear how to accomplish this if the outer control
structure is recursive.

Section 7 presents some preliminary findings about Matrix Trans-
position. Section 8 discusses related work, and Section 9 concludes
with ideas for improving the performance of cache-oblivious algo-
rithms.

2. Approximate Blocking
In this section, we give a quantitative estimate of the impact of block-
ing on effective memory latency as well as on the bandwidth required
from memory. This analysis provides a novel way of looking at ap-
proximate blocking in cache-oblivious programs. As a running exam-
ple, we use Matrix-Matrix Multiply (MMM) on the Intel Itanium 2 ar-
chitecture. The Itanium 2 can execute 2 FMAs (fused multiply-adds)
per cycle, so to multiply twoN × N matrices, this platform would
ideally spendN3

2
cycles. However, any naı̈ve version of matrix mul-

tiplication will take much longer because the processor spends most
of its time waiting for memory loads to complete.

To examine the impact of blocking on the overhead from memory
latency and bandwidth, we first consider a simple, two-level memory
model consisting of one cache level and memory. The cache is of
capacityC, with line sizeLC , and has access latencylC . The access
latency of main memory islM . We consider blocked MMM, in which
each block computation multiplies matrices of sizeNB × NB . We
assume that there is no data reuse between block computations.

2.1 Upper Bound onNB

We derive an upper bound onNB by requiring the size of the working
set of the block computation to be less than the capacity of the cache,
C. The working set depends on the schedule of operations, but it
is bounded above by the size of the sub-problem. Therefore, the
following inequality is a conservative approximation, although better
approximations exist [38].

3N2
B ≤ C (1)

2.2 Effect of Blocking on Latency

The total number of memory accesses each block computation makes
is 4N3

B . Each block computation brings3N2
B data into the cache,

which results in
3N2

B
LC

cold misses. If the block size is chosen so that
the working set fits in the cache and there are no conflict misses,
the cache miss ratio of the complete block computation is3

4NB×LC
.

Assuming that memory accesses are not overlapped, the expected
memory access latency is as follows.

l =
(
1− 3

4NB × LC

)
× lC +

3

4NB × LC
× lM (2)

Equation 2 shows that the expected latency decreases with increas-
ingNB , so latency is minimized by choosing the largestNB for which
the working set fits in the cache. In practice, the expected memory
latency computed from Equation 2 is somewhat pessimistic because
loads can be overlapped with each other or with actual computations,
reducing the effective values oflC and lM . These optimizations are
extremely important in the generation of the micro-kernels, as we de-
scribe in Section 4. Furthermore, hardware and software prefetching
can also be used to reduce effective latency, as discussed in Section 6.

FPU Registers L2 L3 MemoryL1

4*

2

2*

4

4

6
0.5

Figure 2. Bandwidth of the Itanium 2 memory hierarchy, measured
in doubles/cycle.∗Note: (1) Floating-point values are not cached at
L1 in Itanium 2, they are transferred directly to / from L2 cache; (2)
L2 cache can transfer 4 values to floating point registers and 2 values
from floating point registers per cycle, but there is a maximum total
of 4 memory operations.

2.3 Effect of Blocking on Bandwidth

In the restructuring compiler community, blocking is seen as a tech-
nique for reducing the effective latency of memory accesses. To un-
derstand the virtues of the cache-oblivious approach, it is better to
view blocking as a technique for reducing the bandwidth required
from memory.

Each FMA operation in MMM reads three values and writes one
value. The required bandwidth to perform these reads and writes is
4N3÷ N3

2
= 8 doubles/cycle. Figure 2 shows the bandwidth between

different levels of the memory hierarchy of the Itanium (floating-point
values are not cached in the L1 cache on the Itanium). It can be seen
that the register-file can sustain the required bandwidth but memory
cannot.

To reduce the bandwidth required from memory, we can block
the computation for the register-file. Since each block computation
requires4N2

B data to be moved, our simple memory model implies
that the total data movement is

(
N

NB

)3 × 4N2
B = 4N3

NB
. The ideal

execution time of the computation is stillN
3

2
, so the bandwidth

required from memory is4N3

NB
÷ N3

2
= 8

NB
doubles/cycle. Therefore,

cache blocking by a factor ofNB reduces the bandwidth required
from memory by the same factor.

We can now write the following lower bound on the value ofNB ,
whereB(L1, M) is the bandwidth between cache and memory.

8

NB
≤ B(L1, M) (3)

Inequalities 1 and 3 imply the following inequality forNB :

8

B(L1, M)
≤ NB ≤

√
C

3
(4)

This argument generalizes to a multi-level memory hierarchy. If
B(Li, Li+1) is the bandwidth between levelsi and i + 1 in the
memory hierarchy,NB (i) is the block size for theith cache level, and
Ci is the capacity of this cache, we obtain the following inequality:

8

B(Li, Li+1)
≤ NB (i) ≤

√
Ci

3
(5)

In principle, there may be no values ofNB (i) that satisfy the
inequality. This can happen if the capacity of the cache as well as
the bandwidth to the next level of the memory hierarchy are small.
According to this model, the bandwidth problem for such problems
cannot be solved by blocking2.

For the Itanium 2, we have seen that register blocking is needed
to prevent the bandwidth between registers and L2 cache from be-
coming the bottleneck. IfNB (R) is the size of the register block,
we see that8

4
≤ NB (R) ≤

√
126
3

. Therefore,NB (R) values be-
tween 2 and 6 will suffice. If we useNB (R) in this range, the band-
width required from L2 to registers is between1.33 and4 doubles per

2 In practice, there may be other bottlenecks such as the inability of the
processor to sustain a sufficient number of outstanding memory requests.

A
00

A
01

A
11

A
10

C
00

C
01

C
11

C
10

B
00

B
01

B
11

B
10

A
00

A
01

A
11

A
10

C
00

C
01

C
11

C
10

B
00

B
01

B
11

B
10

A
0

A
1

C
0

C
1

B

A
0

A
1

C
0

C
1

B

C00 ← A00 × B00 + A01 × B10
C01 ← A01 × B11 + A11 × B01
C11 ← A11 × B01 + A10 × B01
C10 ← A10 × B00 + A11 × B10

(a) All Dimensions

C0 ← A0 × B

C1 ← A1 × B

(b) Largest Dimension

Figure 3. Two divide-and-conquer strategies for MMM

cycle. Note that this much bandwidth is also available between the
L2 and L3 caches. Therefore, it is not necessary to block for the L2
cache to ameliorate bandwidth problems. Unfortunately, this band-
width exceeds the bandwidth between L3 cache and memory. There-
fore, we need to block for the L3 cache. The appropriate inequality is
8

0.5
≤ NB (L3) ≤

√
4MB

3
. Therefore,NB (L3) values between16

and418 will suffice.
Thus, for the Itanium 2, there is a range of block sizes that can

be used. Since the upper bound in each range is more than twice
the lower bound, the approximate blocking of a divide-and-conquer
implementation of a cache-oblivious program will generate sub-
problems in these ranges, and therefore bandwidth is not a constraint.
Of course, latency of memory accesses may still be a problem. In par-
ticular, since blocking by cache-oblivious programs is only approxi-
mate, the analysis of Section 2.2 suggests that reducing the impact of
memory latency is more critical for cache-oblivious codes than it is
for cache-conscious codes. We will revisit this point in more detail in
Section 6.

3. Näıve codes
In this section, we discuss naı̈ve recursive and iterative programs that
are oblivious to both the processor and the memory hierarchy. There
are two high-level design decisions to be made when writing either
program: what control structure and what data structure to use.

Figure 3 shows two recursive control structures for implementing
matrix multiplication. A well-known approach is to bisect bothA
and B along rows and columns, generating eight independent sub-
problems as shown in Figure 3(a). The recursion terminates when the
matrices consist of single elements. For obvious reasons, we refer to
this strategy as theall-dimensions(AD) strategy.

Bilardi et al. [9] have pointed out that it is possible to optimize
memory hierarchy performance by using a Gray code order to sched-
ule the eight sub-problems so that there is always one sub-matrix in
common between successive sub-problems. One such order can be
found in Figure 3(a) if the sub-problems are executed in left-to-right,
top-to-bottom order. For example, the first two sub-problems haveC00

in common, and the second and third haveA01 in common.
An alternative control strategy is thelargest-dimension(LD) strat-

egy proposed by Frigo et al. [20], in which only the largest of the three
dimensions is divided, as shown in Figure 3(b). Both the AD and LD
strategies lead to programs that are optimal in the Hong and Kung I/O
complexity model [28].

As a baseline for performance comparisons, we used the simple
iterative version of matrix multiplication. The three loops in this pro-
gram are fully permutable, so all six orders of the loop nest compute
the same values. In our experiments, we used thejki order. For the ex-

 0

 0.5

 1

 1.5

 2

 2.5

 1500 2000 2500 3000 3500 4000 4500 5000

M
is

se
s

pe
r

F
M

A

Matrix Size

Itanium 2 Misses per FMA

R S
I S

Figure 4. Data cache misses per FMA instruction in MMM

periments in this section, we chose row-major array order. Note that
thejki loop order is the worst loop order for exploiting spatial locality
if arrays stored in row-major order (as discussed in [14]). We chose
this order to eliminate any advantage the iterative code might obtain
from exploiting spatial locality.

As an aside, we mention that we investigated Morton-Z storage
order [27] as an alternative to row-major order. Accessing array ele-
ments is substantially more complex for Morton-Z order, especially
for matrices whose dimensions are not a power of two. Even for ma-
trices whose dimensions are a power of two, we rarely found any
improvement in performance. This finding is consistent with previ-
ous studies that have concluded that space-filling storage orders like
Morton-Z order pay off only when the computation is out of core [8].

Figure 10 shows the results of performing complete MMMs on
the machines in our study (for lack of space, we have consolidated all
the performance graphs for each machine into a single graph). Since
we explore a large number of implementations in this paper, we use
a tuple to distinguish them, the first part of which describes the outer
control structure.

• R – using theRecursive AD control structure;
• I – using a triply-nestedIterative control structure;

The second part of the tuple describes the microkernel, and it will
be explained as the microkernels are developed in Sections 4 and 5.
However, when the outer control structure invokes a single statement
to perform the computations, we use the symbolS (for Statement). For
completeness, we include performance lines for MMM performed by
the Vendor BLAS using standard row-major storage format for the
arrays.

With this notation, note that the lines labelledR S in Figure 10
shows the performance of the AD cache-oblivious program, while the
lines labelledI S shows the performance of the nested loop program.
Both programs perform very poorly, obtaining roughly 1% of peak
on all the machines. As a point of comparison, vendor BLAS on the
Itanium 2 achieves close to peak performance. The performance of
LD was close to that of AD on all machines, so we do not discuss it
further.

3.1 Discussion

To get some insight into why these programs perform so poorly,
we studied the assembly listings and the values of various hardware
counters on the four machines. This study revealed three important
reasons for the poor performance.

• As is well-known, the major problem with the recursive program
is the overhead of recursion, since each division step in the divide-
and-conquer process involves a procedure call. Our measurements
on the Itanium showed that this overhead is roughly 100 cycles per
FMA, while on the UltraSPARC, it is roughly 360 cycles. This
integer overhead is much less for the iterative program.

• A second reason for poor performance is that the programs make
poor use of registers. Compilers do not track register values across

procedure calls, so register blocking for the recursive code is
difficult. In principle, compilers can perform register blocking
for the iterative program, but none of the compilers were able to
accomplish this.

• Finally, a remarkable fact emerges when we look at the number
of L2 cache misses on the Itanium. Figure 4 shows the number of
cache misses per FMA for the iterative and recursive programs.
The iterative program suffers roughly two misses per FMA. This
makes intuitive sense because for thejki loop order, the accesses
to Aik andCij miss in the cache since theA andC arrays are stored
in row-major order but are accessed in column-major order. The
elementBkj is invariant in the innermost loop, so it does not cause
cache misses. Therefore, each iteration of the innermost loop per-
forms one FMA and misses on two references, resulting in a miss
ratio of 0.5. In short, poor memory hierarchy behavior limits the
performance of the iterative code. Remarkably, the recursive pro-
gram suffers only 0.002 misses per FMA, resulting in a miss ratio
of 0.0005! This low miss ratio is a practical manifestation of the
theoretical I/O optimality of the recursive program. Nevertheless,
the poor performance of this code shows that I/O optimality alone
does not guarantee good overall performance.

To improve performance, it is necessary to massage the recursive
and iterative codes so that they become more processor-aware and
exploit the processor pipeline and the register file. Section 4 describes
how processor-awareness can be added to recursive codes. Section 5
describes how this can be done for iterative codes.

4. Processor-aware recursive codes
To make the recursive program processor-aware, we generate a long
basic block of operations called a microkernel that is obtained by
unrolling the recursive code completely for a problem of sizeRU ×
RU ×RU [20]. The overall recursive program invoke the microkernel
as its base case. There are two advantages to this approach. First, it is
possible to perform register allocation and scheduling of operations
in the microkernel, thereby exploiting registers and the processor
pipeline. Second, the overhead of recursion is reduced.

We call the long basic block arecursivemicrokernel since the
multiply-add operations are performed in the same order as they were
in the original recursive code. The optimal value ofRU is determined
empirically for values between1 and15.

Together with the control structure, one needs to worry about
which data structure to use to represent the matrices. Virtually all
high-performance BLAS libraries internally use a form of a blocked
matrix, such as Row-Block-Row (RBR). An alternative is to use a
recursive data layout, such as a space filling curve like Morton-Z [27].
We compared the MMM performance using both these choices and
we rarely saw any performance improvement using Morton-Z order
over RBR. Thus we use RBR in all experiments in this paper, and we
chose the data block size to match our kernel block size3.

We considered three different approaches to performing register
allocation and scheduling for the microkernel.

4.1 R(RU ×RU ×RU , NN)

The first approach is to use the native compiler on each platform to
compile the microkernel. We call this versionR(RU × RU × RU ,
NN) because it is generated fromRecursive inlining when data isRU

along the three dimensions;NN stands forNative-None, and it means
that the native compiler is used to schedule the code and no other
register allocation is performed.

Figure 5 shows the performance of different microkernels in iso-
lation on the four architectures of interest. Intuitively, this is the per-
formance obtained by a microkernel if all of its memory accesses are

3 However, the native BLAS on all the machines use standard row-major order
for the input arrays and copy these arrays internally into RBR format, so care
should be taken in performance comparisons with the native BLAS.

satisfied by the highest cache level (L2 on the Itanium and L1 on the
other machines). This performance is measured by invoking the mi-
crokernel repeatedly on the same data (the RBR format ensures that
there are no conflict misses at the highest cache level).

We focus on the UltraSPARC results. Figure 5(b) shows that the
performance of the microkernel on the UltraSPARC in isolation is
only about 11% of peak. This is also the performance of the complete
MMM computation using this microkernel (190 MFlops out of 2.12
GFlops). The line labelled “ideal” corresponds to the highest perfor-
mance one can achieve for a microkernel of given size, given the cost
of ramping up and draining the computations of the microkernel. The
line labelled “T(4x4x120,BC)” shows the performance of the bestit-
erativemicrokernel, discussed in detail in Section 5.

Overall performance is better than that of the naı̈ve recursive
version discussed in Section 3 because the overhead of recursion is
amortized over the computations in the microkernel. An examination
of the assembly code, however, showed that the compilers were not
able to register allocate array elements. This optimization requires the
compiler to discover whether or not the matrices are aliased. Even in
the best production compilers, this alias analysis is often insufficient.

Some compilers can be told to assume that there is no aliasing in
the microkernel. We found that the Intel C compiler (version 9.0) on
the Itanium 2 was able to produce code comparable in performance to
that of our most advanced recursive microkernel (Section 4.3) if it is
told that no aliasing occurs in the microkernel.

4.2 R(RU ×RU ×RU , BB)

At Frigo’s suggestion [18], we addressed this problem by imple-
menting modules in the BRILA compiler that (i) used Belady’s al-
gorithm [5] to perform register allocation on the unrolled microkernel
code, and then (ii) performed scheduling on the resulting code. Our
implementation of Belady’s algorithm is along the lines of [26]. This
code was then compiled using the native compiler on each platform.
In these experiments, we ensured that the native compiler was used
only as a portable assembler, and that it did not perform any opti-
mizations that interfered with BRILA optimizations.

The key idea behind using Belady’s algorithm is that when it is
necessary to spill a register, the value that will be needed furthest in
the future should be evicted. This value is easy to discover in the con-
text of microkernels, since we have one large basic block. The Belady
register allocation algorithm is guaranteed to produce an allocation
that results in the minimum number of loads. Different architectures
require slightly different versions of the allocator. For instance, on the
Itanium 2, Belady register allocation is implemented in two passes –
one to allocate floating-point registers and a subsequent one to allo-
cate integer registers. This division is necessary because the Itanium
2 architecture does not have a register-relative addressing mode, so
the address of each memory operation needs to be pre-computed into
an integer register. To decide on an allocation for the integer registers,
we need to know the order of floating-point memory operations, but
this order is not known before the floating-point registers themselves
are allocated.

The BRILA scheduler is a simplified version of a general instruc-
tion scheduler found in compilers, since it has to handle only a ba-
sic block of floating-point FMAs (or multiplies and adds when the
architecture does not have an FMA instruction), floating-point loads
and stores, and potentially integer adds (for pointer arithmetic on Ita-
nium 2). It accepts a simple description of the architecture and uses it
to schedule the instructions appropriately. A brief description of the
scheduler is presented in Figure 6.

We call the resulting microkernel, generated by using the Belady
register allocation algorithm and the BRILA scheduler,R(RU×RU×
RU , BB), whereBB stands forBRILA-Belady.

Figure 5(b) shows that on the UltraSPARC, the performance in
isolation of this microkernel is above 40% of peak forRU > 3. The
performance of the complete MMM is only at about 640 MFlops, or
just about 32% of the 2 GFlops peak rate. Note that on the Itanium 2,

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

 o
f P

ea
k

RU

(a) Power 5 Microkernels in Isolation

T(4x4x120,BC)
Ideal

BB
BC
NS
NN

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

P
er

ce
nt

 o
f P

ea
k

RU

(b) Ultrasparc IIIi Microkernels in Isolation

T(4x4x120,BC)
Ideal

BC
BB
NN
NS

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12

P
er

ce
nt

 o
f P

ea
k

RU

(c) Itanium 2 Microkernels in Isolation

T(8x8x12,BC)
Ideal

BC
BB
NS
NN

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14

P
er

ce
nt

 o
f P

ea
k

RU

(d) Xeon Microkernels in Isolation

T(6x1x120,BB)
Ideal

BB
NS
NN

Figure 5. Microkernel performance in isolation

• The scheduler works on blocks of the following instruction types:

• Floating-point FMA, multiply, and add;
• Floating-point load and store;
• Integer arithmetic for address computation.

• The scheduler is parameterized by a description of the target archi-
tecture, which consists of:

• HasFMA : bool – specifies whether the architecture has a
floating-point FMA instruction.

• HasRegRelAddr : bool – specifies whether the architecture
supports register relative addressing mode, or all addresses need
to computed into an integer register in advance (e.g. Itanium 2).

• Latency : instruction → bool – specifies the latency in cycles
of all instructions of interest.

• Set of possible instruction bundles, each of which can be dis-
patched in a single cycle. The way we describe this set is by
first mapping each instruction of interest to an instructiontype.
Each instruction type can be dispatched to one or more different
executionports inside the processor. Finally, the processor can
dispatch at most one instruction to each execution port, for a
subset of execution ports per cycle. We enumerate the possible
sets of execution ports that can be dispatched together.

• The scheduler produces instruction bundles at each step as follows:

1. Considers all instructions which have not been scheduled yet;
2. Without changing the relative order of the instructions, removes

all instructions from the list which depend on instructions that
have not been scheduled yet;

3. Greedily selects the largest subset of instructions from the re-
sulting list which matches one of the subsets of execution ports
the processor supports. It ensures that:

• Instructions of the same type execute in program order;
• Instructions from different types are given different exe-

cute preferences. The scheduler prefers to dispatch com-
putational instructions most, followed by loads and stores,
followed by integer arithmetic (if necessary).

Figure 6. The BRILA instruction scheduler

register spills hurt the performance of this microkernel forRU > 7.
An even greater drop occurs forRU > 9 because the microkernel
overflows the I-Cache.

Interestingly, for theR(RU × RU × RU , NS) microkernel, Fig-
ure 10(a) shows that the IBM XLC Compiler at its highest optimiza-
tion level is able to produce code which is slightly faster than the
correspondingBB microkernel.

4.3 R(RU ×RU ×RU , BC)

Although Belady’s algorithm minimizes the number of loads, it is not
necessarily the best approach to register allocation on modern ma-
chines; for example, we can afford to execute more than the optimal
number of loads from memory if they can be performed in parallel
with each other or with computation4. Therefore, we decided to in-
vestigate an integrated approach to register allocation and schedul-
ing [23, 7, 31]. Figure 7 briefly describes the algorithm we imple-
mented in BRILA.

Both UltraSPARC IIIi and Itanium 2 are in-order architectures,
and precise scheduling is extremely important for achieving high-
performance. Figure 5(b) and 5(c) show that theBC strategy works
better on these architectures than the other strategies discussed in
this section. As we can see in Figure 5(b), the performance of this
microkernel in isolation on the UltraSPARC is about 50% of peak
for RU > 3. The performance of the complete MMM is about 760
MFlops, or just about 38% of peak. On the Itanium 2 architecture, the
performance of the microkernel in isolation is 93% of peak. Although
this level of performance is not sustained in the complete MMM,
Figure 10(c) shows that the complete MMM reaches about 3.8 GFlops
or about 63% of peak.

The situation is more complex for the Power 5 and Pentium 4 Xeon
since these are out-of-order architectures and the hardware reorders
instructions during execution. Figures 10(a) and 5(a) show that the
Belady register allocation strategy (BB) performs better on Power
5 than the integrated graph coloring and scheduling approach (BC).

4 Belady invented his policy while investigating page replacement policies
for virtual memory systems, and the algorithm is optimal in that context
since page faults cannot be overlapped. Basic blocks, however, have both
computation and memory accesses to schedule, and can overlap them to gain
higher performance.

1. Generate the sequence of FMA operations in the same way we do
this forR(RU ×RU ×RU , NN)

2. Generate an approximate schedule for this sequence:

1. Consider the issue width of the processor for floating-point
operations and schedule that many FMA instructions per cycle.
Assume that an arbitrary number of other instructions (memory,
integer arithmetic) can be executed in each cycle.

2. If the processor has no FMA instruction, break each FMA into
its two components, replace the FMA with its multiply part, and
schedule its add part forLatency (multiply) cycles later;

3. Assume an infinite virtual register file, and allocate each
operand of each computational floating-point instruction
(FMA, multiply, or add) into a different virtual register.

1. Schedule a memory load into a registerLatency (load) cy-
cles before the FMA (or multiply) using the corresponding
value.

2. Schedule a memory store from a registerLatency (FMA)
(or Latency (add)) cycles after the FMA (or add) that
modifies that register.

3. Whenever the life spans of two registers that hold the same
physical matrix element overlap, we merge them into a sin-
gle virtual register and eliminate unnecessary intermediate
loads and stores. This step is required to preserve the se-
mantics of the microkernel.

4. Additionally, when the life spans of two registers that hold
the same physical matrix element do not overlap, but are
close (say at mostδ cycles apart), we still merge them to
take advantage of this reuse opportunity. This step is not
required to preserve the correctness of the program, but
can allow significant reuse of already loaded values. The
parameterδ depends on architectural parameters.

5. Use graph coloring to generate a virtual to logical register mapping.
6. Use the BRILA scheduler, described in Figure 6, for the corre-

sponding architecture to produce a final schedule for the microker-
nel.

Figure 7. Integrated register allocator and scheduler in BRILA

Intuitively, this occurs because the out-of-order hardware schedules
around stalls caused by the Belady register allocation.

On the Pentium 4 Xeon, there are too few registers to perform
complex scheduling. Our previous experience with the x86 architec-
ture is that it is better to let the out-of-order execution hardware per-
form register renaming and instruction reordering [38]. Therefore, we
used the Belady register allocation algorithm and scheduled depen-
dent loads, multiplies, and addsback-to-back. Figure 5(d) shows that
the microkernel in isolation gets roughly 50% of peak.

4.4 Discussion

Our work on adding processor-awareness to recursive MMM codes
led us to the following conclusions.

• The microkernel is critical to overall performance. Producing a
high-performance microkernel is a non-trivial job, and requires
substantial programming effort.

• The performance of the program obtained by following the canon-
ical recipe (recursive outer control structure and recursive micro-
kernel) is substantially lower than the near-peak performance of
highly optimized iterative codes produced by ATLAS or in ven-
dor BLAS. The best we were able to obtain was 63% of peak on
the Itanium 2; on the UltraSPARC, performance was only 38% of
peak.

• For generating the microkernel code, using Belady’s algorithm
followed by scheduling may not be optimal. Belady’s algorithm
minimizes the number of loads, but minimizing loads does not
necessarily maximize performance. An integrated register alloca-
tion and scheduling approach appears to perform better.

• Most compilers we used did not do a good job with register
allocation and scheduling for long basic blocks. This problem

B

NB

N
B

A C

K

M
U

NU

K

Figure 8. Iterative microkernel used in ATLAS

has been investigated before [23, 7, 31]. The situation is more
muddied when processors perform register renaming and out-of-
order instruction scheduling. The compiler community needs to
pay more attention to this problem.

5. Processor-aware iterative codes
We now discuss how processor-awareness can be added to iterative
codes.

5.1 Iterative microkernels

The ATLAS system and many other numerical linear algebra libraries
use iterative microkernels whose structure is shown pictorially in
Figure 8. Unlike the recursive microkernels described in Section 4 that
have a single degree of freedomRU , the iterative microkernels have
three degrees of freedom calledKU , NU , andMU . The microkernel
loads a block of theC matrix of sizeMU×NU into registers, and then
accumulates the results of performing a sequence of sizeKU of outer
products between small column vectors ofA and small row vectors
of B.

Our iterative microkernels are generated by BRILA as follows.

1. Start with a simplekji triply-nested loop for performing an MMM
with dimensions〈KU , NU , MU 〉 and unroll it completely to pro-
duce a sequence ofMU ×NU ×KU FMAs.

2. Use the algorithm described in Figure 7 for register allocation and
scheduling, starting with the sequence of FMAs generated above.
As in Section 4.3, we use Belady register allocation and schedule
dependent instructions back-to-back on the Pentium 4 Xeon.

We examined the schedule of our microkernel and compared it to
the structure of the ATLAS microkernel, which is shown in Figure 8.
Both perform the computation instructions in the same order and
keep the submatrix ofC in registers at all times. Our compiler uses
a description of the architecture to schedule the loads fromA andB
more precisely. ATLAS relies on the native compiler.

The iterative microkernel generated in this way has a number of
advantages. For thekji loop order, the number of required registers
does not depend on theKU parameter [38]. Thus we can optimize the
values ofMU andNU to make the working set of the microkernel fit
in the register file. Then, we can optimize the value ofKU to make
the code of the microkernel fit in the instruction cache. In principle,
we can generate recursive microkernels for non-square blocks, but
their dimensions are not independent since each dimension affects
both register allocation and instruction cache utilization.

Table 2 shows the performance of our iterative microkernels in
isolation (also shown as a solid flat horizontal line in Figure 5(a-d)).
We name the iterative microkernels withT for Tiled, the block size
MU ×NU ×KU and the allocation - scheduling pair (BC or BB).

It can be seen that iterative microkernels perform substantially
better than recursive microkernels on most architectures, obtaining
close to peak performance on most of them.

Architecture Micro-Kernel Percent

Power 5
R(8× 8× 8, BB) 58%
T(4× 4× 120, BC) 98%

UltraSPARC IIIi
R(12× 12× 12, BC) 53%
T(4× 4× 120, BC) 98%

Itanium 2
R(9× 9× 9, BC) 93%
T(8× 8× 12, BC) 94%

Pentium 4 Xeon
R(8× 8× 8, BB) 56%
T(6× 1× 120, BB) 87%

Table 2. Performance of the best microkernels in isolation.

5.2 Overall MMM Performance

To perform complete MMMs, the iterative microkernel is wrapped
in an outer control structure consisting of a triply-nested loop that
invokes the iterative microkernel within its body. The resulting code
is processor-aware but not cache-aware, and therefore has a working
set of a matrix, a panel of another matrix and a block from the
third matrix; because it uses a microkernel, it does provide register
blocking. The experimental results are labelled withI, followed by
the microkernel name from Table 2 in Figure 10(a-d).

On all four machines, the performance trends are similar. When
the problem size is small, performance is great because the highly-
tuned iterative microkernel obtains its inputs from the highest cache
level. However, as the problem size increases, performance drops
rapidly because there is no cache blocking. This can be seen most
clearly on the Power 5. Performance ofI T(4 × 4 × 120, BC) is
initially at 5.8 GFlops. When the working set of the iterative version
becomes larger than the 1920KB L2 cache (for matrices of size
480 × 480 × 480), performance drops to about 3.8 GFlops. Finally,
when the working set of the iterative version becomes larger than
the 36MB L3 cache (for matrices of size2040 × 2040 × 2400),
performance drops further to about 2 GFlops, about 30% of peak.

5.3 Discussion

Table 2 shows that on a given architecture, iterative microkernels are
larger in size than recursive microkernels. It is possible to produce
larger iterative microkernels because of the decoupling of the problem
dimensions: the size of theKU dimension is limited only by the
capacity of the instruction cache, and is practically unlimited if a
software-pipelined loop is introduced alongKU .

In summary, iterative microkernels outperform recursive micro-
kernels by a wide margin on three out of four architectures we stud-
ied; performance of the recursive microkernel was close to that of the
iterative microkernel only on the Itanium. Since overall MMM per-
formance is bounded above by the performance of the microkernel,
these results suggest that use of recursive microkernels is not recom-
mended. In the rest of this paper, we will therefore focus exclusively
on iterative microkernels. However, the benefits of a highly optimized
iterative microkernel are obtained only for small problem sizes. We
address this problem next.

6. Incorporating cache blocking
Without cache blocking, the performance advantages of the highly
optimized iterative microkernels described in Section 5 are obtained
only for small problem sizes; once the working set of the problem is
larger than the capacity of the highest cache level, performance drops
off. To sustain performance, it is necessary to block for the memory
hierarchy.

In this section, we describe two ways of accomplishing this. The
first approach is to wrap the iterative microkernel in a recursive outer
control structure to perform approximate blocking. The second ap-
proach is to use iterative outer control structures and perform explicit
cache tiling.

6.1 Recursive outer control structure

Figure 10 presents the complete MMM performance of the iterative
microkernels within a recursive outer structure. The corresponding
lines are labelled withR followed by the name of the microkernel
from Table 2. On all four machines, performance stays more or less
constant independent of the problem size, demonstrating that the re-
cursive outer control structure is able to block approximately for all
cache levels. The achieved performance is between 60% (on the Ul-
traSPARC IIIi) and 75% (on the Power 5) of peak. While this is good,
overall performance is still substantially less than the performance of
the native BLAS on these machines. For example, on the Itanium, this
approach gives roughly 4 GFlops, whereas vendor BLAS obtains al-
most 6 GFlops; on the Ultrasparc III, this approach obtains roughly
1.2 GFlops, whereas vendor BLAS gets close to 1.6 GFlops.

6.2 Blocked iterative outer control structure

These experiments suggest that if an iterative outer control structure
is used, one approach is to tile explicitly for all levels of the memory
hierarchy. A different approach that leads to even better performance
emerges if one studies the handcoded BLAS on various machines.
On most machines, the handcoded BLAS libraries are proprietary, so
we did not have access to them. However, the ATLAS distribution
has hand-optimized codes for some of the machines in our study, so
we used those in our experiments. The minikernels in these codes
incorporate one level of cache tiling, and perform prefetching so that
while one minikernel was executing, data for the next minikernel
was prefetched from memory. The resulting performance was very
close to that of vendor BLAS on all machines (we do not show these
performance lines in Figure 10 to avoid cluttering the figure).

To mimic this structure, we used the BRILA compiler to gen-
erate aminikernel composed of a loop nest wrapped around the
MU × NU × KU iterative microkernel; the minikernel performs a
matrix multiplication of sizeNB × NB × NB . This is essentially
the structure of the minikernel used in the ATLAS system [35]. For
our experiments, we setNB to 120. As with the microkernels, this
minikernel can then be used with either recursive or iterative outer
control structures. The experimental results in Figure 10 show a num-
ber of interesting points. The recursive and iterative outer control
structures achieve almost identical performance for most problem
sizes. For instance, on the Power 5,R T(120,4x4x120,BC) reaches
nearly 6 GFlops and maintains its performance through matrix sizes
of 5000×5000. I T(120,4x4x120,BC) matches this performance un-
til the matrices become too large to fit in the L2 cache; performance
then falls off because there is no tiling for the L3 cache.

We have not yet implemented prefetching in BRILA, but for itera-
tive minikernels, the memory access pattern is regular and predictable,
so instructions that touch memory locations required for successive
microkernels can be inserted into the computationally intensive code
of earlier microkernels without performance penalty. However, it is
not clear how one introduces prefetching into programs with a recur-
sive outer control structure. Following the line of reasoning described
in Section 2, we believe this is required to raise the level of perfor-
mance of the recursive approach to that of the iterative approach.
Whether prefetching can be done in some cache-oblivious manner re-
mains to be seen.

6.3 Discussion

Our minikernel work led us to the following conclusions.

• Wrapping a recursive control structure around the iterative micro-
kernel gives a program that performs reasonably well since it is
able to block approximately for all levels of cache and block ex-
actly for registers.

• If an iterative outer control structure is used, it is necessary to
block for relevant levels of the memory hierarchy.

• To achieve performance competitive with hand-tuned kernels,
minikernels need to do data prefetching. It is clear how to do

 0

 100

 200

 300

 400

 500

 600

 700

 0 1000 2000 3000 4000 5000

M
B

/s

Matrix Size

Ultrasparc IIIi Matrix Transpose

I T(4x4x4,BS)
I R(3x3x3,BS)

R T(4x4x4,BS)
R R(14x14x14,BS)

R S
I S

Figure 9. Out-of-place Matrix Transpose on the UltraSPARC IIIi.

this for an iterative outer control structure but it is not clear how
to do this for a recursive outer control structure.

7. Matrix Transpose
We have just started our study of out-of-place Matrix Transposition
(MT), a kernel that is very different in behavior than MMM. Unlike
MMM, MT does O(N2) work on O(N2) data, so there is no algo-
rithmic reuse, but it can benefit from exploiting spatial locality in data
cache and data TLB. There are no multiply-add operations in the mi-
crokernel, but an important performance metric is the rate at which
data is stored intoB.

Figure 9 shows the results of running various Transpose algo-
rithms on the UltraSPARC IIIi. We use the same notation for these
algorithms as we did for MMM. For Transpose, all matrices are stored
in Row-Block-Row order when they are blocked. The naı̈ve algo-
rithms operate on the standard row-major data structure.

We used the BRILA compiler to produce the microkernel as fol-
lows. We unroll the iterative or recursive code as for MMM, but in-
stead of scheduling the loads and stores to perform the multiply-adds
as early as possible, the scheduler tries to store into B as early as
possible. The labelBS corresponds toBRILA-Store, since our metric
involves optimizing the stores in the microkernel.

The iterative transpose algorithmI S, consisting of a doubly nested
loop, performs reasonably well for small matrices, but performance
quickly falls below that of the recursive algorithm as the size of the
matrix grows. This drop in performance corresponds to an increase
in cache misses: the doubly nested loop walks one of the matrices in
row major order but the other in column major. As less and less of
the matrix fits into the cache, more and more cycles of the iterative
algorithm are taken up in waiting for data from memory.

The recursive algorithmR S has more consistent performance, but
it does not achieve the higher performance of the blocked kernels. As
in MMM, its recursive structure provides enough locality to avoid the
high cache miss penalty even for large matrices, but the overhead of
recursing down to1× 1 is too high.

We investigated all combinations of outer and inner blocked con-
trol structures. Figure 9 shows that any amount of blocking provides
better performance than the naı̈veR S andI S versions. The blocking
provides spatial locality, and avoids the cache misses discussed for the
iterative outer structure while reducing the recursive overhead enough
to improve the performance of the recursive outer structure.

We plan to compare the performance of these generated versions
with the performance of hand-written transpose programs, and we
will report those numbers in the final paper.

8. Related Work
Four domains are closely related to our research. First, hand-tuned nu-
merical libraries are critical to our work since they provide a high wa-
ter mark for performance on different architectures. They also suggest
optimization strategies that can often be incorporated into compil-
ers. Second, the cache-oblivious program advocated originally in [20]

has grown to encompass computations for many domains; these algo-
rithms guide our recursive implementation and data structures. Third,
the restructuring compiler community has developed many techniques
for improving the memory behavior of programs. Finally, some stud-
ies have compared recursive and iterative code for matrix multiply as
well as linear and recursive blocking for data structures.

8.1 Numerical linear algebra libraries

There is a vast literature on this subject. A magisterial survey of this
field can be found in the classic text by Golub and van Loan [22].

The central routines in dense numerical linear algebra are the Basic
Linear Algebra Subroutines (BLAS) [1]. Matrix multiplication is per-
haps the most important routine in the BLAS. Most high-performance
BLAS routines are produced by hand (for example Goto [24]).

The ATLAS system [35] allows a measure of automation in gener-
ating BLAS libraries. ATLAS is essentially a code generator that can
generate BLAS routines, given the values of certain numerical pa-
rameters like the L1 cache tile size, the register tile sizes, etc. Optimal
values of these parameters are determined by using empirical search
over a sub-space of possible parameter values. The ATLAS distribu-
tion also has hand-tuned versions of BLAS routines that it uses to
produce the library if they perform better than the code produced by
the code generator. On most machines, these hand-tuned versions per-
form better than the code produced by using empirical search.

8.2 Restructuring compilers

There is a large body of existing work on compiler transformations for
restructuring high-level algorithmic descriptions to improve memory
hierarchy performance. These include linear loop transformations [4,
16, 30, 36], loop tiling [37] and loop unrolling [2]. Other work has
focused on algorithms for estimating optimal values for parameters
associated with these transformations, such as tile sizes [12, 33] and
loop unroll factors [2].

8.3 Cache-Oblivious Algorithms

This area of work was inspired by the classic paper of Hong and
Kung in which they introduced the I/O model and showed that
divide-and-conquer versions of matrix multiplication and FFT are
I/O optimal [28]. Frigo, Leiserson and co-workers generalized the
results in this paper; they also coined the term “cache-oblivious
algorithms” [20]. They also produced FFTW [19], the highly suc-
cessful FFT library generator. Independent of this work, the scien-
tific computing community has investigated divide-and-conquer al-
gorithms [27, 11, 15].

A significant body of work (for example [34, 9, 6, 19]) has been
inspired by the original work on cache-oblivious algorithms. Other
work has investigated cache-oblivious data structures, starting from
the idea of recursive storage order, and currently, efforts [21, 32] are
underway to improve native compiler support for these orders. These
recursive data structures allow the data structure for MMM to match
its control structure. Their main problem is the need to compute the
block offset; this computation isO(1) for regular iterative blocking
strategies, but is in generalO(logN) for recursive data structures.

The work on cache-oblivious algorithms and data structures is
complementary to our own; we integrate results from this literature
into the BRILA compiler. We rely on these results to provide high
performance cache-oblivious formulations of common linear algebra
problems. Our work has now turned up several directions for further
research in cache-oblivious algorithms.

8.4 Comparison Studies

The work of Bilardi et al. [9] is closest to ours. They were interested
in the issue ofperformance portability– if you are restricted to using
a single C program on all architectures, what fraction of peak perfor-
mance do you get for matrix multiplication on different architectures?
Their study used a cache-oblivious program, and they compared its
performance with the performance of the code produced by ATLAS.

Our work is complementary to this work since we permit the BRILA
compiler to perform architecture dependent optimizations. In other
words, we are interested in the portability of the compiler, and neces-
sarily of the application code itself.

Frens and Wise have implemented cache-oblivious programs for
MMM and other numerical routines[17]. It appears that this work uses
recursive microkernels, and they have not studied the use of iterative
kernels with different outer control structures as we have done.

9. Future Work
The results in this paper suggest several directions for future research.

• The performance of recursive microkernels is substantially worse
than that of iterative microkernels on all architectures we studied.
How can we produce better recursive microkernels?

• Better register allocation and scheduling techniques are needed
for long basic blocks. Contrary to popular belief, using Belady’s
algorithm followed by scheduling is not necessarily optimal be-
cause minimizing the number of loads is not necessarily correlated
to optimizing performance on architectures that support multiple
outstanding loads and can overlap loads with computation.

• Wrapping a recursive outer structure around an iterative micro-
kernel provides approximate blocking for all levels of cache, and
performs better than wrapping a simple loop around the microker-
nel. However, pre-fetching is easier for the iterative outer struc-
ture, and boosts performance well above that of the recursive outer
structure program. How do we integrate prefetching into cache-
oblivious algorithms?

• The näıve recursive code described in Section 3 is I/O optimal,
but delivers only 1% of peak on all architectures. Intuitively, the
I/O complexity of a program describes only one dimension of its
behavior, and focusing on I/O optimality alone may be misleading
when it comes to overall performance. What models are appropri-
ate for describing other dimensions of program behavior to obtain
a comprehensive description of program performance?

Acknowledgements: We would like to thank Matteo Frigo and
Gianfranco Bilardi for many useful discussions.

References
[1] Basic Linear Algebra Routines (BLAS).http://www.netlib.org/

blas.

[2] R. Allan and K. Kennedy.Optimizing Compilers for Modern Architec-
tures. Morgan Kaufmann Publishers, 2002.

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen, editors.LAPACK Users’ Guide. Second Edition. SIAM,
Philadelphia, 1995.

[4] Uptal Banerjee. Unimodular transformations of double loops. In
Languages and compilers for parallel computing, pages 192–219, 1990.

[5] L. A. Belady. A study of replacement algorithms for a virtual-storage
computer.IBM Systems Journal, 5(2):78–101, 1966.

[6] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Bradly C.
Kuszmaul. Concurrent cache-oblivious b-trees. InProc. of the 17th
Annual ACM Symposium on Parallelism in Algorithms and Architectures,
pages 228–237, 2005.

[7] David A. Berson, Rajiv Gupta, and Mary Lou Soffa. Integrated instruction
scheduling and register allocation techniques. InLCPC ’98, pages 247–
262, London, UK, 1999. Springer-Verlag.

[8] Gianfranco Bilardi. Personal communication, 2005.

[9] Gianfranco Bilardi, Paolo D’Alberto, and Alex Nicolau. Fractal matrix
multiplication: A case study on portability of cache performance. In
Algorithm Engineering: 5th International Workshop, WAE, 2001.

[10] David Callahan, Steve Carr, and Ken Kennedy. Improving register
allocation for subscripted variables. InPLDI, pages 53–65, 1990.

[11] Siddhartha Chatterjee, Alvin R. Lebeck, Praveen K. Patnala, and
Mithuna Thottethodi. Recursive array layouts and fast parallel matrix
multiplication. In ACM Symposium on Parallel Algorithms and
Architectures, pages 222–231, 1999.

[12] S. Coleman and K. S. McKinley. Tile size selection using cache
organization and data layout. InPLDI, 1995.

[13] Keith D. Cooper, Devika Subramanian, and Linda Torczon. Adaptive
optimizing compilers for the 21st century.J. Supercomput., 23(1):7–22,
2002.

[14] J. J. Dongarra, F. Gustavson, and A. Karp. Implementing linear algebra
algorithms for dense matrices on a vector pipeline machine.SIAM
Review, 26(1):91–112, 1984.

[15] E. Elmroth, F. G. Gustavson, B. Kågstr̈om, and I. Jonsson. Recursive
blocked algorithms and hybrid data structures for dense matrix library
software.SIAM Review, 46(1):3–45, March 2004.

[16] Paul Feautrier. Some efficient solutions to the affine scheduling problem
- part 1: one dimensional time.International Journal of Parallel
Programming, October 1992.

[17] Jeremy D. Frens and David S. Wise. Auto-blocking matrix-
multiplication, or tracking blas3 performance from source code. In
Proc. ACM Symp. on Principles and Practice of Parallel Programming,
pages 206–216, 1997.

[18] Matteo Frigo. Personal communication, 2005.

[19] Matteo Frigo and Steven G. Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, 93(2), 2005.

[20] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar
Ramachandran. Cache-oblivious algorithms. InFOCS ’99: Proceedings
of the 40th Annual Symposium on Foundations of Computer Science,
page 285. IEEE Computer Society, 1999.

[21] Steven Gabriel and David Wise. The opie compiler: from row-major
source to morton-ordered matrices. InProc. 3rd Workshop on Memory
Performance Issues, pages 136–144, 2004.

[22] Gene Golub and Charles Van Loan.Matrix Computations. John Hopkins
University Press, 1993.

[23] J. R. Goodman and W.-C. Hsu. Code scheduling and register allocation
in large basic blocks. InICS ’88, pages 442–452, New York, NY, USA,
1988. ACM Press.

[24] Kazushige Goto and Robert van de Geijn. On reducing TLB misses in
matrix multiplication. FLAME working note #9. Technical report, The
University of Texas at Austin, Department of Computer Science, Nov
2002.

[25] John Gunnels, Fred Gustavson, Greg Henry, and Robert van de Geijn.
Matrix multiplication kernels: Synergy between theory and practice leads
to superior performance. InPARA, 2004.

[26] Jia Guo, Maŕıa Jeśus Garzaŕan, and David Padua. The power of Belady’s
algorithm in register allocation for long basic blocks. InProc. 16th
International Workshop in Languages and Parallel Computing, pages
374–390, 2003.

[27] Fred Gustavson. Recursion leads to automatic variable blocking for dense
linear-algebra algorithms.IBM Journal of Research and Development,
41(6):737–755, 1999.

[28] Jia-Wei Hong and H. T. Kung. I/O complexity: The red-blue pebble
game. InProc. of the thirteenth annual ACM symposium on Theory of
computing, pages 326–333, 1981.

[29] Piyush Kumar. Cache-oblivious algorithms. InLecture Notes in
Computer Science 2625. Springer-Verlag, 1998.

[30] W. Li and K. Pingali. Access Normalization: Loop restructuring for
NUMA compilers.ACM Transactions on Computer Systems, 1993.

[31] Cindy Norris and Lori L. Pollock. An experimental study of several
cooperative register allocation and instruction scheduling strategies.
In MICRO 28, pages 169–179, Los Alamitos, CA, USA, 1995. IEEE
Computer Society Press.

[32] Rajeev Raman and David Wise. Converting to and from the dilated
integers. http://www.cs.indiana.edu/ dswise/Arcee/castingDilated-
comb.pdf, 2004.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000

M
F

lo
ps

Matrix Size

Power 5

R T(120,4x4x120,BC)
I T(120,4x4x120,BC)

R T(4x4x120,BC)
Vendor BLAS

I T(4x4x120,BC)
R R(10x10x10,BB)

R R(9x9x9,BC)
R R(15x15x15,NN)

I S
R S

 0

 500

 1000

 1500

 2000

 0 1000 2000 3000 4000 5000

M
F

lo
ps

Matrix Size

Ultrasparc IIIi

Vendor BLAS
R T(120,4x4x120,BC)
I T(120,4x4x120,BC)

R T(4x4x120,BC)
R R(8x8x8,BC)
R R(8x8x8,BB)

I T(4x4x120,BC)
R R(8x8x8,NN)

I S
R S

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000

M
F

lo
ps

Matrix Size

Itanium 2

Vendor BLAS
R T(120,8x8x12,BC)
I T(120,8x8x12,BC)

R T(8x8x12,BC)
R R(9x9x9,BC)
R R(9x9x9,BB)
I T(8x8x12,BC)
R R(5x5x5,NN)

R S
I S

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 1000 2000 3000 4000 5000

M
F

lo
ps

Matrix Size

Xeon

Vendor BLAS
R T(6x1x120,BB)

I T(120,6x1x120,BB)
R T(120,6x1x120,BB)

I T(6x1x120,BB)
R R(7x7x7,NN)

I S
R S

Figure 10. Complete MMM performance

[33] Robert Schreiber and Jack Dongarra. Automatic blocking of nested
loops. Technical Report CS-90-108, Knoxville, TN 37996, USA, 1990.

[34] Sivan Toledo. A survey of out-of-core algorithms in numerical linear
algebra. InExternal memory algorithms. American Mathematical
Society, Boston, MA, 1999.

[35] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated
empirical optimization of software and the ATLAS project.Parallel
Computing, 27(1–2):3–35, 2001.

[36] Michael E. Wolf and Monica S. Lam. An algorithmic approach
to compound loop transformations. InAdvances in Languages and
Compilers for Parallel Computing. Pitman Publisher, 1991.

[37] M. Wolfe. Iteration space tiling for memory hierarchies. InThird SIAM
Conference on Parallel Processing for Scientific Computing, December
1987.

[38] Kamen Yotov, Xiaoming Li, Gang Ren, Maria Garzaran, David Padua,
Keshav Pingali, and Paul Stodghill. Is search really necessary to generate
high-performance BLAS?Proceedings of the IEEE, 93(2), 2005.

