5. The Cholesky factorization

- positive (semi-)definite matrices
- examples
- the Cholesky factorization
- solving $A x=b$ with A positive definite
- inverse of a positive definite matrix
- permutation matrices
- sparse Cholesky factorization

Examples

$$
A_{1}=\left[\begin{array}{cc}
9 & 6 \\
6 & 5
\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}
9 & 6 \\
6 & 4
\end{array}\right], \quad A_{3}=\left[\begin{array}{ll}
9 & 6 \\
6 & 3
\end{array}\right]
$$

- A_{1} is positive definite:

$$
x^{T} A_{1} x=9 x_{1}^{2}+12 x_{1} x_{2}+5 x_{2}^{2}=\left(3 x_{1}+2 x_{2}\right)^{2}+x_{2}^{2}
$$

- A_{2} is positive semidefinite but not positive definite:

$$
x^{T} A_{2} x=9 x_{1}^{2}+12 x_{1} x_{2}+4 x_{2}^{2}=\left(3 x_{1}+2 x_{2}\right)^{2}
$$

- A_{3} is not positive semidefinite:

$$
x^{T} A_{3} x=9 x_{1}^{2}+12 x_{1} x_{2}+3 x_{2}^{2}=\left(3 x_{1}+2 x_{2}\right)^{2}-x_{2}^{2}
$$

- A is positive definite if A is symmetric and

$$
x^{T} A x>0 \text { for all } x \neq 0
$$

- A is positive semidefinite if A is symmetric and

$$
x^{T} A x \geq 0 \text { for all } x
$$

Note: if A is symmetric of order n, then

$$
x^{T} A x=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}=\sum_{i=1}^{n} a_{i i} x_{i}^{2}+2 \sum_{i>j} a_{i j} x_{i} x_{j}
$$

The Cholesky factorization

Examples

- $A=B^{T} B$ for some matrix B

$$
x^{T} A x=x^{T} B^{T} B x=\|B x\|^{2}
$$

A is positive semidefinite
A is positive definite if B has a zero nullspace

- diagonal A

$$
x^{T} A x=a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+\cdots+a_{n n} x_{n}^{2}
$$

A is positive semidefinite if its diagonal elements are nonnegative
A is positive definite if its diagonal elements are positive

Another example

$$
A=\left[\begin{array}{rrlrr}
1 & -1 & \cdots & 0 & 0 \\
-1 & 2 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 2 & -1 \\
0 & 0 & \cdots & -1 & 1
\end{array}\right]
$$

A is positive semidefinite:

$$
x^{T} A x=\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+\cdots+\left(x_{n-1}-x_{n}\right)^{2} \geq 0
$$

A is not positive definite:

$$
x^{T} A x=0 \text { for } x=(1,1, \ldots, 1)
$$

A is positive definite, i.e., $x^{T} A x>0$ for all nonzero x

- proof from physics:
power dissipated by the resistors is positive unless both currents are zero
- algebraic proof:

$$
\begin{aligned}
x^{T} A x & =\left(R_{1}+R_{3}\right) x_{1}^{2}+2 R_{3} x_{1} x_{2}+\left(R_{2}+R_{3}\right) x_{2}^{2} \\
& =R_{1} x_{1}^{2}+R_{2} x_{2}^{2}+R_{3}\left(x_{1}+x_{2}\right)^{2} \\
& \geq 0
\end{aligned}
$$

and $x^{T} A x=0$ only if $x_{1}=x_{2}=0$

Resistor circuit

Circuit model: $y=A x$ with

$$
A=\left[\begin{array}{cc}
R_{1}+R_{3} & R_{3} \\
R_{3} & R_{2}+R_{3}
\end{array}\right] \quad\left(R_{1}, R_{2}, R_{3}>0\right)
$$

Interpretation of $x^{T} A x=y^{T} x$
$x^{T} A x$ is the power delivered by the sources, dissipated by the resistors

The Cholesky factorization

Properties

if A is positive definite of order n, then

- A has a zero nullspace
proof: $x^{T} A x>0$ for all nonzero x, hence $A x \neq 0$ if $x \neq 0$
- the diagonal elements of A are positive proof: $a_{i i}=e_{i}^{T} A e_{i}>0\left(e_{i}\right.$ is the i th unit vector)
- $A_{22}-\left(1 / a_{11}\right) A_{21} A_{21}^{T}$ is positive definite, where $A=\left[\begin{array}{ll}a_{11} & A_{21}^{T} \\ A_{21} & A_{22}\end{array}\right]$ proof: take any $v \neq 0$ and $w=-\left(1 / a_{11}\right) A_{21}^{T} v$

$$
v^{T}\left(A_{22}-\frac{1}{a_{11}} A_{21} A_{21}^{T}\right) v=\left[\begin{array}{ll}
w & v^{T}
\end{array}\right]\left[\begin{array}{ll}
a_{11} & A_{21}^{T} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{c}
w \\
v
\end{array}\right]>0
$$

Cholesky factorization

every positive definite matrix A can be factored as

$$
A=L L^{T}
$$

where L is lower triangular with positive diagonal elements

Cost: $(1 / 3) n^{3}$ flops if A is of order n

- L is called the Cholesky factor of A
- can be interpreted as 'square root' of a positive define matrix

Proof that the algorithm works for positive definite A of order n

- step 1: if A is positive definite then $a_{11}>0$
- step 2: if A is positive definite, then

$$
A_{22}-L_{21} L_{21}^{T}=A_{22}-\frac{1}{a_{11}} A_{21} A_{21}^{T}
$$

is positive definite (see page 5-8)

- hence the algorithm works for $n=m$ if it works for $n=m-1$
- it obviously works for $n=1$; therefore it works for all n

Cholesky factorization algorithm

partition matrices in $A=L L^{T}$ as

$$
\begin{aligned}
{\left[\begin{array}{ll}
a_{11} & A_{21}^{T} \\
A_{21} & A_{22}
\end{array}\right] } & =\left[\begin{array}{cc}
l_{11} & 0 \\
L_{21} & L_{22}
\end{array}\right]\left[\begin{array}{cc}
l_{11} & L_{21}^{T} \\
0 & L_{22}^{T}
\end{array}\right] \\
& =\left[\begin{array}{cc}
l_{11}^{2} & l_{11} L_{21}^{T} \\
l_{11} L_{21} & L_{21} L_{21}^{T}+L_{22} L_{22}^{T}
\end{array}\right]
\end{aligned}
$$

Algorithm

1. determine l_{11} and L_{21}

$$
l_{11}=\sqrt{a_{11}}, \quad L_{21}=\frac{1}{l_{11}} A_{21}
$$

2. compute L_{22} from

$$
A_{22}-L_{21} L_{21}^{T}=L_{22} L_{22}^{T}
$$

this is a Cholesky factorization of order $n-1$

Example

$$
\left[\begin{array}{rrr}
25 & 15 & -5 \\
15 & 18 & 0 \\
-5 & 0 & 11
\end{array}\right]=\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
l_{11} & l_{21} & l_{31} \\
0 & l_{22} & l_{32} \\
0 & 0 & l_{33}
\end{array}\right]
$$

- first column of L

$$
\left[\begin{array}{rrr}
25 & 15 & -5 \\
15 & 18 & 0 \\
-5 & 0 & 11
\end{array}\right]=\left[\begin{array}{rcc}
5 & 0 & 0 \\
3 & l_{22} & 0 \\
-1 & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
5 & 3 & -1 \\
0 & l_{22} & l_{32} \\
0 & 0 & l_{33}
\end{array}\right]
$$

- second column of L

$$
\begin{gathered}
{\left[\begin{array}{rr}
18 & 0 \\
0 & 11
\end{array}\right]-\left[\begin{array}{r}
3 \\
-1
\end{array}\right]\left[\begin{array}{ll}
3 & -1
\end{array}\right]=\left[\begin{array}{cc}
l_{22} & 0 \\
l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{cc}
l_{22} & l_{32} \\
0 & l_{33}
\end{array}\right]} \\
{\left[\begin{array}{rr}
9 & 3 \\
3 & 10
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
1 & l_{33}
\end{array}\right]\left[\begin{array}{cc}
3 & 1 \\
0 & l_{33}
\end{array}\right]}
\end{gathered}
$$

- third column of $L: 10-1=l_{33}^{2}$, i.e., $l_{33}=3$ conclusion:

$$
\left[\begin{array}{rrr}
25 & 15 & -5 \\
15 & 18 & 0 \\
-5 & 0 & 11
\end{array}\right]=\left[\begin{array}{rrr}
5 & 0 & 0 \\
3 & 3 & 0 \\
-1 & 1 & 3
\end{array}\right]\left[\begin{array}{rrr}
5 & 3 & -1 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right]
$$

Inverse of a positive definite matrix

suppose A is positive definite with Cholesky factorization $A=L L^{T}$

- L is invertible (its diagonal is nonzero; see lecture 4)
- $X=L^{-T} L^{-1}$ is a right inverse of A :

$$
A X=L L^{T} L^{-T} L^{-1}=L L^{-1}=I
$$

- $X=L^{-T} L^{-1}$ is a left inverse of A :

$$
X A=L^{-T} L^{-1} L L^{T}=L^{-T} L^{T}=I
$$

- hence, A is invertible and

$$
A^{-1}=L^{-T} L^{-1}
$$

Sparse positive definite matrices

- a matrix is sparse if most of its elements are zero
- a matrix is dense if it is not sparse

Cholesky factorization of dense matrices

- $(1 / 3) n^{3}$ flops
- on a current PC: a few seconds or less, for n up to a few 1000

Cholesky factorization of sparse matrices

- if A is very sparse, then L is often (but not always) sparse
- if L is sparse, the cost of the factorization is much less than $(1 / 3) n^{3}$
- exact cost depends on n, \#nonzero elements, sparsity pattern
- very large sets of equations ($n \sim 10^{6}$) are solved by exploiting sparsity

The Cholesky factorization

Reordered equation

$$
\left[\begin{array}{cc}
I & a \\
a^{T} & 1
\end{array}\right]\left[\begin{array}{l}
v \\
u
\end{array}\right]=\left[\begin{array}{l}
c \\
b
\end{array}\right]
$$

Factorization

$$
\left[\begin{array}{cc}
I & a \\
a^{T} & 1
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
a^{T} & \sqrt{1-a^{T} a}
\end{array}\right]\left[\begin{array}{cc}
I & a \\
0 & \sqrt{1-a^{T} a}
\end{array}\right]
$$

factorization with zero fill-in

Effect of ordering

Sparse equation (a is an $(n-1$)-vector with $\|a\|<1$)

$$
\left[\begin{array}{cc}
1 & a^{T} \\
a & I
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
b \\
c
\end{array}\right]
$$

Factorization

$$
\left[\begin{array}{cc}
1 & a^{T} \\
a & I
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
a & L_{22}
\end{array}\right]\left[\begin{array}{cc}
1 & a^{T} \\
0 & L_{22}^{T}
\end{array}\right] \text { where } I-a a^{T}=L_{22} L_{22}^{T}
$$

factorization with 100% fill-in

The Cholesky factorization

Permutation matrices

a permutation matrix is the identity matrix with its rows reordered, e.g.,

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

- the vector $A x$ is a permutation of x

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{1}
\end{array}\right]
$$

- $A^{T} x$ is the inverse permutation applied to x

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{3} \\
x_{1} \\
x_{2}
\end{array}\right]
$$

- $A^{T} A=A A^{T}=I$, so A is invertible and $A^{-1}=A^{T}$

Solving $A x=b$ when A is a permutation matrix
the solution of $A x=b$ is $x=A^{T} b$

Example

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1.5 \\
10.0 \\
-2.1
\end{array}\right]
$$

solution is $x=(-2.1,1.5,10.0)$

Cost: zero flops

Example

Sparse Cholesky factorization

if A is sparse and positive definite, it is usually factored as

$$
A=P L L^{T} P^{T}
$$

P a permutation matrix; L lower triangular with positive diagonal elements Interpretation: we permute the rows and columns of A and factor

$$
P^{T} A P=L L^{T}
$$

- choice of P greatly affects the sparsity L
- many heuristic methods (that we don't cover) exist for selecting good permutation matrices P

[^0]
Solving sparse positive definite equations

solve $A x=b$ via factorization $A=P L L^{T} P^{T}$

Algorithm

1. $\tilde{b}:=P^{T} b$
2. solve $L z=\tilde{b}$ by forward substitution
3. solve $L^{T} y=z$ by back substitution
4. $x:=P y$

Interpretation: we solve

$$
\left(P^{T} A P\right) y=\tilde{b}
$$

using the Cholesky factorization of $P^{T} A P$

[^0]: The Cholesky factorization

