
OpenMP Tutorial
Part 1: The Core Elements of OpenMP

Tim Mattson
Intel Corporation

Computational Software Laboratory

Rudolf Eigenmann
Purdue University

School of Electrical and
Computer Engineering

1Wednesday, April 15, 2009

Agenda
 Setting the stage

– Parallel computing, hardware, software, etc.
 OpenMP: A quick overview
 OpenMP: A detailed introduction

2Wednesday, April 15, 2009

Parallel Computing:
Writing a parallel application.

Original Problem
Tasks, shared and local data

Decompose
 into tasks

Code with a
parallel Prog. Env.

Corresponding source code

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int N = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N,DATA);
 for (int I= 0; I<N;I=I+Num){
 tmp = func(I);
 Res.accumulate(tmp);
 }
}

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int N = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N,DATA);
 for (int I= 0; I<N;I=I+Num){
 tmp = func(I);
 Res.accumulate(tmp);
 }
}

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int N = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N,DATA);
 for (int I= 0; I<N;I=I+Num){
 tmp = func(I);
 Res.accumulate(tmp);
 }
}

Program SPMD_Emb_Par ()
{
 TYPE *tmp, *func();
 global_array Data(TYPE);
 global_array Res(TYPE);
 int Num = get_num_procs();
 int id = get_proc_id();
 if (id==0) setup_problem(N, Data);
 for (int I= ID; I<N;I=I+Num){
 tmp = func(I, Data);
 Res.accumulate(tmp);
 }
}

Group onto

execu
tion units.

Units of execution + new shared data
for extracted dependencies

3Wednesday, April 15, 2009

Parallel Computing:
Effective Standards for Portable programming

 Thread Libraries
– Win32 API
– POSIX threads.

 Compiler Directives
– OpenMP - portable shared memory parallelism.

 Message Passing Libraries
– MPI

4Wednesday, April 15, 2009

Parallel Computing:
Effective Standards for Portable programming

 Thread Libraries
– Win32 API
– POSIX threads.

 Compiler Directives
– OpenMP - portable shared memory parallelism.

 Message Passing Libraries
– MPI

Our focus

4Wednesday, April 15, 2009

Agenda
 Setting the stage

– Parallel computing, hardware, software, etc.
 OpenMP: A quick overview
 OpenMP: A detailed introduction

5Wednesday, April 15, 2009

OpenMP Overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A,
B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP
SECTIONS

C$OMP
MASTER

C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

6Wednesday, April 15, 2009

OpenMP Overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A,
B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP
SECTIONS

C$OMP
MASTER

C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

– A set of compiler directives and library
routines for parallel application programmers

– Makes it easy to create multi-threaded (MT)
programs in Fortran, C and C++

– Standardizes last 15 years of SMP practice

6Wednesday, April 15, 2009

OpenMP Overview:
Programming Model

Fork-Join Parallelism:
Master thread spawns a team of threads as needed.
Parallelism is added incrementally: i.e. the

sequential program evolves into a parallel program.

Parallel Regions

Master
Thread

7Wednesday, April 15, 2009

OpenMP Overview:
How is OpenMP typically used? (in C)
 OpenMP is usually used to parallelize loops:

– Find your most time consuming loops.
– Split them up between threads.

void main()
{
 double Res[1000];

 for(int i=0;i<1000;i++) {
 do_huge_comp(Res[i]);
 }
}

#include “omp.h”
void main()
{
 double Res[1000];
#pragma omp parallel for
 for(int i=0;i<1000;i++) {
 do_huge_comp(Res[i]);
 }
}

Split-up this loop between
multiple threads

Parallel Program
Sequential Program

8Wednesday, April 15, 2009

OpenMP Overview:
How do threads interact?

 OpenMP is a shared memory model.
– Threads communicate by sharing variables.

 Unintended sharing of data causes race
conditions:

– race condition: when the program’s outcome
changes as the threads are scheduled differently.

 To control race conditions:
– Use synchronization to protect data conflicts.

 Synchronization is expensive so:
– Change how data is accessed to minimize the need

for synchronization.

9Wednesday, April 15, 2009

Agenda
 Setting the stage

– Parallel computing, hardware, software, etc.
 OpenMP: A quick overview
 OpenMP: A detailed introduction

10Wednesday, April 15, 2009

OpenMP Parallel Computing Solution Stack

Runtime library

OS/system support for shared memory.

Directives OpenMP library Environment
variables

Application

End User

Sy
st

em
 la

ye
r

Pr
og

. L
ay

er

(O
pe

nM
P

A
PI

)
U

se
r l

ay
er

11Wednesday, April 15, 2009

OpenMP:
Some syntax details to get us started
 Most of the constructs in OpenMP are compiler

directives or pragmas.
For C and C++, the pragmas take the form:

#pragma omp construct [clause [clause]…]
For Fortran, the directives take one of the forms:

C$OMP construct [clause [clause]…]
!$OMP construct [clause [clause]…]
*$OMP construct [clause [clause]…]

 Include file and the OpenMP lib module
#include “omp.h”
use omp_lib

12Wednesday, April 15, 2009

#pragma omp parallel
{
 int id = omp_get_thread_num();
more: res(id) = do_big_job(id);
 if(conv(res(id)) goto more;
}
 printf(“ All done \n”);

 Most OpenMP* constructs apply to structured blocks.
– Structured block: a block with one point of entry at the top

and one point of exit at the bottom.
– The only “branches” allowed are STOP statements in

Fortran and exit() in C/C++.

 if(go_now()) goto more;
#pragma omp parallel
{
 int id = omp_get_thread_num();
more: res(id) = do_big_job(id);
 if(conv(res(id)) goto done;

 go to more;
}
done: if(!really_done()) goto more;

A structured block Not A structured block
* Third party trademarks and names are the property of their respective owner.

OpenMP:
Structured blocks (C/C++)

13Wednesday, April 15, 2009

OpenMP:
Structured Block Boundaries

 In C/C++: a block is a single statement or a group of
statements between brackets {}

 In Fortran: a block is a single statement or a group of
statements between directive/end-directive pairs.
C$OMP PARALLEL
10 wrk(id) = garbage(id)
 res(id) = wrk(id)**2
 if(conv(res(id)) goto 10
C$OMP END PARALLEL

C$OMP PARALLEL DO
 do I=1,N

 res(I)=bigComp(I)
 end do
C$OMP END PARALLEL DO

#pragma omp parallel
{
 id = omp_thread_num();
 res(id) = lots_of_work(id);
}

#pragma omp for
 for(I=0;I<N;I++){
 res[I] = big_calc(I);
 A[I] = B[I] + res[I];
 }

14Wednesday, April 15, 2009

OpenMP: Contents

 OpenMP’s constructs fall into 5 categories:
Parallel Regions
Worksharing
Data Environment
Synchronization
Runtime functions/environment variables

 OpenMP is basically the same between
Fortran and C/C++

15Wednesday, April 15, 2009

The OpenMP* API

Parallel Regions

 You create threads in OpenMP* with the “omp
parallel” pragma.

 For example, To create a 4 thread Parallel region:
double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
 int ID = omp_get_thread_num();
 pooh(ID,A);
}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread
executes a
copy of the
the code
within the
structured

block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

* Third party trademarks and names are the property of their respective owner.

16Wednesday, April 15, 2009

The OpenMP* API

Parallel Regions
 Each thread executes the

same code redundantly.

 double A[1000];
omp_set_num_threads(4);

 #pragma omp parallel
{

 int ID = omp_get_thread_num();
 pooh(ID, A);
}

 printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single
copy of A
is shared
between all
threads.

Threads wait here for all threads to
finish before proceeding (I.e. a barrier)

* Third party trademarks and names are the property of their respective owner.

17Wednesday, April 15, 2009

Exercise 1:
A multi-threaded “Hello world” program
 Write a multithreaded program where each

thread prints “hello world”.
#include “omp.h”
void main()
{

 int ID = omp_get_thread_num();
 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);
}

18Wednesday, April 15, 2009

Exercise 1:
A multi-threaded “Hello world” program
 Write a multithreaded program where each

thread prints “hello world”.
#include “omp.h”
void main()
{

#pragma omp parallel
 {

 int ID = omp_get_thread_num();
 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);
 }
}

Sample Output:
hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

19Wednesday, April 15, 2009

OpenMP: Contents

 OpenMP’s constructs fall into 5 categories:
Parallel Regions
Work-sharing
Data Environment
Synchronization
Runtime functions/environment variables

20Wednesday, April 15, 2009

OpenMP: Work-Sharing Constructs

 The “for” Work-Sharing construct splits up
loop iterations among the threads in a team

#pragma omp parallel
#pragma omp for
 for (I=0;I<N;I++){
 NEAT_STUFF(I);
 }

By default, there is a barrier at the end of
the “omp for”. Use the “nowait” clause to
turn off the barrier.

21Wednesday, April 15, 2009

Work Sharing Constructs
A motivating example

for(i=0;I<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
{
 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id * N / Nthrds;
 iend = (id+1) * N / Nthrds;
 for(i=istart;I<iend;i++) { a[i] = a[i] + b[i];}
}

#pragma omp parallel
#pragma omp for schedule(static)
 for(i=0;I<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
work-sharing for-
construct

22Wednesday, April 15, 2009

OpenMP For/do construct:
The schedule clause

 The schedule clause effects how loop iterations are
mapped onto threads
schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.
schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all
iterations have been handled.

schedule(guided[,chunk])
– Threads dynamically grab blocks of iterations. The size of

the block starts large and shrinks down to size “chunk” as
the calculation proceeds.

schedule(runtime)
– Schedule and chunk size taken from the

OMP_SCHEDULE environment variable.

23Wednesday, April 15, 2009

Schedule Clause When To Use

STATIC Predictable and similar
work per iteration

DYNAMIC Unpredictable, highly
variable work per
iteration

GUIDED Special case of dynamic
to reduce scheduling
overhead

The OpenMP* API

The schedule clause

* Third party trademarks and names are the property of their respective owner.

24Wednesday, April 15, 2009

OpenMP: Work-Sharing Constructs

 The Sections work-sharing construct gives a
different structured block to each thread.

#pragma omp parallel
#pragma omp sections
{
#pragma omp section
 X_calculation();
#pragma omp section
 y_calculation();
#pragma omp section
 z_calculation();
}

By default, there is a barrier at the end of the “omp
sections”. Use the “nowait” clause to turn off the barrier.

25Wednesday, April 15, 2009

The OpenMP* API

Combined parallel/work-share

 OpenMP* shortcut: Put the “parallel” and the work-
share on the same line

 double res[MAX]; int i;
#pragma omp parallel
{
 #pragma omp for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }
}

These are equivalent

 double res[MAX]; int i;
#pragma omp parallel for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }

 There’s also a “parallel sections” construct.

26Wednesday, April 15, 2009

Exercise 2:
A multi-threaded “pi” program
 On the following slide, you’ll see a sequential

program that uses numerical integration to
compute an estimate of PI.

 Parallelize this program using OpenMP. There
are several options (do them all if you have
time):

– Do it as an SPMD program using a parallel region
only.

– Do it with a work sharing construct.
 Remember, you’ll need to make sure multiple

threads don’t overwrite each other’s variables.

27Wednesday, April 15, 2009

Our running Example: The PI program
Numerical Integration

∫ 4.0
(1+x2)

dx = π
0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the
integral as a sum of
rectangles:

Where each rectangle has
width Δx and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X0.0

28Wednesday, April 15, 2009

PI Program:
The sequential program

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

29Wednesday, April 15, 2009

OpenMP PI Program:
Parallel Region example (SPMD Program)

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum[NUM_THREADS] ={0};
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{ double x; int id, i;
 id = omp_get_thread_num();
 int nthreads = omp_get_num_threads();
 for (i=id;i< num_steps; i=i+nthreads){
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }
}
 for(i=0, pi=0.0;i<NUM_THREADS;i++)pi += sum[i] * step;
}

SPMD
Programs:
Each thread
runs the same
code with the
thread ID
selecting any
thread specific
behavior.

30Wednesday, April 15, 2009

MPI: Pi program
#include <mpi.h>
void main (int argc, char *argv[])
{
 int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;
 MPI_Init(&argc, &argv) ;
 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
 my_steps = num_steps/numprocs ;
 for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)
 {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 sum *= step ;
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD) ;
}

31Wednesday, April 15, 2009

OpenMP PI Program:
Work sharing construct
#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum[NUM_THREADS] ={0.0};
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{ double x; int i, id;
 id = omp_get_thread_num();
#pragma omp for
 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }
}
 for(i=0, pi=0.0;i<NUM_THREADS;i++)pi += sum[i] * step;
}

32Wednesday, April 15, 2009

Solution: Win32 API, PI

#include <windows.h>
#define NUM_THREADS 2
HANDLE thread_handles[NUM_THREADS];
CRITICAL_SECTION hUpdateMutex;
static long num_steps = 100000;
double step;
double global_sum = 0.0;

void Pi (void *arg)
{
 int i, start;
 double x, sum = 0.0;

 start = *(int *) arg;
 step = 1.0/(double) num_steps;

 for (i=start;i<= num_steps; i=i+NUM_THREADS){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 EnterCriticalSection(&hUpdateMutex);
 global_sum += sum;
 LeaveCriticalSection(&hUpdateMutex);
}

void main ()
{
 double pi; int i;
 DWORD threadID;
 int threadArg[NUM_THREADS];

 for(i=0; i<NUM_THREADS; i++) threadArg[i] = i+1;

 InitializeCriticalSection(&hUpdateMutex);

 for (i=0; i<NUM_THREADS; i++){
 thread_handles[i] = CreateThread(0, 0,
 (LPTHREAD_START_ROUTINE) Pi,
 &threadArg[i], 0, &threadID);
}

 WaitForMultipleObjects(NUM_THREADS,
 thread_handles, TRUE,INFINITE);

 pi = global_sum * step;

 printf(" pi is %f \n",pi);
}

33Wednesday, April 15, 2009

Solution: Win32 API, PI

#include <windows.h>
#define NUM_THREADS 2
HANDLE thread_handles[NUM_THREADS];
CRITICAL_SECTION hUpdateMutex;
static long num_steps = 100000;
double step;
double global_sum = 0.0;

void Pi (void *arg)
{
 int i, start;
 double x, sum = 0.0;

 start = *(int *) arg;
 step = 1.0/(double) num_steps;

 for (i=start;i<= num_steps; i=i+NUM_THREADS){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 EnterCriticalSection(&hUpdateMutex);
 global_sum += sum;
 LeaveCriticalSection(&hUpdateMutex);
}

void main ()
{
 double pi; int i;
 DWORD threadID;
 int threadArg[NUM_THREADS];

 for(i=0; i<NUM_THREADS; i++) threadArg[i] = i+1;

 InitializeCriticalSection(&hUpdateMutex);

 for (i=0; i<NUM_THREADS; i++){
 thread_handles[i] = CreateThread(0, 0,
 (LPTHREAD_START_ROUTINE) Pi,
 &threadArg[i], 0, &threadID);
}

 WaitForMultipleObjects(NUM_THREADS,
 thread_handles, TRUE,INFINITE);

 pi = global_sum * step;

 printf(" pi is %f \n",pi);
}

Doubles code size!
33Wednesday, April 15, 2009

OpenMP:
Scope of OpenMP constructs

lexical
extent of
parallel
region

C$OMP PARALLEL
 call whoami
C$OMP END PARALLEL

 subroutine whoami
 external omp_get_thread_num
 integer iam, omp_get_thread_num

 iam = omp_get_thread_num()
C$OMP CRITICAL

 print*,’Hello from ‘, iam
C$OMP END CRITICAL
 return

 end

+

Orphan directives
can appear outside a
parallel region

Dynamic extent
of parallel
region includes
lexical extent

bar.f
poo.f

OpenMP constructs can span multiple source files.

34Wednesday, April 15, 2009

OpenMP: Contents

 OpenMP’s constructs fall into 5 categories:
Parallel Regions
Worksharing
Data Environment
Synchronization
Runtime functions/environment variables

35Wednesday, April 15, 2009

Data Environment:
Default storage attributes

 Shared Memory programming model:
– Most variables are shared by default

 Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE

variables
– C: File scope variables, static

 But not everything is shared...
– Stack variables in sub-programs called from parallel regions

are PRIVATE
– Automatic variables within a statement block are PRIVATE.

36Wednesday, April 15, 2009

 program sort
 common /input/ A(10)
 integer index(10)
C$OMP PARALLEL
 call work(index)
C$OMP END PARALLEL
 print*, index(1)

subroutine work (index)
common /input/ A(10)
integer index(*)
real temp(10)
integer count
save count
 …………

Data Sharing Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are
shared by all threads.

temp is local to each
thread

* Third party trademarks and names are the property of their respective owner.

37Wednesday, April 15, 2009

Data Environment:
Changing storage attributes
 One can selectively change storage attributes

constructs using the following clauses*
– SHARED
– PRIVATE
– FIRSTPRIVATE
– THREADPRIVATE

 The value of a private inside a parallel loop can be
transmitted to a global value outside the loop with:

– LASTPRIVATE
 The default status can be modified with:

– DEFAULT (PRIVATE | SHARED | NONE)

All the clauses on this page
only apply to the lexical extent
of the OpenMP construct.

All data clauses apply to parallel regions and worksharing constructs except
“shared” which only applies to parallel regions.

38Wednesday, April 15, 2009

Private Clause

 program wrong
 IS = 0
C$OMP PARALLEL DO PRIVATE(IS)
 DO J=1,1000
 IS = IS + J
 END DO
 print *, IS

 private(var) creates a local copy of var for each
thread.

– The value is uninitialized
– Private copy is not storage associated with the original

IS was
not
initialized

Regardless of
initialization, IS
is undefined at
this point

39Wednesday, April 15, 2009

Firstprivate Clause
 Firstprivate is a special case of private.

– Initializes each private copy with the corresponding
value from the master thread.

Regardless of initialization, IS is
undefined at this point

 program almost_right
 IS = 0
C$OMP PARALLEL DO FIRSTPRIVATE(IS)
 DO J=1,1000
 IS = IS + J
1000 CONTINUE
 print *, IS

Each thread gets its own IS
with an initial value of 0

40Wednesday, April 15, 2009

Lastprivate Clause
 Lastprivate passes the value of a private from the

last iteration to a global variable.

IS is defined as its value at the last
iteration (I.e. for J=1000)

 program closer
 IS = 0
C$OMP PARALLEL DO FIRSTPRIVATE(IS)
C$OMP+ LASTPRIVATE(IS)
 DO J=1,1000
 IS = IS + J
1000 CONTINUE
 print *, IS

Each thread gets its own IS
with an initial value of 0

41Wednesday, April 15, 2009

OpenMP:
A data environment test
 Here’s an example of PRIVATE and FIRSTPRIVATE

 variables A,B, and C = 1
C$OMP PARALLEL PRIVATE(B)
C$OMP& FIRSTPRIVATE(C)

42Wednesday, April 15, 2009

OpenMP:
A data environment test
 Here’s an example of PRIVATE and FIRSTPRIVATE

 variables A,B, and C = 1
C$OMP PARALLEL PRIVATE(B)
C$OMP& FIRSTPRIVATE(C)

 Inside this parallel region ...
 “A” is shared by all threads; equals 1
 “B” and “C” are local to each thread.

– B’s initial value is undefined
– C’s initial value equals 1

 Outside this parallel region ...
 The values of “B” and “C” are undefined.

42Wednesday, April 15, 2009

Default Clause
 Note that the default storage attribute is

DEFAULT(SHARED) (so no need to specify)
 To change default: DEFAULT(PRIVATE)

each variable in static extent of the parallel region is made
private as if specified in a private clause

mostly saves typing
 DEFAULT(NONE): no default for variables in static

extent. Must list storage attribute for each variable
in static extent

Only the Fortran API supports default(private).

C/C++ only has default(shared) or default(none).

43Wednesday, April 15, 2009

Default Clause Example

 itotal = 1000
C$OMP PARALLEL DEFAULT(PRIVATE) SHARED(itotal)
 np = omp_get_num_threads()
 each = itotal/np
 ………
C$OMP END PARALLEL

 itotal = 1000
C$OMP PARALLEL PRIVATE(np, each)
 np = omp_get_num_threads()
 each = itotal/np
 ………
C$OMP END PARALLEL These two

codes are
equivalent

44Wednesday, April 15, 2009

Threadprivate
 Makes global data private to a thread

Fortran: COMMON blocks
C: File scope and static variables

 Different from making them PRIVATE
with PRIVATE global variables are masked.
 THREADPRIVATE preserves global scope within each

thread
 Threadprivate variables can be initialized using

COPYIN or by using DATA statements.

45Wednesday, April 15, 2009

A threadprivate example

 subroutine poo
 parameter (N=1000)
 common/buf/A(N),B(N)
C$OMP THREADPRIVATE(/buf/)
 do i=1, N
 B(i)= const* A(i)
 end do
 return
 end

 subroutine bar
 parameter (N=1000)
 common/buf/A(N),B(N)
C$OMP THREADPRIVATE(/buf/)
 do i=1, N
 A(i) = sqrt(B(i))
 end do
 return
 end

Consider two different routines called within a
parallel region.

Because of the threadprivate construct, each
thread executing these routines has its own copy
of the common block /buf/.

46Wednesday, April 15, 2009

Copyprivate

 parameter (N=1000)
 common/buf/A(N)
C$OMP THREADPRIVATE(/buf/)

C Initialize the A array
 call init_data(N,A)

C$OMP PARALLEL COPYPRIVATE(A)

 … Now each thread sees threadprivate array A initialied
 … to the global value set in the subroutine init_data()

C$OMP END PARALLEL

end

You initialize threadprivate data using a
copyprivate clause.

47Wednesday, April 15, 2009

OpenMP: Reduction

 Another clause that effects the way variables are
shared:

reduction (op : list)
 The variables in “list” must be shared in the enclosing

parallel region.
 Inside a parallel or a work-sharing construct:

– A local copy of each list variable is made and initialized
depending on the “op” (e.g. 0 for “+”).

– Compiler finds standard reduction expressions containing
“op” and uses them to update the local copy.

– Local copies are reduced into a single value and
combined with the original global value.

48Wednesday, April 15, 2009

OpenMP:
Reduction example

#include <omp.h>
#define NUM_THREADS 2
void main ()
{
 int i;
 double ZZ, func(), res=0.0;
 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for reduction(+:res) private(ZZ)
 for (i=0; i< 1000; i++){
 ZZ = func(I);
 res = res + ZZ;
 }
}

49Wednesday, April 15, 2009

OpenMP: Reduction example
 Remember the code we used to demo private,

firstprivate and lastprivate.
 program closer
 IS = 0
 DO J=1,1000
 IS = IS + J
1000 CONTINUE
 print *, IS

50Wednesday, April 15, 2009

OpenMP: Reduction example
 Remember the code we used to demo private,

firstprivate and lastprivate.
 program closer
 IS = 0
 DO J=1,1000
 IS = IS + J
1000 CONTINUE
 print *, IS

 Here is the correct way to parallelize this code.
 program closer
 IS = 0
#pragma omp parallel for reduction(+:IS)
 DO J=1,1000
 IS = IS + J
1000 CONTINUE
 print *, IS

50Wednesday, April 15, 2009

OpenMP:
Reduction operands/initial-values

 A range of associative operands can be used
with reduction:

 Initial values are the ones that make sense
mathematically.

Operand Initial value

+ 0

* 1

- 0

.AND. All 1’s

Operand Initial value

.OR. 0

MAX 1

MIN 0

// All 1’s

51Wednesday, April 15, 2009

Exercise 3:
A multi-threaded “pi” program
 Return to your “pi” program and this time, use

private, reduction and a work-sharing construct
to parallelize it.

 See how similar you can make it to the original
sequential program.

52Wednesday, April 15, 2009

OpenMP PI Program :
Parallel for with a reduction

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum = 0.0;
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for reduction(+:sum) private(x)
 for (i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

53Wednesday, April 15, 2009

OpenMP PI Program :
Parallel for with a reduction

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum = 0.0;
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for reduction(+:sum) private(x)
 for (i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
} OpenMP adds 2 to 4

lines of code
53Wednesday, April 15, 2009

OpenMP: Contents

 OpenMP’s constructs fall into 5 categories:
Parallel Regions
Worksharing
Data Environment
Synchronization
Runtime functions/environment variables

54Wednesday, April 15, 2009

OpenMP: Synchronization

 OpenMP has the following constructs to
support synchronization:

– critical section
– atomic
– barrier
– flush
– ordered
– single
– master

We discus this here, but it really
isn’t a synchronization construct.

We discuss this here, but it really
isn’t a synchronization construct.
It’s a work-sharing construct that
may include synchronization.

We will save flush for the
advanced OpenMP tutorial.

55Wednesday, April 15, 2009

The OpenMP* API
Synchronization – critical section (in C/C++)

 Only one thread at a time can enter a critical
section.

float res;
#pragma omp parallel

{ float B; int i;
 #pragma omp for
 for(i=0;i<niters;i++){

 B = big_job(i);
#pragma omp critical
 consum (B, RES);

 }
}

Threads wait
their turn –
only one at a
time calls
consum()

* Third party trademarks and names are the property of their respective owner.

56Wednesday, April 15, 2009

OpenMP: Synchronization

 Atomic is a special case of a critical section
that can be used for certain simple statements.

 It applies only to the update of a memory
location (the update of X in the following
example)

C$OMP PARALLEL PRIVATE(B)
 B = DOIT(I)
tmp = big_ugly();
 C$OMP ATOMIC
 X = X + temp
C$OMP END PARALLEL

57Wednesday, April 15, 2009

OpenMP: Synchronization

 Barrier: Each thread waits until all threads arrive.

#pragma omp parallel shared (A, B, C) private(id)
{
 id=omp_get_thread_num();
 A[id] = big_calc1(id);
#pragma omp barrier
#pragma omp for
 for(i=0;i<N;i++){C[i]=big_calc3(I,A);}
#pragma omp for nowait
 for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }
 A[id] = big_calc3(id);
}

implicit barrier at the end
of a parallel region

implicit barrier at the
end of a for work-
sharing construct

no implicit barrier
due to nowait

58Wednesday, April 15, 2009

OpenMP: Synchronization

 The ordered construct enforces the
sequential order for a block.

#pragma omp parallel private (tmp)
#pragma omp for ordered
 for (I=0;I<N;I++){
 tmp = NEAT_STUFF(I);
#pragma ordered
 res += consum(tmp);
 }

59Wednesday, April 15, 2009

OpenMP: Synchronization

 The master construct denotes a structured
block that is only executed by the master
thread. The other threads just skip it (no
synchronization is implied).

#pragma omp parallel private (tmp)
{
 do_many_things();
#pragma omp master
 { exchange_boundaries(); }
#pragma barrier
 do_many_other_things();
}

60Wednesday, April 15, 2009

OpenMP: Synchronization work-share

 The single construct denotes a block of code
that is executed by only one thread.

 A barrier is implied at the end of the single
block.

#pragma omp parallel private (tmp)
{
 do_many_things();
#pragma omp single
 { exchange_boundaries(); }
 do_many_other_things();
}

61Wednesday, April 15, 2009

OpenMP:
Implicit synchronization

 Barriers are implied on the following OpenMP
constructs:

end parallel
end do (except when nowait is used)
end sections (except when nowait is used)
end single (except when nowait is used)

62Wednesday, April 15, 2009

OpenMP PI Program:
Parallel Region example (SPMD Program)

Performance
would be awful
due to false
sharing of the
sum array.

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum[NUM_THREADS];
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS)
#pragma omp parallel
{ double x; int id;
 id = omp_get_thread_num();
 for (i=id, sum[id]=0.0;i< num_steps; i=i+NUM_THREADS){
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }
}
 for(i=0, pi=0.0;i<NUM_THREADS;i++)pi += sum[i] * step;
}

63Wednesday, April 15, 2009

OpenMP PI Program:
use a critical section to avoid the array
#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, sum, pi=0.0;
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS)
#pragma omp parallel private (x, sum)
{
 id = omp_get_thread_num();
 for (i=id,sum=0.0;i< num_steps;i=i+NUM_THREADS){
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
#pragma omp critical
 pi += sum
}
}

No array, so no false
sharing. However,
poor scaling with the
number of threads

64Wednesday, April 15, 2009

OpenMP: Contents

 OpenMP’s constructs fall into 5 categories:
Parallel Regions
Worksharing
Data Environment
Synchronization
Runtime functions/environment variables

65Wednesday, April 15, 2009

OpenMP: Library routines: Part 1
 Runtime environment routines:

– Modify/Check the number of threads
– omp_set_num_threads()
– omp_get_num_threads()
– omp_get_thread_num()
– omp_get_max_threads()

– Are we in a parallel region?
– omp_in_parallel()

– How many processors in the system?
– omp_num_procs()

66Wednesday, April 15, 2009

OpenMP: Library Routines
 To fix the number of threads used in a program,

 (1) set the number threads, then (4) save the
number you got.

#include <omp.h>
void main()
{ int num_threads;
 omp_set_num_threads(omp_num_procs());
#pragma omp parallel
 { int id=omp_get_thread_num();
#pragma omp single
 num_threads = omp_get_num_threads();
 do_lots_of_stuff(id);
 }
}

Request as many threads
as you have processors.

Protect this
op since
Memory
stores are
not atomic

67Wednesday, April 15, 2009

OpenMP: Environment Variables: Part 1

 Control how “omp for schedule(RUNTIME)”
loop iterations are scheduled.

– OMP_SCHEDULE “schedule[, chunk_size]”
 Set the default number of threads to use.

– OMP_NUM_THREADS int_literal

68Wednesday, April 15, 2009

Summary
 OpenMP is:

A great way to write parallel code for shared
memory machines.

A very simple approach to parallel programming.
Your gateway to special, painful errors (race

conditions).

69Wednesday, April 15, 2009

Reference Material on OpenMP*
OpenMP Homepage www.openmp.org:
The primary source of information about OpenMP and its development.

Books:
Parallel programming in OpenMP, Chandra, Rohit, San Francisco, Calif. : Morgan Kaufmann ; London :
Harcourt, 2000, ISBN: 1558606718

Research papers:
Sosa CP, Scalmani C, Gomperts R, Frisch MJ. Ab initio quantum chemistry on a ccNUMA architecture
using OpenMP. III. Parallel Computing, vol.26, no.7-8, July 2000, pp.843-56. Publisher: Elsevier,
Netherlands.

Bova SW, Breshears CP, Cuicchi C, Demirbilek Z, Gabb H. Nesting OpenMP in an MPI application.
Proceedings of the ISCA 12th International Conference. Parallel and Distributed Systems. ISCA. 1999, pp.
566-71. Cary, NC, USA.

Gonzalez M, Serra A, Martorell X, Oliver J, Ayguade E, Labarta J, Navarro N. Applying interposition
techniques for performance analysis of OPENMP parallel applications. Proceedings 14th International
Parallel and Distributed Processing Symposium. IPDPS 2000. IEEE Comput. Soc. 2000, pp.235-40. Los
Alamitos, CA, USA.

J. M. Bull and M. E. Kambites. JOMPan OpenMP-like interface for Java. Proceedings of the ACM 2000
conference on Java Grande, 2000, Pages 44 - 53.

* Third party trademarks and names are the property of their respective owner.

70Wednesday, April 15, 2009

Chapman B, Mehrotra P, Zima H. Enhancing OpenMP with features for locality control. Proceedings of
Eighth ECMWF Workshop on the Use of Parallel Processors in Meteorology. Towards Teracomputing.
World Scientific Publishing. 1999, pp.301-13. Singapore.

Cappello F, Richard O, Etiemble D. Performance of the NAS benchmarks on a cluster of SMP PCs using
a parallelization of the MPI programs with OpenMP. Parallel Computing Technologies. 5th International
Conference, PaCT-99. Proceedings (Lecture Notes in Computer Science Vol.1662). Springer-Verlag.
1999, pp.339-50. Berlin, Germany.

Couturier R, Chipot C. Parallel molecular dynamics using OPENMP on a shared memory machine.
Computer Physics Communications, vol.124, no.1, Jan. 2000, pp.49-59. Publisher: Elsevier, Netherlands.

Bova SW, Breshearsz CP, Cuicchi CE, Demirbilek Z, Gabb HA. Dual-level parallel analysis of harbor wave
response using MPI and OpenMP. International Journal of High Performance Computing Applications,
vol.14, no.1, Spring 2000, pp.49-64. Publisher: Sage Science Press, USA.

Scherer A, Honghui Lu, Gross T, Zwaenepoel W. Transparent adaptive parallelism on NOWS using
OpenMP. ACM. Sigplan Notices (Acm Special Interest Group on Programming Languages), vol.34, no.8,
Aug. 1999, pp.96-106. USA.

Ayguade E, Martorell X, Labarta J, Gonzalez M, Navarro N. Exploiting multiple levels of parallelism in
OpenMP: a case study. Proceedings of the 1999 International Conference on Parallel Processing. IEEE
Comput. Soc. 1999, pp.172-80. Los Alamitos, CA, USA.

Mattson, T.G. An Introduction to OpenMP 2.0, Proceedings 3rd International Symposium on High
Performance Computing, Lecture Notes in Computer Science, Number 1940, Springer, 2000 pp. 384-390,
Tokyo Japan.

71Wednesday, April 15, 2009

Honghui Lu, Hu YC, Zwaenepoel W. OpenMP on networks of workstations. Proceedings of ACM/IEEE
SC98: 10th Anniversary. High Performance Networking and Computing Conference (Cat. No. RS00192).
IEEE Comput. Soc. 1998, pp.13 pp.. Los Alamitos, CA, USA.

Throop J. OpenMP: shared-memory parallelism from the ashes. Computer, vol.32, no.5, May 1999, pp.
108-9. Publisher: IEEE Comput. Soc, USA.

Hu YC, Honghui Lu, Cox AL, Zwaenepoel W. OpenMP for networks of SMPs. Proceedings 13th
International Parallel Processing Symposium and 10th Symposium on Parallel and Distributed Processing.
IPPS/SPDP 1999. IEEE Comput. Soc. 1999, pp.302-10. Los Alamitos, CA, USA.

Parallel Programming with Message Passing and Directives; Steve W. Bova, Clay P. Breshears, Henry
Gabb, Rudolf Eigenmann, Greg Gaertner, Bob Kuhn, Bill Magro, Stefano Salvini; SIAM News, Volume 32,
No 9, Nov. 1999.

Still CH, Langer SH, Alley WE, Zimmerman GB. Shared memory programming with OpenMP. Computers in
Physics, vol.12, no.6, Nov.-Dec. 1998, pp.577-84. Publisher: AIP, USA.

Chapman B, Mehrotra P. OpenMP and HPF: integrating two paradigms. [Conference Paper] Euro-Par'98
Parallel Processing. 4th International Euro-Par Conference. Proceedings. Springer-Verlag. 1998, pp.650-8.
Berlin, Germany.

Dagum L, Menon R. OpenMP: an industry standard API for shared-memory programming. IEEE
Computational Science & Engineering, vol.5, no.1, Jan.-March 1998, pp.46-55. Publisher: IEEE, USA.

Clark D. OpenMP: a parallel standard for the masses. IEEE Concurrency, vol.6, no.1, Jan.-March 1998, pp.
10-12. Publisher: IEEE, USA.

72Wednesday, April 15, 2009

Extra Slides
A series of parallel pi programs

®

73Wednesday, April 15, 2009

Some OpenMP Commands to
support Exercises

74Wednesday, April 15, 2009

PI Program: an example

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

75Wednesday, April 15, 2009

Parallel Pi Program
 Let’s speed up the program with multiple

threads.
 Consider the Win32 threads library:

Thread management and interaction is explicit.
Programmer has full control over the threads

76Wednesday, April 15, 2009

Solution: Win32 API, PI

#include <windows.h>
#define NUM_THREADS 2
HANDLE thread_handles[NUM_THREADS];
CRITICAL_SECTION hUpdateMutex;
static long num_steps = 100000;
double step;
double global_sum = 0.0;

void Pi (void *arg)
{
 int i, start;
 double x, sum = 0.0;

 start = *(int *) arg;
 step = 1.0/(double) num_steps;

 for (i=start;i<= num_steps; i=i+NUM_THREADS){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 EnterCriticalSection(&hUpdateMutex);
 global_sum += sum;
 LeaveCriticalSection(&hUpdateMutex);
}

void main ()
{
 double pi; int i;
 DWORD threadID;
 int threadArg[NUM_THREADS];

 for(i=0; i<NUM_THREADS; i++) threadArg[i] = i+1;

 InitializeCriticalSection(&hUpdateMutex);

 for (i=0; i<NUM_THREADS; i++){
 thread_handles[i] = CreateThread(0, 0,
 (LPTHREAD_START_ROUTINE) Pi,
 &threadArg[i], 0, &threadID);
}

 WaitForMultipleObjects(NUM_THREADS,
 thread_handles, TRUE,INFINITE);

 pi = global_sum * step;

 printf(" pi is %f \n",pi);
}

77Wednesday, April 15, 2009

Solution: Win32 API, PI

#include <windows.h>
#define NUM_THREADS 2
HANDLE thread_handles[NUM_THREADS];
CRITICAL_SECTION hUpdateMutex;
static long num_steps = 100000;
double step;
double global_sum = 0.0;

void Pi (void *arg)
{
 int i, start;
 double x, sum = 0.0;

 start = *(int *) arg;
 step = 1.0/(double) num_steps;

 for (i=start;i<= num_steps; i=i+NUM_THREADS){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 EnterCriticalSection(&hUpdateMutex);
 global_sum += sum;
 LeaveCriticalSection(&hUpdateMutex);
}

void main ()
{
 double pi; int i;
 DWORD threadID;
 int threadArg[NUM_THREADS];

 for(i=0; i<NUM_THREADS; i++) threadArg[i] = i+1;

 InitializeCriticalSection(&hUpdateMutex);

 for (i=0; i<NUM_THREADS; i++){
 thread_handles[i] = CreateThread(0, 0,
 (LPTHREAD_START_ROUTINE) Pi,
 &threadArg[i], 0, &threadID);
}

 WaitForMultipleObjects(NUM_THREADS,
 thread_handles, TRUE,INFINITE);

 pi = global_sum * step;

 printf(" pi is %f \n",pi);
}

Doubles code size!
77Wednesday, April 15, 2009

Solution: Keep it simple

Threads libraries:
– Pro: Programmer has control over everything
– Con: Programmer must control everything

Full
control

Increased
complexity

Programmers
scared away

78Wednesday, April 15, 2009

Solution: Keep it simple

Threads libraries:
– Pro: Programmer has control over everything
– Con: Programmer must control everything

Full
control

Increased
complexity

Programmers
scared away

Sometimes a simple evolutionary
approach is better

78Wednesday, April 15, 2009

OpenMP PI Program:
Parallel Region example (SPMD Program)

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum[NUM_THREADS] = {0.0};
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{ double x; int i, id;
 id = omp_get_thraead_num();
 for (i=id;i< num_steps; i=i+NUM_THREADS){
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }
}
 for(i=0, pi=0.0;i<NUM_THREADS;i++)pi += sum[i] * step;
}

SPMD
Programs:
Each thread
runs the same
code with the
thread ID
selecting any
thread specific
behavior.

79Wednesday, April 15, 2009

OpenMP PI Program:
Work sharing construct
#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum[NUM_THREADS] = {0.0};
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{ double x; int i, id;
 id = omp_get_thraead_num();
#pragma omp for
 for (i=id;i< num_steps; i++){
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }
} for(i=0, pi=0.0;i<NUM_THREADS;i++)pi += sum[i] * step;
}

80Wednesday, April 15, 2009

OpenMP PI Program:
private clause and a critical section

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, sum, pi=0.0;
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel private (x, sum,i)
{
 id = omp_get_thread_num();
 for (i=id,sum=0.0;i< num_steps;i=i+NUM_THREADS){
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
#pragma omp critical
 pi += sum * step;
}
}

Note: We didn’t
need to create an
array to hold local
sums or clutter the
code with explicit
declarations of “x”
and “sum”.

81Wednesday, April 15, 2009

OpenMP PI Program :
Parallel for with a reduction

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum = 0.0;
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for reduction(+:sum) private(x)
 for (i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
}

82Wednesday, April 15, 2009

OpenMP PI Program :
Parallel for with a reduction

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum = 0.0;
 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel for reduction(+:sum) private(x)
 for (i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;
} OpenMP adds 2 to 4

lines of code
82Wednesday, April 15, 2009

MPI: Pi program
#include <mpi.h>
void main (int argc, char *argv[])
{
 int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;
 MPI_Init(&argc, &argv) ;
 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
 my_steps = num_steps/numprocs ;
 for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)
 {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 sum *= step ;
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD) ;
}

83Wednesday, April 15, 2009

