5. The Cholesky factorization

- positive (semi-)definite matrices
- examples
- the Cholesky factorization
- solving $Ax = b$ with A positive definite
- inverse of a positive definite matrix
- permutation matrices
- sparse Cholesky factorization

Positive (semi-)definite matrices

- A is positive definite if A is symmetric and
 \[x^T A x > 0 \text{ for all } x \neq 0 \]
- A is positive semidefinite if A is symmetric and
 \[x^T A x \geq 0 \text{ for all } x \]

Note: if A is symmetric of order n, then

\[x^T A x = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{i>j} a_{ij} x_i x_j \]

Examples

\[A_1 = \begin{bmatrix} 9 & 6 \\ 6 & 5 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 9 & 6 \\ 6 & 4 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 9 & 6 \\ 6 & 3 \end{bmatrix} \]

- A_1 is positive definite:
 \[x^T A_1 x = 9x_1^2 + 12x_1x_2 + 5x_2^2 = (3x_1 + 2x_2)^2 + x_2^2 \]
- A_2 is positive semidefinite but not positive definite:
 \[x^T A_2 x = 9x_1^2 + 12x_1x_2 + 4x_2^2 = (3x_1 + 2x_2)^2 \]
- A_3 is not positive semidefinite:
 \[x^T A_3 x = 9x_1^2 + 12x_1x_2 + 3x_2^2 = (3x_1 + 2x_2)^2 - x_2^2 \]

Examples

- $A = B^T B$ for some matrix B
 \[x^T A x = x^T B^T B x = \| B x \|^2 \]
 A is positive semidefinite
 A is positive definite if B has a zero nullspace
- diagonal A
 \[x^T A x = a_{11} x_1^2 + a_{22} x_2^2 + \cdots + a_{nn} x_n^2 \]
 A is positive semidefinite if its diagonal elements are nonnegative
 A is positive definite if its diagonal elements are positive
Another example

\[
A = \begin{bmatrix}
1 & -1 & \cdots & 0 & 0 \\
-1 & 2 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 2 & -1 \\
0 & 0 & \cdots & -1 & 1 \\
\end{bmatrix}
\]

\(A\) is positive semidefinite:

\[
x^T A x = (x_1 - x_2)^2 + (x_2 - x_3)^2 + \cdots + (x_{n-1} - x_n)^2 \geq 0
\]

\(A\) is not positive definite:

\[
x^T A x = 0 \text{ for } x = (1, 1, \ldots, 1)
\]

Resistor circuit

Circuit model: \(y = Ax\) with

\[
A = \begin{bmatrix}
R_1 + R_3 & R_3 \\
R_3 & R_2 + R_3 \\
\end{bmatrix} \quad (R_1, R_2, R_3 > 0)
\]

Interpretation of \(x^T A x = y^T x\)

\(x^T A x\) is the power delivered by the sources, dissipated by the resistors

Properties

if \(A\) is positive definite of order \(n\), then

- \(A\) has a zero nullspace

 \[
 \text{proof: } x^T A x > 0 \text{ for all nonzero } x, \text{ hence } Ax \neq 0 \text{ if } x \neq 0
 \]

- the diagonal elements of \(A\) are positive

 \[
 \text{proof: } a_{ii} = e_i^T A e_i > 0 \quad (e_i \text{ is the } i\text{th unit vector})
 \]

- \(A_{22} - (1/a_{11})A_{21}A_{21}^T\) is positive definite, where \(A = \begin{bmatrix}
a_{11} & A_{21}^T \\
A_{21} & A_{22} \\
\end{bmatrix}\)

 \[
 \text{proof: } \text{take any } v \neq 0 \text{ and } w = -(1/a_{11})A_{21}^T v
 \]

 \[
 v^T \left(A_{22} - \frac{1}{a_{11}} A_{21}A_{21}^T \right) v = \begin{bmatrix} w \ v^T \end{bmatrix} \begin{bmatrix}
a_{11} & A_{21}^T \\
A_{21} & A_{22} \\
\end{bmatrix} \begin{bmatrix} w \\ v \end{bmatrix} > 0
 \]
Cholesky factorization

every positive definite matrix \(A \) can be factored as

\[
A = LL^T
\]

where \(L \) is lower triangular with positive diagonal elements

Cost: \((1/3)n^3\) flops if \(A \) is of order \(n \)

- \(L \) is called the **Cholesky factor** of \(A \)
- can be interpreted as 'square root' of a positive definite matrix

Proof that the algorithm works for positive definite \(A \) of order \(n \)

- step 1: if \(A \) is positive definite then \(a_{11} > 0 \)
- step 2: if \(A \) is positive definite, then

\[
A_{22} - L_{21}L_{21}^T = A_{22} - \frac{1}{a_{11}} A_{21}A_{21}^T
\]

is positive definite (see page 5–8)

- hence the algorithm works for \(n = m \) if it works for \(n = m - 1 \)
- it obviously works for \(n = 1 \); therefore it works for all \(n \)

Example

\[
\begin{bmatrix}
25 & 15 & -5 \\
15 & 18 & 0 \\
-5 & 0 & 11
\end{bmatrix} = \begin{bmatrix}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{bmatrix} \begin{bmatrix}
l_{11} & l_{21} & l_{31} \\
l_{21} & l_{22} & l_{32} \\
l_{31} & l_{32} & l_{33}
\end{bmatrix}
\]

- first column of \(L \)

\[
\begin{bmatrix}
25 & 15 & -5 \\
15 & 18 & 0 \\
-5 & 0 & 11
\end{bmatrix} = \begin{bmatrix}
5 & 0 & 0 \\
3 & l_{22} & 0 \\
-1 & l_{32} & l_{33}
\end{bmatrix} \begin{bmatrix}
5 & 3 & -1 \\
0 & l_{22} & l_{32} \\
0 & 0 & l_{33}
\end{bmatrix}
\]

- second column of \(L \)

\[
\begin{bmatrix}
18 & 0 \\
0 & 11
\end{bmatrix} - \begin{bmatrix}
3 \\
-1
\end{bmatrix} \begin{bmatrix}
l_{22} & 0 \\
l_{32} & l_{33}
\end{bmatrix} = \begin{bmatrix}
l_{22} & 0 \\
l_{32} & l_{33}
\end{bmatrix} \begin{bmatrix}
l_{22} & l_{32} \\
l_{32} & l_{33}
\end{bmatrix}
\]

\[
\begin{bmatrix}
9 & 3 \\
3 & 10
\end{bmatrix} = \begin{bmatrix}
3 & 0 \\
1 & l_{33}
\end{bmatrix} \begin{bmatrix}
3 & 1 \\
0 & l_{33}
\end{bmatrix}
\]

Cholesky factorization algorithm

partition matrices in \(A = LL^T \) as

\[
\begin{bmatrix}
a_{11} & A_{21}^T \\
A_{21} & A_{22}
\end{bmatrix} = \begin{bmatrix}
l_{11} & 0 \\
L_{21} & L_{22}
\end{bmatrix} \begin{bmatrix}
l_{11} & L_{21}^T \\
L_{21} & L_{22}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
l_{11}^2 & l_{11}L_{21}^T \\
l_{11}L_{21} & l_{11}L_{21} + L_{22}
\end{bmatrix}
\]

Algorithm

1. determine \(l_{11} \) and \(L_{21} \): \(l_{11} = \sqrt{a_{11}}, \quad L_{21} = \frac{1}{l_{11}} A_{21} \)

2. compute \(L_{22} \) from

\[
A_{22} - L_{21}L_{21}^T = L_{22}L_{22}^T
\]

this is a Cholesky factorization of order \(n - 1 \)
• third column of L: $10 - 1 = l_{33}^2$, i.e., $l_{33} = 3$

Conclusion:

\[
\begin{bmatrix}
25 & 15 & -5 \\
15 & 18 & 0 \\
-5 & 0 & 11
\end{bmatrix} =
\begin{bmatrix}
5 & 0 & 0 \\
3 & 3 & 0 \\
-1 & 1 & 3
\end{bmatrix}
\begin{bmatrix}
5 & 3 & -1 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{bmatrix}
\]

Solving equations with positive definite A

$Ax = b$ \hspace{1em} (A positive definite of order n)

Algorithm

- factor A as $A = LL^T$
- solve $LL^Tx = b$
 - forward substitution $Lz = b$
 - back substitution $L^Tx = z$

Cost: $(1/3)n^3$ flops

- factorization: $(1/3)n^3$
- forward substitution: n^2
- backward substitution: n^2

Inverse of a positive definite matrix

suppose A is positive definite with Cholesky factorization $A = LL^T$

- L is invertible (its diagonal is nonzero; see lecture 4)
- $X = L^{-T}L^{-1}$ is a right inverse of A:
 \[
 AX = LL^T L^{-T} L^{-1} = LL^{-1} = I
 \]
- $X = L^{-T}L^{-1}$ is a left inverse of A:
 \[
 XA = L^{-T}L^{-1} LL^T = L^{-T}L^T = I
 \]
- hence, A is invertible and
 \[
 A^{-1} = L^{-T}L^{-1}
 \]

Summary

if A is positive definite of order n

- A can be factored as LL^T
- the cost of the factorization is $(1/3)n^3$ flops
- $Ax = b$ can be solved in $(1/3)n^3$ flops
- A is invertible: $A^{-1} = L^{-T}L^{-1}$
- A has a full range: $Ax = b$ is solvable for all b
- A has a zero nullspace: $x^TAx > 0$ for all nonzero x
Sparse positive definite matrices

- a matrix is \textit{sparse} if most of its elements are zero
- a matrix is \textit{dense} if it is not sparse

Cholesky factorization of dense matrices

- \((1/3)n^3\) flops
- on a current PC: a few seconds or less, for \(n\) up to a few 1000

Cholesky factorization of sparse matrices

- if \(A\) is very sparse, then \(L\) is often (but not always) sparse
- if \(L\) is sparse, the cost of the factorization is much less than \((1/3)n^3\)
- exact cost depends on \(n\), \#nonzero elements, sparsity pattern
- very large sets of equations \((n \sim 10^6)\) are solved by exploiting sparsity

Permutation matrices

- a permutation matrix is the identity matrix with its rows reordered, e.g.,
 \[
 \begin{bmatrix}
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 0 & 0 & 1 \\
 \end{bmatrix},
 \begin{bmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 1 & 0 & 0 \\
 \end{bmatrix}
 \]
- the vector \(Ax\) is a permutation of \(x\)
 \[
 \begin{bmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 1 & 0 & 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 x_2 \\
 x_3 \\
 x_1 \\
 \end{bmatrix}
 \]
- \(A^T x\) is the inverse permutation applied to \(x\)
 \[
 \begin{bmatrix}
 0 & 0 & 1 \\
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 x_3 \\
 x_1 \\
 x_2 \\
 \end{bmatrix}
 \]
- \(A^T A = AA^T = I\), so \(A\) is invertible and \(A^{-1} = A^T\)
Solving \(Ax = b \) when \(A \) is a permutation matrix

The solution of \(Ax = b \) is \(x = A^Tb \)

Example

\[
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} =
\begin{bmatrix}
1.5 \\
10.0 \\
-2.1
\end{bmatrix}
\]

Solution is \(x = (-2.1, 1.5, 10.0) \)

Cost: zero flops

Sparse Cholesky factorization

If \(A \) is sparse and positive definite, it is usually factored as

\[
A = PLL^T P^T
\]

\(P \) a permutation matrix; \(L \) lower triangular with positive diagonal elements

Interpretation: we permute the rows and columns of \(A \) and factor

\[
P^T AP = LL^T
\]

- choice of \(P \) greatly affects the sparsity \(L \)
- many heuristic methods (that we don’t cover) exist for selecting good permutation matrices \(P \)

Solving sparse positive definite equations

Solve \(Ax = b \) via factorization \(A = PLL^T P^T \)

Algorithm

1. \(\tilde{b} := P^Tb \)
2. solve \(Lz = \tilde{b} \) by forward substitution
3. solve \(L^Ty = z \) by back substitution
4. \(x := Py \)

Interpretation: we solve

\[
(P^T AP)y = \tilde{b}
\]

using the Cholesky factorization of \(P^T AP \)