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5. The Cholesky factorization

• positive (semi-)definite matrices

• examples

• the Cholesky factorization

• solving Ax = b with A positive definite

• inverse of a positive definite matrix

• permutation matrices

• sparse Cholesky factorization
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Positive (semi-)definite matrices

• A is positive definite if A is symmetric and

xTAx > 0 for all x 6= 0

• A is positive semidefinite if A is symmetric and

xTAx ≥ 0 for all x

Note: if A is symmetric of order n, then

xTAx =
n

∑

i=1

n
∑

j=1

aijxixj =
n

∑

i=1

aiix
2

i + 2
∑

i>j

aijxixj
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Examples

A1 =

[

9 6
6 5

]

, A2 =

[

9 6
6 4

]

, A3 =

[

9 6
6 3

]

• A1 is positive definite:

xTA1x = 9x2

1
+ 12x1x2 + 5x2

2
= (3x1 + 2x2)

2 + x2

2

• A2 is positive semidefinite but not positive definite:

xTA2x = 9x2

1
+ 12x1x2 + 4x2

2
= (3x1 + 2x2)

2

• A3 is not positive semidefinite:

xTA3x = 9x2

1
+ 12x1x2 + 3x2

2
= (3x1 + 2x2)

2 − x2

2
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Examples

• A = BTB for some matrix B

xTAx = xTBTBx = ‖Bx‖2

A is positive semidefinite

A is positive definite if B has a zero nullspace

• diagonal A
xTAx = a11x

2

1
+ a22x

2

2
+ · · · + annx2

n

A is positive semidefinite if its diagonal elements are nonnegative

A is positive definite if its diagonal elements are positive
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Another example

A =













1 −1 · · · 0 0
−1 2 · · · 0 0

... ... . . . ... ...
0 0 · · · 2 −1
0 0 · · · −1 1













A is positive semidefinite:

xTAx = (x1 − x2)
2 + (x2 − x3)

2 + · · · + (xn−1 − xn)2 ≥ 0

A is not positive definite:

xTAx = 0 for x = (1, 1, . . . , 1)
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Resistor circuit

y1 y2

x1 x2

R1 R2

R3

Circuit model: y = Ax with

A =

[

R1 + R3 R3

R3 R2 + R3

]

(R1, R2, R3 > 0)

Interpretation of xTAx = yTx

xTAx is the power delivered by the sources, dissipated by the resistors
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A is positive definite, i.e., xTAx > 0 for all nonzero x

• proof from physics:

power dissipated by the resistors is positive unless both currents are zero

• algebraic proof:

xTAx = (R1 + R3)x
2

1
+ 2R3x1x2 + (R2 + R3)x

2

2

= R1x
2

1
+ R2x

2

2
+ R3(x1 + x2)

2

≥ 0

and xTAx = 0 only if x1 = x2 = 0
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Properties

if A is positive definite of order n, then

• A has a zero nullspace

proof: xTAx > 0 for all nonzero x, hence Ax 6= 0 if x 6= 0

• the diagonal elements of A are positive

proof: aii = eT
i Aei > 0 (ei is the ith unit vector)

• A22 − (1/a11)A21A
T
21

is positive definite, where A =

[

a11 AT
21

A21 A22

]

proof: take any v 6= 0 and w = −(1/a11)A
T
21

v

vT

(

A22 −
1

a11

A21A
T
21

)

v =
[

w vT
]

[

a11 AT
21

A21 A22

] [

w
v

]

> 0
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Cholesky factorization

every positive definite matrix A can be factored as

A = LLT

where L is lower triangular with positive diagonal elements

Cost: (1/3)n3 flops if A is of order n

• L is called the Cholesky factor of A

• can be interpreted as ‘square root’ of a positive define matrix
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Cholesky factorization algorithm

partition matrices in A = LLT as

[

a11 AT
21

A21 A22

]

=

[

l11 0
L21 L22

] [

l11 LT
21

0 LT
22

]

=

[

l2
11

l11L
T
21

l11L21 L21L
T
21

+ L22L
T
22

]

Algorithm

1. determine l11 and L21:

l11 =
√

a11, L21 =
1

l11
A21

2. compute L22 from
A22 − L21L

T
21

= L22L
T
22

this is a Cholesky factorization of order n − 1
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Proof that the algorithm works for positive definite A of order n

• step 1: if A is positive definite then a11 > 0

• step 2: if A is positive definite, then

A22 − L21L
T
21

= A22 −
1

a11

A21A
T
21

is positive definite (see page 5–8)

• hence the algorithm works for n = m if it works for n = m − 1

• it obviously works for n = 1; therefore it works for all n
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Example





25 15 −5
15 18 0
−5 0 11



 =





l11 0 0
l21 l22 0
l31 l32 l33









l11 l21 l31
0 l22 l32
0 0 l33





• first column of L




25 15 −5
15 18 0
−5 0 11



 =





5 0 0
3 l22 0

−1 l32 l33









5 3 −1
0 l22 l32
0 0 l33





• second column of L
[

18 0
0 11

]

−
[

3
−1

]

[

3 −1
]

=

[

l22 0
l32 l33

] [

l22 l32
0 l33

]

[

9 3
3 10

]

=

[

3 0
1 l33

] [

3 1
0 l33

]
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• third column of L: 10 − 1 = l2
33

, i.e., l33 = 3

conclusion:





25 15 −5
15 18 0
−5 0 11



 =





5 0 0
3 3 0

−1 1 3









5 3 −1
0 3 1
0 0 3
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Solving equations with positive definite A

Ax = b (A positive definite of order n)

Algorithm

• factor A as A = LLT

• solve LLTx = b

– forward substitution Lz = b
– back substitution LTx = z

Cost: (1/3)n3 flops

• factorization: (1/3)n3

• forward substitution: n2

• backward substitution: n2
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Inverse of a positive definite matrix

suppose A is positive definite with Cholesky factorization A = LLT

• L is invertible (its diagonal is nonzero; see lecture 4)

• X = L−TL−1 is a right inverse of A:

AX = LLTL−TL−1 = LL−1 = I

• X = L−TL−1 is a left inverse of A:

XA = L−TL−1LLT = L−TLT = I

• hence, A is invertible and

A−1 = L−TL−1
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Summary

if A is positive definite of order n

• A can be factored as LLT

• the cost of the factorization is (1/3)n3 flops

• Ax = b can be solved in (1/3)n3 flops

• A is invertible: A−1 = L−TL−1

• A has a full range: Ax = b is solvable for all b

• A has a zero nullspace: xTAx > 0 for all nonzero x
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Sparse positive definite matrices

• a matrix is sparse if most of its elements are zero

• a matrix is dense if it is not sparse

Cholesky factorization of dense matrices

• (1/3)n3 flops

• on a current PC: a few seconds or less, for n up to a few 1000

Cholesky factorization of sparse matrices

• if A is very sparse, then L is often (but not always) sparse

• if L is sparse, the cost of the factorization is much less than (1/3)n3

• exact cost depends on n, #nonzero elements, sparsity pattern

• very large sets of equations (n ∼ 106) are solved by exploiting sparsity

The Cholesky factorization 5–17

Effect of ordering

Sparse equation (a is an (n − 1)-vector with ‖a‖ < 1)

[

1 aT

a I

] [

u
v

]

=

[

b
c

]

Factorization
[

1 aT

a I

]

=

[

1 0
a L22

] [

1 aT

0 LT
22

]

where I − aaT = L22L
T
22

= ×

factorization with 100% fill-in
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Reordered equation

[

I a
aT 1

] [

v
u

]

=

[

c
b

]

Factorization

[

I a
aT 1

]

=

[

I 0

aT
√

1 − aTa

] [

I a

0
√

1 − aTa

]

= ×

factorization with zero fill-in
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Permutation matrices

a permutation matrix is the identity matrix with its rows reordered, e.g.,





0 1 0
1 0 0
0 0 1



 ,





0 1 0
0 0 1
1 0 0





• the vector Ax is a permutation of x





0 1 0
0 0 1
1 0 0









x1

x2

x3



 =





x2

x3

x1





• ATx is the inverse permutation applied to x





0 0 1
1 0 0
0 1 0









x1

x2

x3



 =





x3

x1

x2





• ATA = AAT = I, so A is invertible and A−1 = AT
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Solving Ax = b when A is a permutation matrix

the solution of Ax = b is x = AT b

Example




0 1 0
0 0 1
1 0 0









x1

x2

x3



 =





1.5
10.0
−2.1





solution is x = (−2.1, 1.5, 10.0)

Cost: zero flops
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Sparse Cholesky factorization

if A is sparse and positive definite, it is usually factored as

A = PLLTPT

P a permutation matrix; L lower triangular with positive diagonal elements

Interpretation: we permute the rows and columns of A and factor

PTAP = LLT

• choice of P greatly affects the sparsity L

• many heuristic methods (that we don’t cover) exist for selecting good
permutation matrices P
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Example

sparsity pattern of A Cholesky factor of A

pattern of P TAP Cholesky factor of P TAP
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Solving sparse positive definite equations

solve Ax = b via factorization A = PLLTPT

Algorithm

1. b̃ := PT b

2. solve Lz = b̃ by forward substitution

3. solve LTy = z by back substitution

4. x := Py

Interpretation: we solve
(PTAP ) y = b̃

using the Cholesky factorization of PTAP
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