Message Passing
Blocking SEND/RECEIVE: couple data transfer and synchronization

- Sender and receiver rendezvous to exchange data

- SrcP field in RECEIVE command permits DestP to select which processor it wants to receive data from

- Implementation:
 - SrcP sends token saying ‘ready to send’
 - DestP returns token saying ‘me too’
 - Data transfer takes place directly between application programs w/o buffering in O/S

- Motivation: Hardware ‘channels’ between processors in early multicomputers

- Problem:
 - sender cannot push data out and move on
 - receiver cannot do other work if data is not available yet

 one possibility: new command TEST(SrcP,flag): is there a message from SrcP?

Overlapping of computation and communication is critical for performance
Non-blocking SEND/RECEIVE: decouple synchronization from data transfer

- SrcP can push data out and move on
- Many variation: return to application program when
 - data is out on network?
 - data has been copied into an O/S buffer?
- Tag field on messages permits receiver to receive messages in an order different from order that they were sent by SrcP
- RECEIVE does not block
 - flag is set to true by O/S if data was transferred/false otherwise
- Applications program can test flag and take the right action
- What if DestP has not done a RECEIVE when data arrives from SrcP?
- Data is buffered in O/S buffers at DestP till application program does a RECEIVE

Can we eliminate waiting at SrcP?
Can we eliminate buffering of data at DestP?
Asynchronous SEND/RECEIVE

- SEND returns as soon as O/S knows about what needs to be sent
- ‘Flag1’ set by O/S when data in x has been shipped out
- Application program continues, but must test ‘flag1’ before overwriting x
- RECEIVE is non-blocking:
 - returns before data arrives
 - tells O/S to place data in ‘y’ and set ‘flag’ after data is received
 - ‘posting’ of information to O/S
 - ‘Flag2’ is written by O/S and read by application program on DestP
- Eliminates buffering of data in DestP O/S area if IRECEIVE is posted before message arrives at DestP
So far, we have looked at point-to-point communication

Collective communication:
- patterns of group communication that can be implemented more efficiently than through long sequences of send's and receive's
- important ones:
 - one-to-all broadcast
 (eg. \(A^*x\) implemented by rowwise distribution: all processors need \(x\))
 - all-to-one reduction
 (eg. adding a set of numbers distributed across all processors)
 - all-to-all broadcast
 every processor sends a piece of data to every other processor
 - one-to-all personalized communication
 one processor sends a different piece of data to all other processors
 - all-to-all personalized communication
 each processor does a one-to-all communication
Example: One-to-all broadcast

(intuition: think ‘tree’)

Assuming message size is small, time to send a message = \(T_s + h \cdot T_h \)
where \(T_s \) = overhead at sender/receiver
\(T_h = \) time per hop

Total time for broadcast = \(T_s + T_h \cdot P/2 \)
+ \(T_s + T_h \cdot P/4 \)
+
+
= \(T_s \cdot \log P + T_h \cdot (P-1) \)

Reality check: Actually, a k-ary tree makes sense because processor 0 can send many messages by the time processor 4 is ready to participate in broadcast

Messages in each phase do not compete for links
Other topologies: use the same idea

Step 1: Broadcast within row of originating processor

Step 2: Broadcast within each column in parallel

Time = $T_s \log P + 2T_h*(\sqrt{P} - 1)$
Example: All-to-one reduction

Messages in each phase do not compete for links

Purpose: apply a commutative and associative operator (reduction operator) like +,*,AND,OR etc to values contained in each node

Can be viewed as inverse of one-to-all broadcast
Same time as one-to-all broadcast

Important use: determine when all processors are finished working (implementation of ‘barrier’)
Example: All-to-all broadcast

- Intuition: cyclic shift register
- Each processor receives a value from one neighbor, stores it away, and sends it to next neighbor in the next phase.
- Total of \((P-1)\) phases to complete all-to-all broadcast

\[
\text{Time} = (T_s + T_h) \cdot (P-1) \quad \text{assuming message size is small}
\]

- Same idea can be applied to meshes as well:
 - first phase, all-to-all broadcast within each row
 - second phase, all-to-all broadcast within each column
Message-passing Programming
Goal: Portable Parallel Programming for Distributed Memory Computers

- Lots of vendors of Distributed Memory Computers:
 IBM, NCube, Intel, CM-5,

- Each vendor had its own communication constructs
 => porting programs required changing parallel programs
even to go from one distributed memory platform to another!

- MPI goal: standardize message passing constructs syntax and semantics

- Mid 1994: MPI-1 standard out and several implementations available (SP-2)
Key MPI Routines we will use:

MPI_INIT : Initialize the MPI System
MPI_COMM_SIZE: Find out how many processes there are
MPI_COMM_RANK: Who am I?
MPI_SEND: Send a message
MPI_RECV: Receive a message
MPI_FINALIZE: Terminate MPI

MPI_BCAST: Broadcast
Data Distributions
Goal:

- distribute arrays across local memories of parallel machine so that data elements can be accessed in parallel

- Standard distributions for dense arrays: (HPF, Scalapack)
 - block
 - cyclic
 - block cyclic(b)

- Block cyclic distribution subsumes other two
A(i) is mapped to processor \(i/b \) if distribution is BLOCK(b)
Cyclic/Block Cyclic:

A(i) is mapped to processor $i \mod P$

if distribution is CYCLIC(b)

DISTRIBUTE A(CYCLIC)

DISTRIBUTE A(CYCLIC(2))

A(i) is mapped to processor $\lfloor i/b \rfloor \mod P$

if distribution is CYCLIC(b)
Common use of cyclic distribution:

Matrix factorization codes

- BLOCK distribution: small number of processors end up with all the work after a while
- CYCLIC distribution: better load balance
- BLOCK-CYCLIC: lower communication costs than CYCLIC
Distributions for 2-D Arrays:

Each dimension can be distributed by
- block
- cyclic
- * : dimension not distributed

\[\begin{array}{cccc}
P0 & P1 & P2 & P3 \\
\bullet & \bullet & \bullet & \bullet \\
\end{array} \]

A (4,8)

DISTRIBUTE A (*, BLOCK)

DISTRIBUTE A (CYCLIC,*)
Distributing both dimensions:

- # of array distribution dimensions
 = # of dimensions of processor grid

- 2-D processor grid

\[A (4,8) \]

DISTRIBUTE A (BLOCK, BLOCK)

DISTRIBUTE A (BLOCK, CYCLIC)

DISTRIBUTE A (CYCLIC, CYCLIC)
Performance Analysis of Two MVM Programs
In the last lecture, we discussed the following MVM program:

- **Style of programming:** Master-Slave
 - one master, several slaves
 - master co-ordinates activities of slaves
 - Master initially owns all rows of A and vector b
 - Master broadcasts vector b to all slaves
 - Slaves are **self-scheduled**
 - each slave comes to master for work
 - master sends a row of matrix to slave
 - slave performs product, returns result and asks for more work

- Why is this program not useful in practice?
Parallelization Example: MVM

Iterative methods for solving linear systems \(Ax = b \)

Jacobi method:
\[
M \cdot X_{k+1} = (M - A) \cdot X_k + b \quad (M \text{ is } \text{DIAGONAL}(A))
\]

while (not converged) do
diagram of operations

- Matrix A is usually sparse, not dense
- While loop \(\Rightarrow \) MVM is performed many times with same A, many X’s
 \(\Rightarrow \) Why ship A from master to slaves in each iteration?
 \(\Rightarrow \) Replace self-scheduling with static assignment of rows to processors
- Caveat: what happens to load balancing?
 - If each processor gets roughly same number of rows, load is balanced
 provided each rows has roughly same number of non-zeros
 which is true for dense matrices and most sparse matrices in practice
- Computation of Y is distributed \(\Rightarrow \) computation of X\(_{k+1} \) can be distributed
 \(\Rightarrow \) not efficient to assume that X is broadcast from master every iteration
Matrix-vector Multiply: 1-D Alignment

- Each processor gets roughly the same number of contiguous rows of \(A \) before MVM starts.
- If a processor owns rows \((r,r+1,r+2,\ldots)\) of \(A \), it gets elements \((r,r+1,r+2,\ldots)\) of \(x \).

Step 1: All-to-all broadcast in which each processor broadcasts its portion of \(x \) to all other processors.

Step 2: Each processor computes the inner product of its rows with \(x \) to generate elements \((r,r+1,r+2,\ldots)\) of \(y \).

- If this was part of Jacobi iteration, each processor would use its portion of \(y \) to compute its portion of \(x \) for the next iteration.
 (note: next \(x \) is mapped as required by Step 1 of MVM)

- Assignment of contiguous rows/columns of a matrix to processors is called ‘block distribution’.
- Assignment of rows/columns in round-robin fashion: ‘cyclic distribution’

Why did we choose block and not cyclic distribution for our MVM?
Block vs cyclic Distribution for 1-D MVM:

- Each processor allocates space for entire x vector.
- It receives messages containing portions of x from all other processors.
- Values received in a message must be placed into storage for x.
- With block distribution of x, values from each message are written into contiguous memory locations (efficient).
- With cyclic distribution of x, values in each message must be written into non-contiguous (but distinct) memory locations (scatter operation).
- Scatters are usually not as efficient as block copies.

Question: Why not allocate A with cyclic distribution and x with block distribution?
Matrix-vector Multiply: 2-D Alignment

- Matrix A is distributed in 2-D blocks to processors
- x is initially distributed to processors on the diagonal of the mesh

Step 1: In each column of mesh, diagonal processor broadcasts its portion of x to all other processors in its column.
Step 2: Each processor performs a mini-MVM with its block of the matrix and the portion of x it has.
Step 3: Processors along each row perform a reduction of their partial sums, using diagonal processors as roots for the reductions.
How do we evaluate different algorithms?

What are good performance models for parallel machines?

Very difficult problem: no clear answers yet.
Speed-up

- most intuitive measure of performance

\[
\text{Speed-up}(N,P) = \frac{T_{\text{seq}}(N)}{T_{\text{par}}(N,P)}
\]

\(T_{\text{seq}}\): time to solve problem of size N on one processor

\(T_{\text{par}}\): time to solve problem of size N on P processors

\[
T_{\text{par}} = T_{\text{comp}} + T_{\text{comm}} + T_{\text{synch}}\text{ parallel overhead}
\]

\[
\text{Speed-up}(N,P) = \frac{T_{\text{seq}}(N)}{T_{\text{comp}} + T_{\text{overhead}}(N,P)}
\]

Parallel efficiency\((N,P) = \text{Speed-up}(N,P)/P\)

(How effectively did we use P processors?)

Purists position:

Sequential time must be measured using ‘best sequential algorithm’

Usually, we just use same algorithm on 1 processor, w/o parallel constructs

Sequential machine must have equivalent amount of cache & memory as P processors together

Usually, we do not bother (watch out for superlinear speedups!)
Bounds on speed-up: \[\text{Speed-up}(N, P) = \frac{T_{\text{seq}}(N)}{T_{\text{comp}}(N, P) + T_{\text{overhead}}(N, P)} \]

- One extreme: Amdahl’s Law

 Assume that parallel overhead = 0
 fraction of program executed in parallel = \(x \)
 parallel part can be done infinitely fast

 Speed-up = \(\frac{1}{1 - x} \)

 => even if 90% of program is parallel and processors are very fast, speed-up is only 10!

 Good speed-up requires parallelization of very large proportion of program.

- Other extreme: communication/computation ratio

 Assume that program is completely parallelized & perfectly load balanced

 \[\text{Speed-up}(N, P) = \frac{T_{\text{seq}}(N)}{P} = \frac{1 + P \cdot T_{\text{overhead}}(N, P)}{T_{\text{seq}}(N)} \]
Communication-to-computation ratio:

\[
\text{Speed-up}(N,P) = \frac{P}{1 + P \cdot \frac{T_{\text{overhead}}(N,P)}{T_{\text{seq}}(N)}}
\]

What happens to speed-up as \(N \) and \(P \) vary?

- If \(P \) is fixed and \(N \) (problem size) increases, speed-up usually increases.
 (some people call such algorithms ‘scalable’)

Quick check: look at communication-to-computation ratio

= volume of communication(N)/amount of computation(N)

- If \(N \) is fixed and \(P \) increases, parallel efficiency usually goes down.

Examples:
- MVM : 1-D : Vector of size \(N \) is broadcast to \(P \) processors
 => communication volume = \(O(N \cdot P) \)
 Computation = \(O(N^2) \)
 => Communication to computation ratio varies as \(P/N \)

2-D: Communication volume = \(O(N \cdot \sqrt{P}) \)

=> Communication to computation ratio varies as \(\sqrt{P}/N \)

Conclusion: 2-D scales better than 1-D
Iso-efficiency Curves:

\[
\text{Efficiency}(N,P) = \frac{1}{1 + P \cdot \frac{T_{\text{overhead}}(N,P)}{T_{\text{seq}}(N)}}
\]

To keep parallel efficiency the same, how does problem size have to increase as the number of processors increases?

Iso-efficiency Curves for Two Algorithms

We can also answer questions like: If problem size is fixed, what is the maximum number of processors we can use and still have efficiency > e?
More detailed analysis:

Model communication time
Transmission

Simple protocol: use REQ/ACK wires

`SENDERMETA` sends if `REQ = ACK` & makes `REQ = not(ACK)`

RECEIVER: receives if `REQ` is `not(ACK)`

Other protocols: encode `REQ` with `DATA`

Delay on wire: Depends on RC time constant

Time constant affected by length of wire
Switches

Small cross-bars

2x2 Cross-bar

As long as two or more inputs do not contend for same output, all inputs can be routed to their desired outputs.

Switch latency in modern parallel computers: < 100 nanoseconds
Packetization

Message: unit of data transfer visible to programmer

Circuit switching:
- establish end-to-end connection
- send message
- break connection down
Problems: - short messages
- long messages block out other traffic

Packet switching:
- break message into packets
- each packet travels independently through network
- message is reassembled at destination
- no end-to-end connection is made before data transmission
Store & Forward Networks

- Message is buffered at each switch
- Problem: excessive latency

\[
\text{Latency} = \frac{L}{W} \times T_{\text{hop}} \times n
\]

where
- \(L \) = size of packet
- \(W \) = width of channel
- \(n \) = number of hops from source to destination
- \(T_{\text{hop}} \) = time per hop for \(W \) bits

Wormhole Routing

- Divide a packet into ‘flits’: unit of transfer between stages
- All flits in packet follows the same route, but flit transmission is pipelined
- Combines features of circuit and packet switching

\[
\text{Latency} = \left(\frac{L}{W} + n \right) \times T_{\text{hop}} = \left(L \times T_w + n \times T_{\text{hop}} \right)
\]

These are ‘transmission latencies’ (not counting s/w overhead at two ends).
Reducing Communication Latencies

Good because
- program spend less time waiting for data
- compiler needs to worry less about reducing communication

Reducing/alleviating latency:
- **Applications program**: should try to overlap communication with computation: send data out as soon as possible, use asynchronous receives to reduce buffering overheads,…
- **O/S**: reduce the software overhead at sender/receiver
- **Hardware**: design network to minimize time-of-flight

Let us look at reducing time-of-flight
- if all wires and switches are identical,

\[
\text{Expected time of flight} = T_{w+s} \times \text{Expected number of hops}
\]

where \(T_{w+s} = \text{delay through 1 wire + 1 switch} \)

=> Goal of network topology selection is to minimize expected number of hops.

Or is it?
Clock cycle = 2 ticks
Time to go from input to output
= 2 * 4 = 8 ticks

Clock cycle = 1 tick
Time to go from input to output
= 1 * 5 = 5 ticks

Conclusion: Pipeline latency is a function not just of the number of stages but also of clock speed.
Clock speed is determined by slowest stage.
Conclusions:

- It is important to take wire lengths into account in latency estimates.

- Higher dimensional wires are longer than lower dimensional wires when embedded into 2/3 dimensions.

- If the length of the longest wire affects latency, higher dimensional networks are not necessarily better.

- One fix: permit several bits at a time to be ‘in-flight’ on a wire => treat wire itself as a pipeline.
Detailed Scalability Analysis of MVM:

2-D Alignment on mesh:

- Column broadcast of x

Time =
\[
\left(T_s + \frac{n}{\sqrt{P}} * T_w + \frac{\sqrt{P} * T_h}{2} \right) + \left(T_s + \frac{n}{\sqrt{P}} * T_w + \frac{\sqrt{P} * T_h}{4} \right) \log(\sqrt{P}) \text{ phases}
\]

= \left(T_s + \frac{n}{\sqrt{P}} * T_w \right) \log(\sqrt{P}) + \sqrt{P} * T_h \\

- Computation time: \(n^2 / P \)

- Row summation: same time complexity as column broadcast

Speed-up(n,P) = \[
\frac{\frac{n^2}{P} + 2 \left(T_s + \frac{n}{\sqrt{P}} * T_w \right) \log(\sqrt{P}) + \sqrt{P} * T_h}{n^2}
\]

Some numbers for SP-1: \(T_s = 15,000 \quad T_h = 350 \)