EE103 (Fall 2008-09) Positive (semi-)definite matrices
5. The Cholesky factorization
e A is positive definite if A is symmetric and
e positive (semi-)definite matrices

zT Az > 0 forall z # 0
e examples

e the Cholesky factorization e A is positive semidefinite if A is symmetric and
e solving Az = b with A positive definite " Az >0 for all z

e inverse of a positive definite matrix . . .
Note: if A is symmetric of order n, then

n n n
CCTASC = E E AijT;T5 = E a”xf +2 E Qi TiT
1=1

e sparse Cholesky factorization i=1 j=1 i>j

e permutation matrices
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Examples Examples

9 6 9 6
A1_|:6 5:|7 A2_|:6 4:|7 A3_|:

e A is positive definite:

] e A = BT B for some matrix B

S ©

2" Az = 2" BT B2 = || Bx|?

T 5 ) 5 5 A is positive semidefinite
x* A1z = 927 + 12z129 + 525 = (321 + 222)° + 25
A is positive definite if B has a zero nullspace

e A, is positive semidefinite but not positive definite:

e diagonal A
2T Ay = Qx% + 122120 + 43:% = (321 + 225)2 2T Ax = a1 + agoxs 4 - + anna:i

) . o A is positive semidefinite if its diagonal elements are nonnegative
e Aj is not positive semidefinite:
A is positive definite if its diagonal elements are positive

ol Azz = 927 + 122120 + 323 = (321 + 220)% — 23
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Another example

1 -1 0 0
-1 2 0 0
A= : :
0 0 2 -1
0 0 -1 1

A is positive semidefinite:

2T Az = (21 — 22)* + (2 — 23)* + -+ (Tp_1 — 7,)2 >0

A is not positive definite:

2T Az =0 forz = (1,1,...,1)
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A is positive definite, i.e., 27 Az > 0 for all nonzero x

e proof from physics:

power dissipated by the resistors is positive unless both currents are zero

e algebraic proof:

xT Az

(Ry + Rg)I% + 2R3z120 + (R2 + Rg)x%
Rlx% + RQJJ% + Rg(l‘l + $2)2
> 0

and zTAz =0only if z; =29 =0
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Resistor circuit

Ry Ry

X1 /\/\N\l /\/\N\l X2

Circuit model: y = Az with

_ R1+ R3 Rs

A
Rs Ry + R3

(Rl, RQ, Rg > 0)

Interpretation of v7 Az = 'z

2T Az is the power delivered by the sources, dissipated by the resistors
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Properties
if A is positive definite of order n, then

e A has a zero nullspace

proof: T Az > 0 for all nonzero x, hence Az # 0 if x # 0

e the diagonal elements of A are positive

proof: a;; = el Ae; > 0 (e; is the ith unit vector)

T
o Ayy — (1/ay1)A21 AL is positive definite, where A = an Ay
Ay Ap

proof: take any v # 0 and w = —(1/ay1) AL v
v (A fiA AT v:[w UT] an Ay Ylso
22 ail 221 Ay Aa v
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Cholesky factorization

every positive definite matrix A can be factored as
A=LL"

where L is lower triangular with positive diagonal elements

Cost: (1/3)n? flops if A is of order n

e [ is called the Cholesky factor of A

e can be interpreted as ‘square root’ of a positive define matrix
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Proof that the algorithm works for positive definite A of order n

e step 1: if A is positive definite then ay; > 0

e step 2: if A is positive definite, then
T 1 T
Agg — Lo1 Ly = Ao — aTlAzlAgl

is positive definite (see page 5-8)
e hence the algorithm works for n = m if it works for n =m — 1

e it obviously works for n = 1; therefore it works for all n
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Cholesky factorization algorithm
partition matrices in A = LLT as
a;n AL ln O ln L3,
Ay Ass Loy Lo 0 L3,
_ % li1Lg,
linLor LoiLg; + LaoL3,
Algorithm

1. determine [1; and Loy:

1
li1 = +V/aqu, Loy = TA21
11

2. compute Lo from
Agy — Loy LY, = LapL3,

this is a Cholesky factorization of order n — 1
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Example
25 15 -5 l11 0 0 l11 121 l31
15 18 0| =1|1ln la O 0 lag I3
-5 0 11 l31 l32 133 0 0 l33
e first column of L

25 15 =5 5 0 0 5 3 -1

15 18 0| = 3 loy O 0 log 39

) 0 11 —1 l32 l33 0 0 l33

e second column of L
18 0 3 |l O l22

{ 0 11]_{1}[3 _1]_{&2 lgsH 0

9 3

3 10
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e third column of L: 10 — 1 =12, i.e., l33 =3

conclusion:
25 15 -5 5 0 0 5 3 -1
15 18 0= 3 30 0 3 1
-5 0 11 -1 1 3 0 0
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Inverse of a positive definite matrix

suppose A is positive definite with Cholesky factorization A = LLT

e [ is invertible (its diagonal is nonzero; see lecture 4)
e X = L "L Vs a right inverse of A:

AX =LL'L "L '=LL7'=1

e X =L TL1is a left inverse of A:

XA=L"TL 'L =0"T" =1

e hence, A is invertible and

At =T
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Solving equations with positive definite A

Az =10 (A positive definite of order n)

Algorithm

e factor Aas A=LLT
e solve LLTz =1

— forward substitution Lz = b
— back substitution LTz = z

Cost: (1/3)n? flops

e factorization: (1/3)n?

e forward substitution: n?

e backward substitution: n?
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Summary
if A is positive definite of order n
e A can be factored as LL”
e the cost of the factorization is (1/3)n? flops
e Az = b can be solved in (1/3)n? flops

A is invertible: A= =~ T[-1

A has a full range: Ax = b is solvable for all b

e A has a zero nullspace: 27 Az > 0 for all nonzero x
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Sparse positive definite matrices

e a matrix is sparse if most of its elements are zero

e a matrix is dense if it is not sparse

Cholesky factorization of dense matrices

o (1/3)n? flops

e on a current PC: a few seconds or less, for n up to a few 1000
Cholesky factorization of sparse matrices

e if A is very sparse, then L is often (but not always) sparse
e if L is sparse, the cost of the factorization is much less than (1/3)n?
e exact cost depends on n, #nonzero elements, sparsity pattern

e very large sets of equations (n ~ 10°) are solved by exploiting sparsity
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Reordered equation

Factorization

factorization with zero fill-in
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Effect of ordering

Sparse equation (a is an (n — 1)-vector with |la| < 1)

1 ot u| |b
a I v | | ¢
Factorization

1 ot (1 0 1 a” T T
{a I }__a ng}{O L,QTQ}WhereIaa = LooL3,

factorization with 100% fill-in
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Permutation matrices

a permutation matrix is the identity matrix with its rows reordered, e.g.,

01 0 01 0
10 0{, 0 0 1
0 0 1 1 00
e the vector Az is a permutation of x
[0 1 0] [ oy | [ 2y ]|
0 0 1 To = T3
L 1 0 O 1L X3 ] L X ]
e ATz is the inverse permutation applied to x
[0 0 1] [ar ] [ 3]
1 0 0 To = T
L 0 1 0 1L I3 i i T

e ATA = AAT =1, so A is invertible and A=1 = AT
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Solving Az = b when A is a permutation matrix

the solution of Ax =bis x = ATh

Example
01 0 X
0 0 1 To | =
solution is z = (—2.1,1.5,10.0)
Cost: zero flops
The Cholesky factorization
Example

sparsity pattern of A

pattern of PTAP

250
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1.5
10.0
-2.1

Cholesky factor of A

250} =

500
[}

Cholesky factor of PT AP

0

250

250 500
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Sparse Cholesky factorization

if A is sparse and positive definite, it is usually factored as
A= PLLTPT

P a permutation matrix; L lower triangular with positive diagonal elements

Interpretation: we permute the rows and columns of A and factor

PTAP =LL"

e choice of P greatly affects the sparsity L

e many heuristic methods (that we don't cover) exist for selecting good
permutation matrices P
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Solving sparse positive definite equations
solve Az = b via factorization A = PLLT PT

Algorithm
1. b:=PT
2. solve Lz = b by forward substitution

3. solve LTy = = by back substitution
4. .= Py

Interpretation: we solve B
(PTAP)y=b

using the Cholesky factorization of PT AP
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