5. The Cholesky factorization

- positive (semi-)definite matrices
- examples
- the Cholesky factorization
- solving Ax = b with A positive definite
- inverse of a positive definite matrix
- permutation matrices
- sparse Cholesky factorization

• A is positive definite if A is symmetric and

$$x^T A x > 0$$
 for all $x \neq 0$

• A is positive semidefinite if A is symmetric and

 $x^T A x \ge 0$ for all x

Note: if A is symmetric of order n, then

$$x^{T}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}x_{i}x_{j} = \sum_{i=1}^{n} a_{ii}x_{i}^{2} + 2\sum_{i>j} a_{ij}x_{i}x_{j}$$

The Cholesky factorization

Examples

• $A = B^T B$ for some matrix B

$$x^T A x = x^T B^T B x = \|Bx\|^2$$

 \boldsymbol{A} is positive semidefinite

- \boldsymbol{A} is positive definite if \boldsymbol{B} has a zero nullspace
- diagonal A $x^T A x = a_{11} x_1^2 + a_{22} x_2^2 + \dots + a_{nn} x_n^2$

 \boldsymbol{A} is positive semidefinite if its diagonal elements are nonnegative

 \boldsymbol{A} is positive definite if its diagonal elements are positive

Examples

$$A_1 = \left[\begin{array}{cc} 9 & 6 \\ 6 & 5 \end{array} \right], \qquad A_2 = \left[\begin{array}{cc} 9 & 6 \\ 6 & 4 \end{array} \right], \qquad A_3 = \left[\begin{array}{cc} 9 & 6 \\ 6 & 3 \end{array} \right]$$

• A_1 is positive definite:

$$x^{T}A_{1}x = 9x_{1}^{2} + 12x_{1}x_{2} + 5x_{2}^{2} = (3x_{1} + 2x_{2})^{2} + x_{2}^{2}$$

• A_2 is positive semidefinite but not positive definite:

$$x^{T}A_{2}x = 9x_{1}^{2} + 12x_{1}x_{2} + 4x_{2}^{2} = (3x_{1} + 2x_{2})^{2}$$

• A_3 is not positive semidefinite:

5 - 1

Another example

$$A = \begin{bmatrix} 1 & -1 & \cdots & 0 & 0 \\ -1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 2 & -1 \\ 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$$

A is positive semidefinite:

$$x^{T}Ax = (x_{1} - x_{2})^{2} + (x_{2} - x_{3})^{2} + \dots + (x_{n-1} - x_{n})^{2} \ge 0$$

A is not positive definite:

$$x^T A x = 0$$
 for $x = (1, 1, \dots, 1)$

The Cholesky factorization

A is positive definite, *i.e.*,
$$x^T A x > 0$$
 for all nonzero x

• proof from physics:

power dissipated by the resistors is positive unless both currents are zero

• algebraic proof:

$$\begin{aligned} x^T A x &= (R_1 + R_3) x_1^2 + 2R_3 x_1 x_2 + (R_2 + R_3) x_2^2 \\ &= R_1 x_1^2 + R_2 x_2^2 + R_3 (x_1 + x_2)^2 \\ &\geq 0 \end{aligned}$$

and $x^T A x = 0$ only if $x_1 = x_2 = 0$

Resistor circuit

Circuit model: y = Ax with

$$A = \begin{bmatrix} R_1 + R_3 & R_3 \\ R_3 & R_2 + R_3 \end{bmatrix} \qquad (R_1, R_2, R_3 > 0)$$

Interpretation of $x^T A x = y^T x$ $x^T A x$ is the power delivered by the sources, dissipated by the resistors

The Cholesky factorization

Properties

if A is positive definite of order n, then

- A has a zero nullspace
 proof: x^TAx > 0 for all nonzero x, hence Ax ≠ 0 if x ≠ 0
- the diagonal elements of A are positive
 proof: a_{ii} = e_i^TAe_i > 0 (e_i is the *i*th unit vector)
- $A_{22} (1/a_{11})A_{21}A_{21}^T$ is positive definite, where $A = \begin{bmatrix} a_{11} & A_{21}^T \\ A_{21} & A_{22} \end{bmatrix}$ proof: take any $v \neq 0$ and $w = -(1/a_{11})A_{21}^T v$

$$v^{T}\left(A_{22} - \frac{1}{a_{11}}A_{21}A_{21}^{T}\right)v = \begin{bmatrix} w & v^{T} \end{bmatrix} \begin{bmatrix} a_{11} & A_{21}^{T} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} w \\ v \end{bmatrix} > 0$$

5-5

Cholesky factorization

every positive definite matrix \boldsymbol{A} can be factored as

 $A = LL^T$

where \boldsymbol{L} is lower triangular with positive diagonal elements

Cost: $(1/3)n^3$ flops if A is of order n

- *L* is called the *Cholesky factor* of *A*
- can be interpreted as 'square root' of a positive define matrix

The Cholesky factorization

5–9

Proof that the algorithm works for positive definite A of order n

- step 1: if A is positive definite then $a_{11} > 0$
- step 2: if A is positive definite, then

$$A_{22} - L_{21}L_{21}^T = A_{22} - \frac{1}{a_{11}}A_{21}A_{21}^T$$

is positive definite (see page 5-8)

- hence the algorithm works for $n=m \mbox{ if it works for } n=m-1$
- it obviously works for n = 1; therefore it works for all n

Cholesky factorization algorithm

partition matrices in $A = LL^T$ as

$$\begin{bmatrix} a_{11} & A_{21}^T \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} l_{11} & L_{21}^T \\ 0 & L_{22}^T \end{bmatrix}$$
$$= \begin{bmatrix} l_{11}^2 & l_{11}L_{21}^T \\ l_{11}L_{21} & L_{21}L_{21}^T + L_{22}L_{22}^T \end{bmatrix}$$

Algorithm

1. determine l_{11} and L_{21} :

$$l_{11} = \sqrt{a_{11}}, \qquad L_{21} = \frac{1}{l_{11}}A_{21}$$

2. compute L_{22} from

$$A_{22} - L_{21}L_{21}^T = L_{22}L_{22}^T$$

this is a Cholesky factorization of order $n-1 \label{eq:charge}$

The Cholesky factorization

Example

$$\begin{bmatrix} 25 & 15 & -5\\ 15 & 18 & 0\\ -5 & 0 & 11 \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0\\ l_{21} & l_{22} & 0\\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31}\\ 0 & l_{22} & l_{32}\\ 0 & 0 & l_{33} \end{bmatrix}$$

• first column of L

Γ	25	15	-5		5	0	0	7 F	5	3	-1	1
	15	18	0	=	3	l_{22}	0		0	l_{22}	l_{32}	
L	-5	0	11		-1	l_{32}	l_{33}		0	0	l_{33} _	

 $\bullet\,$ second column of L

$$\begin{bmatrix} 18 & 0 \\ 0 & 11 \end{bmatrix} - \begin{bmatrix} 3 \\ -1 \end{bmatrix} \begin{bmatrix} 3 & -1 \end{bmatrix} = \begin{bmatrix} l_{22} & 0 \\ l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{22} & l_{32} \\ 0 & l_{33} \end{bmatrix}$$
$$\begin{bmatrix} 9 & 3 \\ 3 & 10 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 1 & l_{33} \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 0 & l_{33} \end{bmatrix}$$

conclusion:

The Cholesky factorization

25	15	-5	[5	0	0 -	1 Г	5	3	-1]
15	18	0	=	3	3	0		0	3	1
-5	0	11		1	1	3		0	0	3

Solving equations with positive definite A

Ax = b (A positive definite of order n)

Algorithm

- factor A as $A = LL^T$
- solve $LL^T x = b$
 - forward substitution Lz = b
 - back substitution $L^T x = z$

Cost: $(1/3)n^3$ flops

- factorization: $(1/3)n^3$
- \bullet forward substitution: n^2
- backward substitution: $n^2 \$

The Cholesky factorization

Summary

if \boldsymbol{A} is positive definite of order \boldsymbol{n}

- A can be factored as LL^T
- the cost of the factorization is $(1/3)n^3$ flops
- Ax = b can be solved in $(1/3)n^3$ flops
- A is invertible: $A^{-1} = L^{-T}L^{-1}$
- A has a full range: Ax = b is solvable for all b
- A has a zero nullspace: $x^T A x > 0$ for all nonzero x

Inverse of a positive definite matrix

suppose A is positive definite with Cholesky factorization $A = LL^T$

- *L* is invertible (its diagonal is nonzero; see lecture 4)
- $X = L^{-T}L^{-1}$ is a right inverse of A:

$$AX = LL^{T}L^{-T}L^{-1} = LL^{-1} = L$$

• $X = L^{-T}L^{-1}$ is a left inverse of A:

$$XA = L^{-T}L^{-1}LL^T = L^{-T}L^T = I$$

• hence, A is invertible and

$$A^{-1} = L^{-T} L^{-1}$$

5-13

5-14

Sparse positive definite matrices

- a matrix is *sparse* if most of its elements are zero
- a matrix is *dense* if it is not sparse

Cholesky factorization of dense matrices

- $(1/3)n^3$ flops
- \bullet on a current PC: a few seconds or less, for n up to a few 1000

Cholesky factorization of sparse matrices

- if A is very sparse, then L is often (but not always) sparse
- if L is sparse, the cost of the factorization is much less than $(1/3)n^3$
- exact cost depends on n, #nonzero elements, sparsity pattern
- very large sets of equations ($n\sim 10^6)$ are solved by exploiting sparsity

The Cholesky factorization

5-17

Reordered equation

 $\left[\begin{array}{cc}I&a\\a^T&1\end{array}\right]\left[\begin{array}{c}v\\u\end{array}\right] = \left[\begin{array}{c}c\\b\end{array}\right]$

Factorization

factorization with zero fill-in

The Cholesky factorization

Effect of ordering

Sparse equation (a is an (n-1)-vector with ||a|| < 1)

$$\left[\begin{array}{cc} 1 & a^T \\ a & I \end{array}\right] \left[\begin{array}{c} u \\ v \end{array}\right] = \left[\begin{array}{c} b \\ c \end{array}\right]$$

Factorization

$$\begin{bmatrix} 1 & a^T \\ a & I \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a & L_{22} \end{bmatrix} \begin{bmatrix} 1 & a^T \\ 0 & L_{22}^T \end{bmatrix} \text{ where } I - aa^T = L_{22}L_{22}^T$$

factorization with 100% fill-in

The Cholesky factorization

Permutation matrices

a permutation matrix is the identity matrix with its rows reordered, e.g.,

ſ	0	1	0		0	1	0]
	1	0	0	,	0	0	1
	0	0	1 _		1	0	0

• the vector Ax is a permutation of x

0	1	0]	$\begin{bmatrix} x_1 \end{bmatrix}$		$\begin{bmatrix} x_2 \end{bmatrix}$
0	0	1	x_2	=	x_3
1	0	0	$\begin{bmatrix} x_3 \end{bmatrix}$		$\begin{bmatrix} x_1 \end{bmatrix}$

• $A^T x$ is the inverse permutation applied to x

•
$$A^T A = AA^T = I$$
, so A is invertible and $A^{-1} = A^T$

the solution of Ax = b is $x = A^T b$

Example

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 10.0 \\ -2.1 \end{bmatrix}$$

solution is x = (-2.1, 1.5, 10.0)

5-21

Example

Cholesky factor of A500L 250 Cholesky factor of $P^T A P$ 250 500L 250 500

Sparse Cholesky factorization

if A is sparse and positive definite, it is usually factored as

 $A = PLL^T P^T$

P a permutation matrix; L lower triangular with positive diagonal elements **Interpretation**: we permute the rows and columns of A and factor

 $P^T A P = L L^T$

- choice of P greatly affects the sparsity L
- many heuristic methods (that we don't cover) exist for selecting good permutation matrices P

The Cholesky factorization

Solving sparse positive definite equations

solve Ax = b via factorization $A = PLL^T P^T$

Algorithm

- 1. $\tilde{b} := P^T b$
- 2. solve $Lz = \tilde{b}$ by forward substitution
- 3. solve $L^T y = z$ by back substitution
- 4. x := Py

Interpretation: we solve

 $(P^T A P) u = \tilde{b}$

using the Cholesky factorization of $P^T A P$