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Some Computational Science 
Algorithms

Computational science

• Simulations of physical phenomena
– fluid flow over aircraft (Boeing 777)
– fatigue fracture in aircraft bodies
– evolution of galaxies
– ….

• Two main approaches
– continuous models: fields and differential equations (eg. Navier-Stokes 

equations, Maxwell’s equations,…)
– discrete models: particles and forces (eg. gravitational forces)

• Paradox
– most differential equations cannot be solved exactly

• must use numerical techniques that convert calculus problem to 
matrix computations: discretization

– n-body methods are straight-forward
• but need to use a lot of bodies to get accuracy
• must find a way to reduce O(N2) complexity of obvious algorithm

Roadmap

Physical 
Phenomena

Continuous
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Discrete
Models

Finite-difference

Finite-element

Spectral 

Explicit
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MVM

Ax=b

Direct
methods

(Cholesky,LU)

Iterative
methods

(Jacobi,CG,..)

Spatial decomposition 
trees

Mesh generation
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FFT

Organization

• Finite-difference methods
– ordinary and partial differential equations
– discretization techniques

• explicit methods: Forward-Euler method
• implicit methods: Backward-Euler method

• Finite-element methods
– mesh generation and refinement
– weighted residuals

• N-body methods
– Barnes-Hut

• Key algorithms and data structures
– matrix computations

• algorithms
– MVM and MMM
– solution of systems of linear equations

» direct methods
» iterative methods

• data structures
– dense and sparse matrices

– graph computations
• mesh generation and refinement

– spatial decomposition trees
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Ordinary differential equations

• Consider the ode
u‘(t) = -3u(t)+2
u(0) = 1

• This is called an initial value 
problem
– initial value of u is given
– compute how function u 

evolves for t > 0

• Using elementary calculus, we 
can solve this ode exactly

u(t) = 1/3 (e-3t+2)

2/3

Problem

• For general ode’s, we may not be able to express 
solution in terms of elementary functions

• In most practical situations, we do not need exact 
solution anyway
– enough to compute an approximate solution, provided 

• we have some idea of how much error was introduced
• we can improve the accuracy as needed

• General solution: 
– convert calculus problem into algebra/arithmetic problem

• discretization: replace continuous variables with discrete variables
• in finite differences, 

– time will advance in fixed-size steps: t=0,h,2h,3h,…
– differential equation is replaced by difference equation

Forward-Euler method

• Intuition:
– we can compute the derivative at 

t=0 from the differential equation
u‘(t) = -3u(t)+2

– so compute the derivative at t=0 
and advance along tangent to t =h 
to find an approximation to u(h)

• Formally, we replace derivative 
with forward difference to get a 
difference equation

– u’(t)  (u(t+h) – u(t))/h
• Replacing derivative with 

difference is essentially the 
inverse of how derivatives were 
probably introduced to you in 
elementary calculus

Back to ode

• Original ode
u‘(t) = -3u(t)+2

• After discretization using Forward-Euler:
(uf(t+h) – uf(t))/h = -3uf(t)+2

• After rearrangement, we get difference equation
uf(t+h) = (1-3h)uf(t)+2h 

• We can now compute values of u:
uf(0)  = 1
uf(h)  = (1-h)
uf(2h) = (1-2h+3h2)
…..
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Exact solution of difference equation

• In this particular case, we can actually solve difference 
equation exactly

• It is not hard to show that if difference equation is
uf(t+h) = a*uf(t)+b
uf(0) = 1

the solution is 
uf(nh) = an+b*(1-an)/(1-a)

• For our difference equation, 
uf(t+h) = (1-3h)uf(t)+2h

the exact solution is
uf(nh) =1/3( (1-3h)n+2)

Comparison
• Exact solution

u(t) = 1/3 (e-3t+2)
u(nh) = 1/3(e-3nh+2)  (at time-steps)

• Forward-Euler solution 
uf(nh) =1/3( (1-3h)n+2)

• Use series expansion to compare
u(nh) = 1/3(1-3nh+9/2 n2h2 … + 2)
uf(nh) = 1/3(1-3nh+n(n-1)/2 9h2+…+2)
So error = O(nh2) (provided h < 2/3)

• Conclusion:
– error per time step (local error) = 

O(h2)
– error at time nh = O(nh2)

• In general, Forward-Euler 
converges only if time step is 
“small enough”

h=1/3

h=.2

h=0.1

h=0.01

exact solution

Choosing time step
• Time-step needs to be small enough to 

capture highest frequency 
phenomenon of interest

• Nyquist’s criterion
– sampling frequency must be at least 

twice highest frequency to prevent 
aliasing

– for most finite-difference formulas, you 
need sampling frequencies (much) 
higher than the Nyquist criterion

• In practice, most functions of interest 
are not band-limited, so use

– insight from application or
– reduce time-step repeatedly till 

changes are not significant
• Fixed-size time-step can be inefficient 

if frequency varies widely over time 
interval

– other methods like finite-elements 
permit variable time-steps as we will 
see later

time

Backward-Euler method
• Replace derivative with 

backward difference
u’(t)  (u(t) – u(t-h))/h

• For our ode, we get
ub(t)-ub(t-h)/h = -3ub(t)+2
which after rearrangement
ub(t)= (2h+ub(t-h))/(1+3h)

• As before, this equation is 
simple enough that we can write 
down the exact solution:
ub(nh) = ((1/(1+3h))n + 2)/3 

• Using series expansion, we get
ub(nh) = (1-3nh + (-n(-n-1)/2) 9h2 + 

...+2)/3
ub(nh) = (1 -3nh + 9/2 n2h2 + 9/2 nh2

+...+2)/3
So error = O(nh2) (for any value of h)

h=1000

h=0.1

h=0.01

exact solution
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Comparison

• Exact solution
u(t) = 1/3 (e-3t+2)
u(nh) = 1/3(e-3nh+2)  (at time-steps)

• Forward-Euler solution 
uf(nh) =1/3( (1-3h)n+2)
error = O(nh2) (provided h < 2/3)

• Backward-Euler solution 
ub(n*h) = 1/3 ((1/(1+3h))n + 2)
error = O(nh2) (h can be any value 

you want)
• Many other discretization 

schemes have been studied in the 
literature

– Runge-Kutta 
– Crank-Nicolson
– Upwind differencing
– …

Red: exact solution
Blue: Backward-Euler solution (h=0.1)
Green: Forward-Euler solution (h=0.1)

Higher-order difference formulas

• First derivatives:
– Forward-Euler: y’(t)  yf(t+h)-yf(t) /h 
– Backward-Euler: y’(t)  yb(t)-yb(t-h) /h
– Centered: y’(t)  yc(t+h)-yc(t-h)/2h

• Second derivatives:
– Forward: y’’(t) 

(yf(t+2h)-yf(t+h))- (yf(t+h)-yf(t))/h2

= yf(t+2h)-2yf(t+h)+yf(t)/h2

– Backward: y’’(t)  yb(t)-2yb(t-h)+yb(t-2h)/h2

– Centered: y’’(t)  yc(t+h) – 2yc(t)+yc(t-h)/h2

t-h t t+h

Systems of ode’s

• Consider a system of coupled ode’s of the form
u'(t) = a11*u(t) + a12*v(t) + a13*w(t) + c1(t)
v'(t) = a21*u(t) + a22*v(t) + a23*w(t) + c2(t)
w'(t) = a31*u(t) + a32*v(t) + a33*w(t) + c3(t)

• If we use Forward-Euler method to discretize 
this system, we get the following system of 
simultaneous equations
uf(t+h)–uf(t) /h = a11*uf(t) + a12*vf(t) + a13*wf(t) + c1(t)
vf(t+h)–vf(t) /h = a21*uf(t) + a22*vf(t) + a23*wf(t) + c2(t)
wf(t+h)–wf(t) /h= a31*uf(t) + a32*vf(t) + a33*wf(t) + c3(t)

Forward-Euler (contd.)

• Rearranging, we get
uf(t+h) = (1+ha11)*uf(t) + ha12*vf(t) + ha13*wf(t) + hc1(t)

vf(t+h) = ha21*uf(t) + (1+ha22)*vf(t) + ha23*wf(t) + hc2(t)

wf(t+h) = ha31*uf(t) + ha32*vf(t) + (1+a33)*wf(t) + hc3(t)

• Introduce vector/matrix notation

U(t) = [u(t) v(t) w(t)]T

A    = …..

C(t) =[c1(t) c2(t) c3(t)]T
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Vector notation

• Our systems of equations was
uf(t+h) = (1+ha11)*uf(t) + ha12*vf(t) + ha13*wf(t) + hc1(t)
vf(t+h) = ha21*uf(t) + (1+ha22)*vf(t) + ha23*wf(t) + hc2(t)
wf(t+h) = ha31*uf(t) + ha32*vf(t) + (1+a33)*wf(t) + hc3(t)

• This system can be written compactly as follows
U(t+h) = (I+hA)U(t)+hC(t)

• We can use this form to compute values of                     
U(h),U(2h),U(3h),…

• Forward-Euler is an example of explicit method of 
discretization
– key operation: matrix-vector (MVM) multiplication
– in principle, there is a lot of parallelism

• O(n2) multiplications
• O(n) reductions

– parallelism is independent of runtime values

Backward-Euler
• We can also use Backward-Euler method to 

discretize system of ode’s
ub(t)–ub(t-h) /h = a11*ub(t) + a12*vb(t) + a13*wb(t) + c1(t)
vb(t)–vb(t-h) /h = a21*ub(t) + a22*vb(t) + a23*wb(t) + c2(t)
wb(t)–wb(t-h) /h= a31*ub(t) + a32*vb(t) + a33*wb(t) + c3(t)

• We can write this in matrix notation as follows
(I-hA)U(t) = U(t-h)+hC(t)

• Backward-Euler is example of implicit method of 
discretization
– key operation: solving a dense linear system Mx = v

• How do we solve large systems of linear equations?
• Matrix (I-hA) is often very sparse

– Important to exploit sparsity in solving linear systems

Diversion:
Solving linear systems

Solving linear systems

• Linear system: Ax = b
• Two approaches

– direct methods: Cholesky, LU with pivoting
• factorize A into product of lower and upper triangular matrices A = 

LU
• solve two triangular systems

Ly = b
Ux = y

• problems:
– even if A is sparse, L and U can be quite dense (“fill”)
– no useful information is produced until the end of the procedure

– iterative methods: Jacobi, Gauss-Seidel, CG, GMRES
• guess an initial approximation x0 to solution
• error is Ax0 – b (called residual)
• repeatedly compute better approximation xi+1 from residual  (Axi – b)
• terminate when approximation is “good enough”
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Iterative method: Jacobi iteration

• Linear system
4x+2y=8
3x+4y=11

• Exact solution is (x=1,y=2)
• Jacobi iteration for finding approximations to solution

– guess an initial approximation
– iterate

• use first component of residual to refine value of x
• use second component of residual to refine value of y

• For our example
xi+1 = xi - (4xi+2yi-8)/4
yi+1 = yi - (3xi+4yi-11)/4

– for initial guess (x0=0,y0=0)

i    0   1        2            3            4             5              6             7
x   0   2        0.625     1.375     0.8594    1.1406     0.9473    1.0527
y   0   2.75   1.250     2.281     1.7188    2.1055     1.8945    2.0396

Jacobi iteration: general picture

• Linear system Ax = b
• Jacobi iteration

M*xi+1 = (M-A)xi + b  (where M is the diagonal of A)
This can be written as
xi+1 = xi – M-1(Axi – b)

• Key operation:
– matrix-vector multiplication 

• Caveat:
– Jacobi iteration does not always converge
– even when it converges, it usually converges slowly
– there are faster iterative methods available: CG,GMRES,..
– what is important from our perspective is that key operation in all 

these iterative methods is matrix-vector multiplication

Sparse matrix representations MVM with sparse matrices

• Coordinate storage
for P = 1 to NZ do

Y(A.row(P))=Y(A.row(P)) + A.val(P)*X(A.column(P))

• CRS storage
for I = 1 to N do

for JJ = A.rowptr(I) to A.rowPtr(I+1)-1 do

Y(I)=Y(I)+A.val(JJ)*X(A.column(J)))
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Finite-differences:pde’s

Finite-difference methods for solving
partial differential equations

• Basic ideas carry over unchanged
• Example: 2-d heat equation

δ2u/δx2 + δ2u/δy2 = f(x,y)
assume temperature at boundary is fixed

• Discretize domain using a regular NxN grid of pitch h
• Approximate derivatives as centered differences

δ2u/δy2  ((u(i,j+1)-u(i,j))/h - (u(i,j)-u(i,j-1))/h)/h
δ2u/δx2    ((u(i+1,j)-u(i,j))/h - (u(i,j)-u(i-1,j))/h)/h

• So we get a system of (N-1)x(N-1) difference equations
in terms of the unknowns at the (N-1)x(N-1) interior points

∀ interior point (i,j)
u(i,j+1)+u(i,j-1)+u(i+1,j)+u(i-1,j) – 4u(i,j) = h2 f(ih,jh)

• This system can be solved using any of our methods.     

(i,j)

(i-1,j)

(i+1,j)

(i,j-1) (i,j+1)

5-point stencilx

y

………………………………
………………………………
………………………………
………………………………
0..1 0..0 1 -4 1 0..0 1 0…0.
0..0 0 1 0..0 1 -4 1 0..0 1 0.
………………………………
………………………………
……………………………...

• System of (N-1)x(N-1) difference equations
in terms of the unknowns at the (N-1)x(N-1) interior points

∀ interior point (i,j) 
u(i,j+1)+u(i,j-1)+u(i+1,j)+u(i-1,j) – 4u(i,j) = h2 f(ih,jh)

Solving partial differential equations contd.)

(i,j)

(i-1,j)

(i+1,j)

(i,j-1) (i,j+1)

5-point stencil

….
u(i-1,j)
….
u(i,j-1)
u(i,j)
u(i,j+1)
.....
u(i+1,j)
……

= h2

…….
f(ih,jh)
……..

• Matrix notation: use row-major (natural) order for u’s 

Pentadiagonal sparse matrix
Can be represented using specialized sparse matrix formats

Since matrix is sparse, we should use an iterative method like Jacobi. 

Useful to change data structures

• Data structure:
– pentadiagonal matrix can be inlined into 

code
– values of u at a given time-step can be 

stored in a 2D array
– use two arrays and use them for odd and 

even time-steps

• Algorithm:
for each interior point

un+1[i,j] = un[i,j+1]+un[i,j-1]+un[i+1,j]+un[i-1,j] – h2f(ih,jh) /4

• Known as stencil codes
• Example shown is Jacobi iteration with 

five-point stencil
• Parallelism

– all interior points can be computed in parallel
– parallelism is independent of runtime values

5-point stencil

un un+1
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Observations

• Algorithm: Jacobi iteration with 5-point stencil 
to solve 2-D heat equation 

• Two very different programs
a. pentadiagonal matrix: stored in sparse matrix 

format, unknowns: 1D vector
b. pentadiagonal matrix: inlined into code, 

unknowns: matrix

• Data structures are critical
– can result in very different programs 

(implementations) for the same algorithm

Summary

• Finite-difference methods
– can be used to find 

approximate solutions to ode’s 
and pde’s

• Many large-scale 
computational science 
simulations use these methods

• Time step or grid step needs to 
be constant and is determined 
by highest-frequency 
phenomenon
– can be inefficient for when 

frequency varies widely in 
domain of interest

– one solution: structured AMR 
methods

Big picture

Physical 
Models

Continuous
Models

Discrete
Models

Finite-difference

Finite-element

Explicit

Implicit

MVM

Ax=b

Direct
methods

(Cholesky,LU)

Iterative
methods

(Jacobi,CG,..)

Finite-element methods

• Express approximate solution to pde as a linear combination 
of certain basis functions

• Similar in spirit to Fourier analysis
– express periodic functions as linear combinations of sines and 

cosines 

• Questions:
– what should be the basis functions?

• mesh generation: discretization step for finite-elements
• mesh defines basis functions φ0, φ1, φ2,…which are low-degree piecewise 

polynomial functions
– given the basis functions, how do we find the best linear combination 

of these for approximating solution to pde?
• u = i ci φi

• weighted residual method: similar in spirit to what we do in Fourier 
analysis, but more complex because basis functions are not necessarily 
orthogonal
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Mesh generation and refinement

• 1-D example:
– mesh is a set of points, not necessarily equally spaced
– basis functions are “hats” which

• have a value of 1 at a mesh point, 
• decay down to 0 at neighboring mesh points
• 0 everywhere else

– linear combinations of these produce piecewise linear functions in domain, which may 
change slope only at mesh points

• In 2-D, mesh is a triangularization of domain, while in 3-D, it might be a 
tetrahedralization

• Mesh refinement: called h-refinement
– add more points to mesh in regions where discretization error is large
– irregular nature of mesh makes this easy to do this locally
– finite-differences require global refinement which can be computationally expensive

Delaunay Mesh Refinement
• Iterative refinement to remove bad

triangles with lots of discretization error:
while there are bad triangles do {

Pick a bad triangle;
Find its cavity;
Retriangulate cavity; 

// may create new bad triangles
}

• Don’t-care non-determinism:
– final mesh depends on order in which bad 

triangles are processed
– applications do not care which mesh is 

produced

• Data structure: 
– graph in which nodes represent triangles 

and edges represent triangle adjacencies
• Parallelism: 

– bad triangles with cavities that do not 
overlap can be processed in parallel

– parallelism is dependent on runtime values
• compilers cannot find this parallelism 

– (Miller et al) at runtime, repeatedly build 
interference graph and find maximal 
independent sets for parallel execution

Finding coefficients 

• Weighted residual technique
– similar in spirit to what we do in Fourier analysis, but basis 

functions are not necessarily orthogonal

• Key idea:
– problem is reduced to solving a system of equations Ax = b
– solution gives the coefficients in the weighted sum
– because basis functions are zero almost everywhere in the 

domain, matrix A is usually very sparse
• number of rows/columns of A ~ O(number of points in mesh)
• number of non-zeros per row  ~ O(connectivity of mesh point)

– typical numbers:
• A is 106x106

• only about ~100 non-zeros per row
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Barnes Hut
N-body Simulation

Introduction

• Physical system simulation (time evolution)
– System consists of bodies

– “n” is the number of bodies

– Bodies interact via pair-wise forces

• Many systems can be modeled in these 
terms
– Galaxy clusters (gravitational force)

– Particles (electric force, magnetic force)

Barnes Hut N-body Simulation 40
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Barnes Hut Idea

• Precise force calculation
– Requires O(n2) operations (O(n2) body pairs)

• Barnes and Hut (1986)
– Algorithm to approximately compute forces

• Bodies’ initial position & velocity are also 
approximate

– Requires only O(n log n) operations
– Idea is to “combine” far away bodies
– Error should be small because force  1/r2

Barnes Hut N-body Simulation 41

Barnes Hut Algorithm

• Set bodies’ initial position and velocity

• Iterate over time steps
1. Subdivide space until at most one body per cell

• Record this spatial hierarchy in an octree

2. Compute mass and center of mass of each cell

3. Compute force on bodies by traversing octree
• Stop traversal path when encountering a leaf (body) 

or an internal node (cell) that is far enough away

4. Update each body’s position and velocity

Barnes Hut N-body Simulation 42

Build Tree (Level 1)

Barnes Hut N-body Simulation

 *

 * *

 *

* *

* *

*   * *

* * *

* *

*

 * *

 *

  * *

  *

43

o

Subdivide space until at most one body per cell

Build Tree (Level 2)

Barnes Hut N-body Simulation

 *

 * *

*

* *

* *

*  * *

* * *

* *

*

 * *

*

  * *

  *

44

o o o o

o

Subdivide space until at most one body per cell
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Build Tree (Level 3)

Barnes Hut N-body Simulation

 *

 * *

 *

* *

* *

*   * *

* * *

* *

*

 * *

 *

  * *

  *

45

o o o o

o

o                o                o                o o                o                o                o o                o                o                o

Subdivide space until at most one body per cell

Build Tree (Level 4)

Barnes Hut N-body Simulation

 *

 * *

*

* *

* *

*  * *

* * *

* *

*

 * *

*

  * *

  *

46

o o o o

o

o    o    o    o

o                o                o                o o                o                o                o o                o                o                o

o    o    o    o o    o    o    o

Subdivide space until at most one body per cell

Build Tree (Level 5)

Barnes Hut N-body Simulation

 *

 * *

 *

* *

* *

*   * *

* * *

* *

*

 * *

 *

  * *

  *
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o o o o

o o o o

o

o    o    o    o

o                o                o                o o                o                o                o o                o                o                o

o    o    o    o o    o    o    o

Subdivide space until at most one body per cell

Compute Cells’ Center of Mass

Barnes Hut N-body Simulation

 *

 * *

*

* *

* *

*  * *

* * *

o

* *

*

 * *

 o *

  * *

  *

48

o o o o

o o o o

o

o    o    o    o

o                o                o                o o                o                o                o o                o                o                o

o    o    o    o o    o    o    o

For each internal cell, compute sum of mass and weighted average
of position of all bodies in subtree; example shows two cells only
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Compute Forces

Barnes Hut N-body Simulation

 *

 * *

 *

* *

* *

*   * *

* * *

o

* *

*

 * *

 o  *

  * *

  *

49

o o o o

o o o o

o

o    o    o    o

o                o                o                o o                o                o                o o                o                o                o

o    o    o    o o    o    o    o

Compute force, for example, acting upon green body

Compute Force (short distance)

Barnes Hut N-body Simulation

 *

 * *

*

* *

* *

*  * *

* * *

o

* *

*

 * *

 o *

  * *

  *
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o o o o

o o o o

o

o    o    o    o

o                o                o                o o                o                o                o o                o                o                o

o    o    o    o o    o    o    o

Scan tree depth first from left to right; green portion already completed

Compute Force (down one level)

Barnes Hut N-body Simulation

 *

 * *

 *

* *

* *

*   * *

* * *

o

* *

*

 * *

 o  *

  * *

  *

51

o o o o

o o o o

o

o    o    o    o

o                o                o                o o                o                o                o o                o                o                o

o    o    o    o o    o    o    o

Red center of mass is too close, need to go down one level

Compute Force (long distance)

Barnes Hut N-body Simulation

 *

 * *

*

* *

* *

*  * *

* * *

o

* *

*

 * *

 o *

  * *

  *

52

o o o o

o o o o

o

o    o    o    o

o                o                o                o o                o                o                o o                o                o                o
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Yellow center of mass is far enough away
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Compute Force (skip subtree)

Barnes Hut N-body Simulation
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Therefore, entire subtree rooted in the yellow cell can be skipped

Pseudocode
Set bodySet = ...
foreach timestep do {

Octree octree = new Octree();
foreach Body b in bodySet {

octree.Insert(b);
}
OrderedList cellList = octree.CellsByLevel();
foreach Cell c in cellList {

c.Summarize();
}
foreach Body b in bodySet {

b.ComputeForce(octree);
}
foreach Body b in bodySet {

b.Advance();
}

} Barnes Hut N-body Simulation 54

Complexity
Set bodySet = ...
foreach timestep do {           // O(n log n)

Octree octree = new Octree();
foreach Body b in bodySet {   // O(n log n)

octree.Insert(b);
}
OrderedList cellList = octree.CellsByLevel();
foreach Cell c in cellList {  // O(n)

c.Summarize();
}
foreach Body b in bodySet {   // O(n log n)

b.ComputeForce(octree);
}
foreach Body b in bodySet {   // O(n)

b.Advance();
}

} Barnes Hut N-body Simulation 55

Parallelism
Set bodySet = ...
foreach timestep do {           // sequential

Octree octree = new Octree();
foreach Body b in bodySet {   // tree building

octree.Insert(b);
}
OrderedList cellList = octree.CellsByLevel();
foreach Cell c in cellList {  // tree traversal

c.Summarize();
}
foreach Body b in bodySet {   // fully parallel

b.ComputeForce(octree);
}
foreach Body b in bodySet {   // fully parallel

b.Advance();
}

} Barnes Hut N-body Simulation 56
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Summary

Physical 
Phenomena

Continuous
Models

Discrete
Models

Finite-difference

Finite-element

Spectral 

Explicit

Implicit

MVM

Ax=b

Direct
methods

(Cholesky,LU)

Iterative
methods

(Jacobi,CG,..)

Spatial decomposition 
trees

Mesh generation
and refinement 

FFT

Summary (contd.)

• Some key computational science algorithms and data 
structures
– MVM: 

• explicit finite-difference methods for ode’s, iterative linear solvers, 
finite-element methods

• both dense and sparse matrices
– stencil computations:

• finite-difference methods for pde’s
• dense matrices

– A=LU: 
• direct methods for solving linear systems: factorization
• usually only dense matrices
• high-performance factorization codes use MMM as a kernel

– mesh generation and refinement
• finite-element methods
• graphs

Summary (contd.)

• Terminology
– regular algorithms: 

• dense matrix computations like MVM, A=LU, stencil computations
• parallelism in algorithms is independent of runtime values, so all 

parallelization decisions can be made at compile-time
– irregular algorithms:

• graph computations like mesh generation and refinement
• parallelism in algorithms is dependent on runtime values
• most parallelization decisions have to be made at runtime during the 

execution of the algorithm
– semi-regular algorithms:

• sparse matrix computations like MVM, A=LU
• parallelization decisions can be made at runtime once matrix is 

available, but before computation is actually performed
• inspector-executor approach


