
1

Abstractions for algorithms
and parallel machines

Keshav Pingali

University of Texas, Austin

High-level idea

• Difficult to work directly with textual programs
– Where is the parallelism in the program?

– Solution: use an abstraction of the program that
highlights opportunities for exploiting parallelism

– What program abstractions are useful?

• Difficult to work directly with a parallel machine
– Solution: use an abstraction of the machine that

exposes features that you want to exploit and hides
features you cannot or do not want to exploit

– What machine abstractions are useful?

Abstractions introduced in lecture

• Program abstraction: computation graph
– nodes are computations

• granularity of nodes can range from single operators (+,*,etc.) to
arbitrarily large computations

– edges are precedence constraints of some kind
• edge a  b may mean computation a must be performed before

computation b
– many variations in the literature

• imperative languages community:
– data-dependence graphs, program dependence graphs

• functional languages community
– dataflow graphs

• Machine abstraction: PRAM
– parallel RAM model
– exposes parallelism
– hides synchronization and communication

Computation DAG’s

• DAG with START and END nodes
– all nodes reachable from START
– END reachable from all nodes
– START and END are not essential

• Nodes are computations
– each computation can be executed by

a processor in some number of time-
steps

– computation may require
reading/writing shared-memory

– node weight: time taken by a processor
to perform that computation

– wi is weight of node i
• Edges are precedence constraints

– nodes other than START can be
executed only after immediate
predecessors in graph have been
executed

– known as dependences
• Very old model:

– PERT charts (late 50’s):
• Program Evaluation and Review

Technique
• developed by US Navy to manage

Polaris submarine contracts

i

START

END

Computation DAG

Processors

1

P

…

M
e

m
o

ry

wi

2

Computer model
• P identical processors
• Memory

– processors have local memory
– all shared-data is stored in global memory

• How does a processor know which nodes it
must execute?

– work assignment
• How does a processor know when it is safe

to execute a node?
– (eg) if P1 executes node a and P2 executes

node b, how does P2 know when P1 is done?
– synchronization

• For now, let us defer these questions
• In general, time to execute program depends

on work assignment
– for now, assume only that if there is an idle

processor and a ready node, that node is
assigned immediately to an idle processor

• TP = best possible time to execute program
on P processors

START

END

Computation DAG

Processors

1

P

…

M
e

m
o

ry

a

b

Work and critical path

• Work = Σ i wi
– time required to execute

program on one processor
= T1

• Path weight
– sum of weights of nodes on

path

• Critical path
– path from START to END

that has maximal weight
– this work must be done

sequentially, so you need
this much time regardless
of how many processors
you have

– call this T∞

START

END

Data

Computation DAG

Processors

1

P

…
wi

Unbounded number of processors

• Instantaneous parallelism
IP(t) = maximum number of

processors that can be kept
busy at each point in execution
of algorithm

• Maximal parallelism
MP = highest instantaneous
parallelism

• Average parallelism
AP = T1/T∞

• These are properties of the
computation DAG, not of the
machine or the work assignment

1

2
3

time

1

1

1

1

1

1

1

1

1

1

Instantaneous and average parallelism

Computing critical path etc.

• Algorithm for computing earliest start times of nodes
– Keep a value called minimum-start-time (mst) with each node,

initialized to 0
– Do a topological sort of the DAG

• ignoring node weights

– For each node n ( START) in topological order
• for each node p in predecessors(n)

– mstn = max(mstn, mstp + wp)

• Complexity = O(|V|+|E|)
• Critical path and instantaneous, maximal and average

parallelism can easily be computed from this

3

Speed-up

• Speed-up(P) = T1/TP

– intuitively, how much faster is it to execute
program on P processors than on 1
processor?

• Bound on speed-up
– regardless of how many processors you have,

you need at least T∞ units of time
– speed-up(P) ≤ T1/T∞ = Σ iwi /CP = AP

Amdahl’s law

• Amdahl:
– suppose a fraction p of a program can be done in parallel
– suppose you have an unbounded number of parallel processors

and they operate infinitely fast
– speed-up will be at most 1/(1-p).

• Follows trivially from previous result.
• Plug in some numbers:

– p = 90%  speed-up ≤ 10
– p = 99%  speed-up ≤ 100

• To obtain significant speed-up, most of the program
must be performed in parallel
– serial bottlenecks can really hurt you

Scheduling on finite number of processors

• Suppose P ≤ MP (more
work than cores)

• There will be times during
the execution when only
a subset of “ready” nodes
can be executed.

• Time to execute DAG can
depend on which subset
of P nodes is chosen for
execution.

• To understand this better,
it is useful to have a more
formal model of the
machine

1

2
3

time

1

1

1

1

1

1

1

1

1

1

What if we only had 2 processors?

PRAM Model

• Parallel Random Access
Machine (PRAM)

• Natural extension of RAM
model

• Processors operate
synchronously (in lock-step)
– synchronization in architecture

• Each processor has private
memory

Shared memory

P1 P2 …… Pp

4

Details

• A PRAM step has three phases
– read: each processor can read a value from shared-memory
– compute: each processor can perform a computation on local

values
– write: each processor can write a value to shared-memory

• Variations:
– Exclusive read, exclusive write (EREW)

• a location can be read or written by only one processor in each step
– Concurrent read, exclusive write (CREW)
– Concurrent read, concurrent write (CRCW)

• some protocol for deciding result of concurrent writes

• We will use the CREW variation
– assume that computation graph ensures exclusive writes

Schedules

0 1 2 3 4

P0 START a c END

P1 b d

START

END

a b c

d

0 1 2 3 4

P0 START a b d END

P1 c

Schedule 2

Schedule 1

P0

P1

1

1 1 1

1

1

Intuition: nodes along the critical path should be given preference in scheduling

Schedule: function from node to (processor, start time)
Also known as “space-time mapping”

sp
a

ce

time

time

sp
a

ce

Optimal schedules

• Optimal schedule
– shortest possible schedule for a given DAG and the given number of

processors
• Complexity of finding optimal schedules

– one of the most studied problems in CS
• DAG is a tree:

– level-by-level schedule is optimal (Aho, Hopcroft)
• General DAGs

– variable number of processors (number of processors is input to
problem): NP-complete

– fixed number of processors
• 2 processors: polynomial time algorithm
• 3,4,5…: complexity is unknown!

• Many heuristics available in the literature

Heuristic: list scheduling

• Maintain a list of nodes that are ready to execute
– all predecessor nodes have completed execution

• Fill in the schedule cycle-by-cycle
– in each cycle, choose nodes from ready list
– use heuristics to choose “best” nodes in case you cannot

schedule all the ready nodes

• One popular heuristic:
– assign node priorities before scheduling
– priority of node n:

• weight of maximal weight path from n to END
• intuitively, the “further” a node is from END, the higher its priority

5

List scheduling algorithm
cycle c = 0;
ready-list = {START};
inflight-list = { };
while (|ready-list|+|inflight-list| > 0) {

for each node n in ready-list in priority order {
if (a processor is free at this cycle) {

remove n from ready-list and add to inflight-list;
add node to schedule at time cycle;

}
else break;

}
c = c + 1; //increment time
for each node n in inflight-list {

if (n finishes at time cycle) {
remove n from inflight-list;

add every ready successor of n in DAG to ready-list
}

}
}

Example

0 1 2 3 4

P0 START a c END

P1 b d

START

END

a b c

d

P0

P1

1

1 1 1

1

1

sp
a

ce

time

1

2

2 3 2

4

Heuristic picks the good schedule

Not always guaranteed to produce optimal schedule
(otherwise we would have a polynomial time algorithm!)

Applying scheduling theory in practice
• What should a node be?

– fine-grain: operation like +,*,…
– coarse-grain: single loop iteration
– very coarse-grain: outer loop iteration
– …

• How do we determine the edges between nodes in DAG?
– make user specify them
– let compiler deduce them from sequential program
– …..

• How do we determine how long each node takes to execute?
– ask user to tell us
– use a model
– profiling
– …..

• Binding time:
– when do we know this information?
– consider two applications

• VLIW scheduling: information is known at compile-time
• Multicore scheduling: node + edges known statically, node execution time known

only at runtime

Compile-time scheduling:
VLIW machines

START

END

a b c

d

• Processors  functional units
• Local memories  registers
• Global memory  memory
• Time  instruction
DAG scheduling:
• Nodes in DAG are basic block

operations (load/store/add/mul/..)
– instruction-level parallelism

• Edges: determined by compiler
• Execution time of operation

– known except for loads

Ops

Instruction

6

Increasing basic block size

• Basic blocks are fairly small
– about 5 RISC operations on the average

• Many solutions for increasing scheduling
scope
– loop unrolling
– trace scheduling: move operations past branches
– predicated execution
– ….

• DAG scheduling is used extensively in
compilers for pipelines, superscalar and
VLIW machines

Historical note on VLIW processors

• Ideas originated in late 70’s-early 80’s
• Two key people:

– Bob Rau (Stanford,UIUC, TRW,
Cydrome, HP)

– Josh Fisher (NYU,Yale, Multiflow, HP)
• Bob Rau’s contributions:

– transformations for making basic blocks
larger:

• predication
• software pipelining

– hardware support for these techniques
• predicated execution
• rotating register files

– most of these ideas were later
incorporated into the Intel Itanium
processor

• Josh Fisher:
– transformations for making basic blocks

larger:
• trace scheduling: uses key idea of

branch probabilities
– Multiflow compiler used loop unrolling

Bob Rau

Josh Fisher

DAG scheduling for multicores
• Reality:

– hard to build single cycle memory that can be
accessed by large numbers of cores

• Architectural change
– decouple cores so there is no notion of a global

step
– each core/processor has its own PC and cache
– memory is accessed independently by each core

• New problem:
– since cores do not operate in lock-step, how does

a core know when it is safe to execute a node?
• Solution: software synchronization

– one solution: flag associated with each edge
– written by processor that executes source of edge
– read by processor that executes destination of

edge
• Software synchronization increases overhead

of parallel execution
 cannot afford to synchronize at the instruction

level
 nodes of DAG must be coarse-grain: loop

iterations

START

END

a b c

d

P0: a
P1: b
P2: c d

How does P2 know when
P0 and P1 are done?

Increasing granularity:
Block Matrix Algorithms

C00 = A00*B00 + A01*B10
C01 = A01*B11 + A00*B01
C11 = A11*B01 + A10*B01
C10 = A10*B00 + A11*B10

A00 A01

A11A10

C00 C01

C11C10

B00 B01

B11B10

Original matrix multiplication

for I = 1,N
for J = 1,N

for K = 1,N
C(I,J)= C(I,J)+A(I,K)*B(K,J)

Block (tiled) matrix multiplication

for IB = 1,N step B
for JB = 1,N step B

for KB = 1,N step B
for I = IB, IB+B-1

for J = JB, JB+B-1
for K = KB, KB+B-1

C(I,J) = C(I,J)+A(I,K)*B(K,J)

parallel loops

7

New problem

• Difficult to get accurate execution times of
coarse-grain nodes
– conditional inside loop iteration
– cache misses
– exceptions
– O/S processes
– ….

• Solution: runtime scheduling

Example: DAGuE

• Dongarra et al (UTK)
• Programming model for specifying DAGs for

parallel tiled dense linear algebra codes
– nodes: tiled computations
– DAG edges specified by programmer (see next

slides)
• Runtime system

– keeps track of ready nodes
– assigns ready nodes to cores
– determines if new nodes become ready when a

node completes

DAGuE: Tiled QR (1)

27

Tiled QR (using tiles and in/out notations)

DAGuE: Tiled QR (2)

28

Dataflow Graph for 2x2 processor grid Machine: 81 nodes, 648 cores

Tiled QR

8

Summary of DAG scheduling

• DAG:
– Nodes are computations
– Edges are dependences
– Nodes and edges may have associated time

• node: how long to execute
• edge: communication time

• Basic algorithm: list scheduling based on priority
• Binding time: when do you know the DAG?

– VLIW: fine-grain, so known at compile-time
– Multicore: coarse-grain, so accurate execution time of

node is known only at runtime

Variations of dependence
graphs

Program dependence graph

• Program dependence graphs (PDGs) (Ferrante,
Ottenstein, Warren)

data dependences + control dependences

• Intuition for control dependence
– statement s is control-dependent on statement p if the

execution of p determines whether n is executed
– (eg) statements in the two branches of a conditional

are control-dependent on the predicate

• Control dependence is a subtle concept
– formalizing the notion requires the concept of

postdominance in control-flow graphs

Control dependence

• Intuitive idea:
– node w is control-dependent on a node u if

node u determines whether w is executed

• Example:

e

S1 S2

m

START

END

START
…..
if e then S1 else S2
….
END

We would say S1 and S2 are control-dependent on e

9

Examples (contd.)

e

S1

START

END

START
…..
while e do S1;
….
END

We would say node S1 is control-dependent on e.
It is also intuitive to say node e is control-dependent on itself:

- execution of node e determines whether or not e is executed again.

Example (contd.)
• S1 and S3 are control-

dependent on f
• Are they control-dependent on

e?
• Decision at e does not fully

determine if S1 (or S3 is
executed) since there is a later
test that determines this

• So we will NOT say that S1
and S3 are control-dependent
on e
– Intuition: control-dependence

is about “last” decision point
• However, f is control-

dependent on e, and S1 and
S3 are transitively (iteratively)
control-dependent on e

e

S2

m

START

END

f

S1 S3

n

Example (contd.)

• Can a node be control-
dependent on more than
one node?
– yes, see example

– nested repeat-until loops
• n is control-dependent on

t1 and t2 (why?)

• In general, control-
dependence relation can
be quadratic in size of
program

t1

t2

n

Formal definition of control
dependence

• Formalizing these intuitions is quite tricky
• Starting around 1980, lots of proposed

definitions
• Commonly accepted definition due to Ferrane,

Ottenstein, Warren (1987)
• Uses idea of postdominance
• We will use a slightly modified definition due to

Bilardi and Pingali which is easier to think about
and work with

10

Postdominance relation
• Postdominance: relation on nodes (⊆ V× V)

– u postdominates v if u occurs on all paths v → * END
– postdominance is reflexive, transitive and anti-symmetric
– transitive reduction is tree-structured
– postdominator tree can be built in O(|E|+|V|) time (Buchsbaum et al)
– immediate postdominator of u: parent of u in tree

1

2

3 7

4 5

6
8 9

10
11 12

end

end

12

11

910

8

762

1 3 4 5

Control dependence definition

• First cut: given a CFG G, a node w is control-
dependent on an edge (uv) if
– w postdominates v
– ……. w does not postdominate u

• Intuitively,
– first condition: if control flows from u to v it is

guaranteed that w will be executed
– second condition: but from u we can reach END

without encountering w
– so there is a decision being made at u that

determines whether w is executed

Control dependence definition

• Small caveat: what if w = u in
previous definition?
– See picture: is u control-

dependent on edge uv?
– Intuition says yes, but

definition on previous slides
says “u should not
postdominate u” and our
definition of postdominance is
reflexive

• Fix: given a CFG G, a node w
is control-dependent on an
edge (uv) if
– w postdominates v
– if w is not u, w does not

postdominate u

u

v

Strict postdominance

• A node w is said to strictly postdominate a node
u if
– w != u
– w postdominates u

• That is, strict postdominance is the irreflexive
version of the dominance relation

• Control dependence: given a CFG G, a node w
is control-dependent on an edge (uv) if
– w postdominates v
– w does not strictly postdominate u

11

Example

START

a

b

c

d e

f

g

END

STARTa
fb
cd
ce
ab

a b c d e f g

x x x x
x x x

x
x

x

Computing control-dependence
relation

• Nodes control
dependent on edge
(uv) are nodes on
path up the
postdominator tree
from v to ipdom(u),
excluding ipdom(u)
– We will write this as

[v,ipdom(u))
• half-open interval in

tree

END

STARTg

f

d e
c

a

STARTa
fb
cd
ce
ab

a b c d e f g

x x x x
x x x

x
x

x

b

Computing control-dependence
relation

• Compute the postdominator tree
• Overlay each edge uv on pdom tree and determine

nodes in interval [v,ipdom(u))
• Time and space complexity is O(EV).
• Faster solution: in practice, we do not want the full

relation, we only make queries
– cd(e): what are the nodes control-dependent on an edge e?
– conds(w): what are the edges that w is control-dependent on?
– cdequiv(w): what nodes have the same control-dependences as

node w?

• It is possible to implement a simple data structure that
takes O(E) time and space to build, and that answers
these queries in time proportional to output of query
(optimal) (Pingali and Bilardi 1997).

Effective abstractions

• Program abstraction is effective if you can write
an interpreter for it

• Why is this interesting?
– reasoning about programs becomes easier if you

have an effective abstraction

– (eg) give a formal Plotkin-style structured operational
semantics for the abstraction, and use that to prove
properties of execution sequences

• One problem with PDG
– not clear how to write an interpreter for PDG

12

Dataflow graphs:
an effective abstraction

• From functional languages community
• Functional languages:

– values and functions from values to values
– no notion of storage that can be overwritten successively with different

values
• Dependence viewpoints:

– only flow-dependences
– no anti-dependences or output-dependences

• Dataflow graph:
– shows how values are used to compute other values
– no notion of control-flow
– control-dependence is encoded as data-dependence
– effective abstraction: interpreter can execute abstraction in parallel

• Major contributors:
– Jack Dennis (MIT): static dataflow graphs
– Arvind (MIT): dynamic dataflow graphs

Static Dataflow Graphs

Slides from Arvind
Computer Science & Artificial Intelligence Lab

Massachusetts Institute of Technology

Dennis' Program Graphs
Operators connected by arcs

fork arithmetic
operators and
predicates

True gate
(False gate)

T T F

merge

f

Dataflow

• Execution of an operation is enabled by availability of
the required operand values. The completion of one
operation makes the resulting values available to the
elements of the program whose execution depends
on them.

Dennis

• Execution of an operation must not cause side-effect
to preserve determinacy. The effect of an operation
must be local.

13

Firing Rules:
Functional Operators

f f

x

xx

x y

f(x,y)

Firing Rules: T-Gate

T T

T T

x

x

x

T

F

The Switch Operator

T F

X

T T F
X

T F

T F

Firing Rules: Merge

T F

x y

T
T F

y

x

T F

x

T
T F

x

14

Firing Rules: Merge cont

T F

y

T
not ready
to fire

Some Conventions

X1 X2

T F
B

T F

X1 X2

T F T F
B



Some Conventions Cont.

X1 X2

T F T F
B

X1 X2



X1 X2

T F
B

T F

X1 X2

Rules To Form Dataflow
Graphs: Juxtaposition

Given

G2

. . .

. . .

G1

. . .

. . .

G2

. . .

. . .

G1

. . .

. . .
G

15

Rules To Form Dataflow
Graphs: Iteration

Given

G1

. . .

. . .

G1

. . .

. . . G

Example:

The Stream Duplicator

1-to-2 SD SD

T F NOTT

The Gate Operator

Lets X pass through only after C arrives.

What happens if we don't use the gate in the
Stream Duplicator?

C

X

X

The Stream Halver

2-to-1 SH SH

Throws away every other token.

16

Translation to dataflow graphs

• fact(n) =

if (n==1) then 1
else n*fact(n-1)

==
1

1

*

dec

fact

n

T F

T F

switch

merge

fact

Determinate Graphs
Graphs whose behavior is time independent,
i.e., the values of output tokens are uniquely
determined by the values of input tokens.

A dataflow graph formed by repeated
juxtaposition and iteration of deterministic
dataflow operators results in a deterministic
graph.

Problem with functional model

• Data structures are values

• No notion of updating elements of data
structures

• Think about our examples:
– How would you do DMR?

– Can you do event-driven simulation without
speculation?

Effective parallel abstractions for
imperative languages

• Beck et al: From Control Flow to Dataflow
• Approach:

– extend dataflow model to include side-effects to
memory

– control dependences are encoded as data-
dependences as in standard dataflow model

• Uses:
– execute imperative languages on dataflow machines

(which were being built back in 1990)
– intermediate language for reasoning operationally

about parallelism in imperative languages

17

Limitations of computation graphs

• For most irregular algorithms, we cannot generate a
static computation graph
– dependences are a function of runtime data values

• Therefore, much of the scheduling technology developed
for computation graphs is not useful for irregular
algorithms

• Even if we can generate a computation graph, latencies
of operations are often unpredictable

• Bottom-line
– useful to understand what is possible if perfect information about

program is available
– but need heuristics like list-scheduling even in this case!

Summary

• Computation graphs
– nodes are computations
– edges are dependences
– node weights are execution times

• Static computation graphs obtained by
– studying the algorithm
– analyzing the program

• Limits on speed-ups
– critical path
– Amdahl’s law

• DAG scheduling
– heuristic: list scheduling (many variations)
– static scheduling: VLIW code generation problem
– dynamic scheduling: DAGuE

• Static computation graphs are useful for regular algorithms, but not
very useful for irregular algorithms

Generating computation graphs

• How do we produce computation graphs in the
first place?

• Two approaches
– specify DAG explicitly

• like parallel programming
• easy to make mistakes

– race conditions: two nodes that write to same location but are
not ordered by dependence

– by compiler analysis of sequential programs

• Let us study the second approach
– called dependence analysis

Putting it all together

• Write sequential program.
• Compiler produces parallel code

– generates control-flow graph
– produces computation DAG for each basic block by performing

dependence analysis
– generates schedule for each basic block

• use list scheduling or some other heuristic
• branch at end of basic block is scheduled on all processors

• Problem:
– average basic block is fairly small (~ 5 RISC instructions)

• One solution:
– transform the program to produce bigger basic blocks

18

Limitations

• PRAM model abstracts away too many important details
of real parallel machines
– synchronous model of computing does not scale to large

numbers of processors
– global memory that can be read/written in every cycle by all

processors is hard to implement

• DAG model of programs
– for irregular algorithms, we may not be able to generate static

computation DAG
– even if we could generate a static computation DAG, latencies of

some nodes may be variable on a real machine
• what is the latency of a load?

• Given all these limitation, why study list scheduling on
PRAM’s in so much detail?

Generating computation graphs

• How do we produce computation graphs in the
first place?

• Two approaches
– specify DAG explicitly

• like parallel programming
• easy to make mistakes

– race conditions: two nodes that write to same location but are
not ordered by dependence

– by compiler analysis of sequential programs

• Let us study the second approach
– called dependence analysis

Putting it all together

• Write sequential program.
• Compiler produces parallel code

– generates control-flow graph
– produces computation DAG for each basic block by performing

dependence analysis
– generates schedule for each basic block

• use list scheduling or some other heuristic
• branch at end of basic block is scheduled on all processors

• Problem:
– average basic block is fairly small (~ 5 RISC instructions)

• One solution:
– transform the program to produce bigger basic blocks

Limitations

• PRAM model abstracts away too many important details
of real parallel machines
– synchronous model of computing does not scale to large

numbers of processors
– global memory that can be read/written in every cycle by all

processors is hard to implement

• DAG model of programs
– for irregular algorithms, we may not be able to generate static

computation DAG
– even if we could generate a static computation DAG, latencies of

some nodes may be variable on a real machine
• what is the latency of a load?

• Given all these limitation, why study list scheduling on
PRAM’s in so much detail?

19

Algorithm and
Data structure

Dependence
Graph

Schedule Execution

Compile-time

Input known

Runtime

Post-execution

Design

