
10/29/2012

1

Programming
Shared-memory Machines

Some slides adapted from Ananth Grama,
Anshul Gupta, George Karypis, and Vipin
Kumar ``Introduction to Parallel Computing'',

Addison Wesley, 2003.

Overview

• Thread Basics
• The POSIX Thread API
• Synchronization primitives in Pthreads

– locks
– try-locks

• Deadlocks and how to avoid them
• Composite synchronization constructs
• Controlling Thread and Synchronization Attributes
• OpenMP: a Standard for Directive Based Parallel

Programming

Process vs Threads Thread Basics

• Each thread has its own stack, SP, PC,
registers, etc.

• Threads share global variables and heap.

• Caveat: writing programs in which shared space
is treated as a “flat” address space may give
poor performance
– Locality is just as important in shared-memory

machines as it is in distributed-memory machines

10/29/2012

2

Thread Basics

• The logical machine model of a thread-
based programming paradigm.

The POSIX Thread API

• Commonly referred to as Pthreads, POSIX
has emerged as the standard threads API,
supported by most vendors.

• The concepts discussed here are largely
independent of the API and can be used
for programming with other thread APIs
(NT threads, Solaris threads, Java
threads, etc.) as well.

Thread Basics: Creation and
Termination

• Creating Pthreads:
#include <pthread.h>
int pthread_create (

pthread_t *thread_handle,
const pthread_attr_t *attribute,
void * (*thread_function)(void *),
void *arg);

• Thread is created and it starts to execute
thread_function with parameter arg

• Thread handle: name for thread

Terminating threads

• Thread terminated when:

o it returns from its starting routine, or

o it makes a call to pthread_exit()

• Main thread
– exits with pthread_exit(): other threads will continue to

execute

– Otherwise: other threads automatically terminated

• Cleanup:
– pthread_exit() routine does not close files

– any files opened inside the thread will remain open
after the thread is terminated.

10/29/2012

3

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#define NUM_THREADS 5

void *PrintHello(void *threadid) {
printf("\n%d: Hello World!\n", threadid);
pthread_exit(NULL);

}

int main(int argc, char *argv[]) {
pthread_t threads[NUM_THREADS];
int rc, t;
for(t=0;t<NUM_THREADS;t++){

printf("Creating thread %d\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (rc){ printf("ERROR; return code from pthread_create() is %d\n", rc);

exit(-1);
}

}
pthread_exit(NULL);

}

Output

Creating thread 0
Creating thread 1

0: Hello World!

1: Hello World!
Creating thread 2
Creating thread 3

2: Hello World!

3: Hello World!
Creating thread 4

4: Hello World!

Synchronizing threads
•"Joining" is one way to synchronize threads (not used very often)

pthread_join (threadid,status)

•The pthread_join() function blocks the calling thread
until the specified thread terminates.

•The programmer can obtain the target thread's termination return
status if it was specified in the target thread's call to pthread_exit().

Threads: Example 2

• Area of circle = pi*0.25
• Area of square = 1
• So if we shoot randomly into square, probability of hitting circle is pi*0.25
• Estimating value of pi:

– generate a large number of random values inside the unit square
– see what fraction of them fall inside circle and multiply by 4

• Simple example of Monte Carlo method: estimate some value by repeated
sampling of some space

• Monte Carlo method can be easily parallelized provided each parallel thread
generates independent random numbers

1.0

1.0

10/29/2012

4

Threads: Example2

#include <pthread.h>
#include <stdlib.h>
#define MAX_THREADS 512
void *compute_pi (void *);
....
main() {

...
pthread_t p_threads[MAX_THREADS];
pthread_attr_t attr;
pthread_attr_init (&attr);
for (i=0; i< num_threads; i++) {

hits[i] = i;
pthread_create(&p_threads[i], &attr, compute_pi,

(void *) &hits[i]);
}
for (i=0; i< num_threads; i++) {

pthread_join(p_threads[i], NULL);
total_hits += hits[i];

}
...

}

Threads: Example2 (contd.)

void *compute_pi (void *s) {
int seed, i, *hit_pointer;
double rand_no_x, rand_no_y;
int local_hits;
hit_pointer = (int *) s;
seed = *hit_pointer;
local_hits = 0;
for (i = 0; i < sample_points_per_thread; i++) {

rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
local_hits ++;

seed *= i;
}
*hit_pointer = local_hits;
pthread_exit(0);

}

• Style of computing shown in Example 2 is sometimes
called fork-join parallelism

• This style of parallel execution in which threads only
synchronize at the end is quite rare

• Usually, threads need to synchronize during their
execution

Synchronizing threads

fork

join

Need for synchronization

• Two common scenarios:
– Mutual exclusion

• Shared “resource” such as variable or device
• Only one thread at a time can access resource
• Critical section: portion of code that should be executed by

only thread at a time

– Producer-consumer
• One thread (producer) generates a sequence of values
• Another thread (consumer) reads these values
• Values are communicated by writing them into a shared

buffer
• Producer must block if buffer is full
• Consumer must block if buffer is empty

10/29/2012

5

Need for Mutual Exclusion
• When multiple threads attempt to manipulate the same data item,

the results can often be incorrect if proper care is not taken to
synchronize them.

• Consider:
/* each thread tries to update variable best_cost as follows

*/
if (my_cost < best_cost)

best_cost = my_cost;

• Assume that there are two threads, the initial value of best_cost is
100, and the values of my_cost are 50 and 75 at threads t1 and t2.

• Depending on the schedule of the threads, the value of best_cost
could be 50 or 75!
– Thread 1 reads best_cost (100)
– Thread 2 reads best_cost (100)
– Thread 1 writes best_cost (50)
– Thread 2 writes best_cost (75)

• The value 75 does not “seem right” because it would not arise in a
sequential execution of the same algorithm

General problem

• The code in the previous example is called a critical
section
– Several threads may try to execute code in critical section but

only one should succeed at a time
• Problem arises very often when writing threaded code

– Thread A want to read and write one or more variables in critical
section

– While it is doing that, other threads should be excluded from
accessing those variables

• Solution: lock
– Threads compete for “acquiring” lock
– Pthreads implementation guarantees that only one thread will

succeed in acquiring lock
– Successful thread enters critical section, performs its activity
– When critical section is done, lock is “released”

Mutex in Pthreads

• The Pthreads API provides the following
functions for handling mutex-locks:
– Lock creation
int pthread_mutex_init (

pthread_mutex_t *mutex_lock,
const pthread_mutexattr_t *lock_attr);

– Acquiring lock
int pthread_mutex_lock (

pthread_mutex_t *mutex_lock);

– Releasing lock
int pthread_mutex_unlock (

pthread_mutex_t *mutex_lock);

Implementation (see next time)

• Lock is implemented by
– variable with two states: available or not_available
– queue that can hold ids of threads waiting for the lock

• Lock acquire:
– If state of lock is available, its state is changed to not_available,

and control returns to application program
– If state of lock is not_available, thread-id is queued up at the

lock, and control returns to application program only when lock is
acquired by that thread

– Key invariant: once a thread tries to acquire lock, control returns
to thread only after lock has been awarded to that thread

• Lock release:
– next thread in queue is informed it has acquired lock, and it can

proceed
• “Fairness”: any thread that wants to acquire a lock can

succeed ultimately even if other threads want to acquire
the lock an unbounded number of times

10/29/2012

6

• We can now write our previously incorrect critical section as:
pthread_mutex_t minimum_value_lock;
...
main() {

....
pthread_mutex_init(&minimum_value_lock, NULL);
....

}
void *find_min(void *list_ptr) {

....
pthread_mutex_lock(&minimum_value_lock);
if (my_min < minimum_value)
minimum_value = my_min;
/* and unlock the mutex */
pthread_mutex_unlock(&minimum_value_lock);

}

Correct Mutual Exclusion

critical section

Critical sections

• For performance, it is important to keep critical sections
as small as possible

• While one thread is within critical section, all others
threads that want to enter the critical section are blocked

• It is up to the programmer to ensure that locks are used
correctly to protect variables in critical sections

Thread A Thread B Thread C
lock(l) lock(l)
x:= ..x.. x:= ..x.. x: = …x

unlock(l) unlock(l)

This program may fail to execute correctly because
programmer forgot to use locks in Thread C

Producer-Consumer Using Locks

• Two threads
– Producer: produces data
– Consumer: consumes data

• Shared buffer is used to communicate data from
producer to consumer
– Buffer can contain one data value (in this example)
– Flag is associated with buffer to indicate buffer has

valid data
• Consumer must not read data from buffer unless

there is valid data
• Producer must not overwrite data in buffer

before it is read by consumer

pthread_mutex_t data_queue_lock;
int data_available; //1 if buffer is full
...
main() {

....
data_available = 0;
pthread_mutex_init(&data_queue_lock, NULL);
....

}
void *producer(void *producer_thread_data) {

....
while (!done()) {

create_data(&my_data);
inserted = 0;
while (inserted == 0) {

pthread_mutex_lock(&data_queue_lock);
if (data_available == 0) {

insert_data(my_data);
data_available = 1;
inserted = 1;

}
pthread_mutex_unlock(&data_queue_lock);

}
}

}

Producer-Consumer Using Locks

data-available

d
a

ta
-q

u
e

u
e

-lo
ck

buffer

producer

consumer

done?
inserted

done?
extracted

10/29/2012

7

void *consumer(void *consumer_thread_data) {
int extracted;
struct data my_data;
/* local data structure declarations */
while (!done()) {

extracted = 0;
while (extracted == 0) {

pthread_mutex_lock(&data_queue_lock);
if (data_available == 1) {

extract_data(&my_data);
data_available = 0;
extracted = 1;

}
pthread_mutex_unlock(&data_queue_lock);

}
process_data(my_data);

}
}

Producer-Consumer Using Locks

data-available

d
a

ta
-q

u
e

u
e

-lo
ck

buffer

producer

consumer

done?
inserted

done?
extracted

Types of Mutexes

• Pthreads supports three types of mutexes - normal,
recursive, and error-check.

• A normal mutex deadlocks if a thread that already has a
lock tries a second lock on it.

• A recursive mutex allows a single thread to lock a mutex
as many times as it wants. It simply increments a count
on the number of locks. A lock is relinquished by a
thread when the count becomes zero.

• An error check mutex reports an error when a thread
with a lock tries to lock it again (as opposed to
deadlocking in the first case, or granting the lock, as in
the second case).

• The type of the mutex can be set in the attributes object
before it is passed at time of initialization.

Reducing lock overhead

• Another kind of lock: trylock.
int pthread_mutex_trylock (

pthread_mutex_t *mutex_lock);

• If lock is available, acquire it; otherwise, return a
“busy” error code (EBUSY)

• Faster than pthread_mutex_lock on typical
systems since it does not have to deal with
queues associated with locks for multiple
threads waiting on the lock.

Alleviating Locking Overhead (Example)
/* Finding k matches in a list */
void *find_entries(void *start_pointer) {

/* This is the thread function */
struct database_record *next_record;
int count;
current_pointer = start_pointer;
do {

next_record = find_next_entry(current_pointer);
count = output_record(next_record);

} while (count < requested_number_of_records);
}
int output_record(struct database_record *record_ptr) {

int count;
pthread_mutex_lock(&output_count_lock);
output_count ++;
count = output_count;
pthread_mutex_unlock(&output_count_lock);
if (count <= requested_number_of_records)

print_record(record_ptr);
return (count);

}

10/29/2012

8

Alleviating Locking Overhead (Example)
/* rewritten output_record function */
int output_record(struct database_record

*record_ptr) {
int count;
int lock_status;
lock_status=pthread_mutex_trylock(&output_count_lock);
if (lock_status == EBUSY) {

insert_into_local_list(record_ptr);
return(0);

}
else {

count = output_count;
output_count += number_on_local_list + 1;
pthread_mutex_unlock(&output_count_lock);
print_records(record_ptr, local_list,

requested_number_of_records - count);

return(count + number_on_local_list + 1);

}
}

Problems with locks

• Locks are most dangerous when a thread needs to
acquire multiple locks before releasing locks

• Two main problems:
– deadlock
– livelock

• Deadlock:
– Threads A and B need locks L1 and l2
– Thread A acquires L1 and wants L2
– Thread B acquires L2 and wants L1
– In general, there will be a cycle of threads in which each

thread holds some locks and is waiting for locks held by
other threads in the cycle

• Livelock:
– may arise in some solutions to deadlock

Deadlock

• Code snippet shows
example of possible
deadlock

• Subtle point:
– deadlock may happen in

some executions and not
in others!

• “Deadly embrace”:
Dijkstra

• How do we ensure
deadlocks cannot
occur?

Thread 1:
…
lock(L1);
lock(L2);
….

Thread 2:
…
lock(L2);
lock(L1);
…

Thread 1 Lock L1

Thread 2Lock L2

holds

holds

needed by needed by

Deadlock: four conditions

• Mutual exclusion:
– thread has exclusive control over resource it acquires

• Hold-and-wait:
– thread does not release resource it holds if it is waiting for

another resource
• No pre-emption:

– No external agency forces a thread to release resources if thread
is waiting for another resource

• Circular wait:
– There is a cycle of threads such that each thread holds one or

more resources needed by the next thread in the cycle

You prevent deadlocks by ensuring that one or more of these
conditions cannot arise in your program.

10/29/2012

9

Prevent circular wait

• Assign a logical total order to locks
– (eg) name them L1,L2,L3,…

• Ensure that threads will never try to acquire a lower numbered
lock while holding a higher numbered lock
– (eg) if thread owns L3, it can try to acquire L4, L5, L6,… but it

cannot try to acquire locks L1 or L2 (unless it already owns them
and locks are re-entrant)

• Useful software engineering principle when you have control
over the entire code base and you know what locks are
required where

• However
– easy to make mistakes
– tension with encapsulation:

• requires detailed knowledge of entire code base

Prevent hold-and-wait

• Try to acquire all locks
atomically

• One implementation:
– single global lock to get permission

to acquire locks you need

• Problem:
– not scalable
– conflicts with modularity and

encapsulation
• You might encounter a hidden

version of this problem if thread
has to enter the kernel to
perform some function like
storage allocation
– kernel lock is like the global-lock in

our example

…
lock(global-lock);
lock(l1);
lock(l2);
unlock(global-lock);
…

Self-preemption

• Coding discipline:
– Use only try-locks
– If a thread cannot acquire a lock while it

is holding other locks, it releases all
locks it holds and tries again

– Variation: OS or some other agency
steps in and preempts a thread

• Problems:
– Encapsulation
– Livelock: threads can keep on acquiring

and releasing locks without making
progress because no thread ever gets all
the locks it needs

– One solution to livelock: (Ethernet)
backoff: thread does not retry until some
randomly chosen amount of time has
passed

loop:
//start of lock acquires
….
if (trylock(Lj) == EBUSY) {
//unlock all locks you hold
goto loop;
}
….

endloop:

//compute with resources
//release locks

Lock-free synchronization

• Use more powerful hardware instructions that
perform atomic computations on variables
– no notion of “holding” resources like locks
– these atomic computations are enough for many

applications but in general, they need to be
composed and this can be tricky

• Example: CompareAndSwap instruction
int CompareAndSwap(int *address, int expected, int new)

if (*address == expected) {
*address = new;
return SUCCESS;
}

else return FAIL;

void AtomicIncrement(int *value; int amount) {
do {int old = *value;

} while (CompareAndSwap(value,old,old+amount) == FAIL)

10/29/2012

10

Composite Synchronization
Constructs

• By design, Pthreads provide support for a
basic set of operations.

• Higher level constructs can be built using
basic synchronization constructs.

• We discuss two such constructs - read-
write locks and barriers.

Read-Write Locks

• In many applications, a data structure is read frequently
but written infrequently. For such applications, we should
use read-write locks.

• A read lock is granted when there are other threads that
may already have read locks.

• If there is a write lock on the data (or if there are queued
write locks), the thread performs a condition wait.

• If there are multiple threads requesting a write lock, they
must perform a condition wait.

• With this description, we can design functions for read
locks mylib_rwlock_rlock, write locks
mylib_rwlock_wlock, and unlocking
mylib_rwlock_unlock.

Read-Write Locks

• The lock data type mylib_rwlock_t holds the
following:
– a count of the number of readers,
– the writer (a 0/1 integer specifying whether a writer is

present),
– a condition variable readers_proceed that is

signaled when readers can proceed,
– a condition variable writer_proceed that is

signaled when one of the writers can proceed,
– a count pending_writers of pending writers, and
– a mutex read_write_lock associated with the

shared data structure

Read-Write Locks
typedef struct {

int readers;

int writer;

pthread_cond_t readers_proceed;

pthread_cond_t writer_proceed;

int pending_writers;

pthread_mutex_t read_write_lock;

} mylib_rwlock_t;

void mylib_rwlock_init (mylib_rwlock_t *l) {

l -> readers = l -> writer = l -> pending_writers
= 0;

pthread_mutex_init(&(l -> read_write_lock),
NULL);

pthread_cond_init(&(l -> readers_proceed), NULL);

pthread_cond_init(&(l -> writer_proceed), NULL);

}

10/29/2012

11

Read-Write Locks

void mylib_rwlock_rlock(mylib_rwlock_t *l) {

/* if there is a write lock or pending writers, perform
condition wait.. else increment count of readers and grant
read lock */

pthread_mutex_lock(&(l -> read_write_lock));

while ((l -> pending_writers > 0) || (l -> writer > 0))

pthread_cond_wait(&(l -> readers_proceed),

&(l -> read_write_lock));

l -> readers ++;

pthread_mutex_unlock(&(l -> read_write_lock));

}

Read-Write Locks
void mylib_rwlock_wlock(mylib_rwlock_t *l) {

/* if there are readers or writers, increment pending
writers count and wait. On being woken, decrement
pending writers count and increment writer count */

pthread_mutex_lock(&(l -> read_write_lock));
l -> pendingwriters ++;
while ((l -> writer > 0) || (l -> readers > 0)) {

pthread_cond_wait(&(l -> writer_proceed),
&(l -> read_write_lock));

}
l -> pending_writers --;
l -> writer ++;
pthread_mutex_unlock(&(l -> read_write_lock));

}

Read-Write Locks
void mylib_rwlock_unlock(mylib_rwlock_t *l) {
/* if there is a write lock then unlock, else if there are read

locks, decrement count of read locks. If the count is 0 and
there is a pending writer, let it through, else if there are
pending readers, let them all go through */

pthread_mutex_lock(&(l -> read_write_lock));
if (l -> writer > 0)

l -> writer = 0;
else if (l -> readers > 0)

l -> readers --;

if ((l -> readers == 0) && (l -> pending_writers > 0))
pthread_cond_signal(&(l -> writer_proceed));

else //no pending writers
pthread_cond_broadcast(&(l -> readers_proceed));

pthread_mutex_unlock(&(l -> read_write_lock));
}

Barriers

• As in MPI, a barrier holds a thread until all threads
participating in the barrier have reached it.

• Barriers can be implemented using a counter, a mutex
and a condition variable.

• A single integer is used to keep track of the number of
threads that have reached the barrier.

• If the count is less than the total number of threads, the
threads execute a condition wait.

• The last thread entering (and setting the count to the
number of threads) wakes up all the threads using a
condition broadcast.

10/29/2012

12

Barriers

typedef struct {

pthread_mutex_t count_lock;

pthread_cond_t ok_to_proceed;

int count;

} mylib_barrier_t;

void mylib_init_barrier(mylib_barrier_t *b) {

b -> count = 0;

pthread_mutex_init(&(b -> count_lock), NULL);

pthread_cond_init(&(b -> ok_to_proceed), NULL);

}

Barriers

void mylib_barrier (mylib_barrier_t *b, int
num_threads) {
pthread_mutex_lock(&(b -> count_lock));

b -> count ++;

if (b -> count == num_threads) {
b -> count = 0;

pthread_cond_broadcast(&(b -> ok_to_proceed));

}

else
while (pthread_cond_wait(&(b -> ok_to_proceed),

&(b -> count_lock)) != 0);

pthread_mutex_unlock(&(b -> count_lock));

}

Barriers
• The barrier described above is called a linear barrier.
• The trivial lower bound on execution time of this function is therefore

O(n) for n threads.
• This implementation of a barrier can be speeded up using multiple

barrier variables organized in a tree.
• We use n/2 condition variable-mutex pairs for implementing a barrier

for n threads.
• At the lowest level, threads are paired up and each pair of threads

shares a single condition variable-mutex pair.
• Once both threads arrive, one of the two moves on, the other one

waits.
• This process repeats up the tree.
• This is also called a log barrier and its runtime grows as O(log p).

Barrier

• Execution time of 1000 sequential and logarithmic barriers as a
function of number of threads on a 32 processor SGI Origin 2000.

10/29/2012

13

Condition Variables
• Condition variables are another construct for more efficient

synchronization: permit a thread to be woken up when some
predicate on the data is satisifed

• Example: one thread produces a sequence of data items, and
consumer thread must wait till there are more than n items in buffer

• Busy waiting is inefficient
– Better to let waiting thread sleep and get notified when predicate is

satisifed
– Solution: condition variables

• Basic operations using condition variables
– Thread can wait on condition variable: intuitively, thread blocks until

some other thread signals that condition variable
– Thread can signal condition variable: release one thread waiting on

condition variable
– Condition variables are not boolean variables!

• Correct operation of condition variables requires an associated
mutex as we will see later

Condition Variable Constructs

• Pthreads provides the following functions for
condition variables:

int pthread_cond_init(pthread_cond_t *cond,

const pthread_condattr_t *attr);

int pthread_cond_destroy(pthread_cond_t *cond);

int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

Locks associated with
condition variables

• Correct operation with condition variable requires an associated lock
– Wait and signal must be performed while holding lock

• Problem:
– If thread A holds lock, calls wait on a condition variable, and then goes

to sleep, how does thread B acquire lock to signal this condition
variable?

• Solution:
– When thread A calls wait and goes to sleep, pthreads implementation

automatically releases associated lock
– When thread A needs to be woken up in response to signal, pthreads

implementation tries to reacquire lock and returns control to application
program only after lock has been reacquired

– Signal and lock reacquire are separate events, so it is good practice to
re-check that data predicate after control returns from wait

=> Use a loop around wait (shown in examples)

Producer-Consumer Using
Condition Variables

pthread_cond_t cond_queue_empty, cond_queue_full;

pthread_mutex_t data_queue_cond_lock;

int data_available;

/* other data structures here */

main() {

/* declarations and initializations */

data_available = 0;

pthread_init();

pthread_cond_init(&cond_queue_empty, NULL);

pthread_cond_init(&cond_queue_full, NULL);

pthread_mutex_init(&data_queue_cond_lock, NULL);

/* create and join producer and consumer threads */

}

10/29/2012

14

Producer-Consumer Using
Condition Variables

void *producer(void *producer_thread_data) {
int inserted;
while (!done()) {

create_data();
pthread_mutex_lock(&data_queue_cond_lock);
while (data_available == 1)

pthread_cond_wait(&cond_queue_empty,
&data_queue_cond_lock);

insert_into_queue();
data_available = 1;
pthread_cond_signal(&cond_queue_full);
pthread_mutex_unlock(&data_queue_cond_lock);

}
}

Producer-Consumer Using
Condition Variables

void *consumer(void *consumer_thread_data) {

while (!done()) {

pthread_mutex_lock(&data_queue_cond_lock);

while (data_available == 0)

pthread_cond_wait(&cond_queue_full,

&data_queue_cond_lock);

my_data = extract_from_queue();

data_available = 0;

pthread_cond_signal(&cond_queue_empty);

pthread_mutex_unlock(&data_queue_cond_lock);

process_data(my_data);
}

}

Controlling Thread and
Synchronization Attributes

• The Pthreads API allows a programmer to
change the default attributes of entities using
attributes objects.

• An attributes object is a data-structure that
describes entity (thread, mutex, condition
variable) properties.

• Once these properties are set, the attributes
object can be passed to the method initializing
the entity.

• Enhances modularity, readability, and ease of
modification.

Attributes Objects for Threads

• Use pthread_attr_init to create an
attributes object.

• Individual properties associated with the
attributes object can be changed using the
following functions:
pthread_attr_setdetachstate,

pthread_attr_setguardsize_np,

pthread_attr_setstacksize,

pthread_attr_setinheritsched,

pthread_attr_setschedpolicy, and
pthread_attr_setschedparam

10/29/2012

15

Attributes Objects for Mutexes

• Initialize the attrributes object using function:
pthread_mutexattr_init.

• The function pthread_mutexattr_settype_np can
be used for setting the type of mutex specified by the
mutex attributes object.
pthread_mutexattr_settype_np (
pthread_mutexattr_t *attr,
int type);

• Here, type specifies the type of the mutex and can take
one of:
– PTHREAD_MUTEX_NORMAL_NP
– PTHREAD_MUTEX_RECURSIVE_NP
– PTHREAD_MUTEX_ERRORCHECK_NP

Types of threads

• Thread implementations:
– User-level threads:

• Implemented by user-level runtime library
• OS is unaware of threads
• Portable, thread scheduling can be tuned to application

requirements
• Problem: cannot leverage multiprocessors, entire process blocks

when one thread blocks
– Kernel-level threads:

• OS is aware of each thread and schedules them
• Thread operations are performed by OS
• Can leverage multiprocessors
• Problem: higher overhead, usually not quite as portable

– Hybrid-level threads: Solaris
• OS provides some number of kernel level threads, and each of

these can create multiple user-level threads
• Problem: complexity

OpenMP: a Standard for Directive
Based Parallel Programming

• OpenMP is a directive-based API that can
be used with FORTRAN, C, and C++ for
programming shared address space
machines.

• OpenMP directives provide support for
concurrency, synchronization, and data
handling while obviating the need for
explicitly setting up mutexes, condition
variables, data scope, and initialization.

OpenMP Programming Model

• OpenMP directives in C and C++ are based on the
#pragma compiler directives.

• A directive consists of a directive name followed by
clauses.
#pragma omp directive [clause list]

• OpenMP programs execute serially until they encounter
the parallel directive, which creates a group of
threads.
#pragma omp parallel [clause list]
/* structured block */

• The main thread that encounters the parallel directive
becomes the master of this group of threads and is
assigned the thread id 0 within the group.

10/29/2012

16

OpenMP Programming Model

• The clause list is used to specify conditional
parallelization, number of threads, and data handling.
– Conditional Parallelization: The clause if (scalar
expression) determines whether the parallel construct results
in creation of threads.

– Degree of Concurrency: The clause num_threads(integer
expression) specifies the number of threads that are created.

– Data Handling: The clause private (variable list)
indicates variables local to each thread. The clause
firstprivate (variable list) is similar to the private,
except values of variables are initialized to corresponding values
before the parallel directive. The clause shared (variable
list) indicates that variables are shared across all the threads.

OpenMP Programming Model

• A sample OpenMP program along with its Pthreads
translation that might be performed by an OpenMP
compiler.

OpenMP Programming Model
#pragma omp parallel if (is_parallel== 1) num_threads(8) \

private (a) shared (b) firstprivate(c) {

/* structured block */

}

• If the value of the variable is_parallel equals one, eight
threads are created.

• Each of these threads gets private copies of variables a
and c, and shares a single value of variable b.

• The value of each copy of c is initialized to the value of c
before the parallel directive.

• The default state of a variable is specified by the clause
default (shared) or default (none).

Reduction Clause in OpenMP

• The reduction clause specifies how multiple local
copies of a variable at different threads are combined
into a single copy at the master when threads exit.

• The usage of the reduction clause is reduction
(operator: variable list).

• The variables in the list are implicitly specified as being
private to threads.

• The operator can be one of +, *, -, &, |, ^,
&&, and ||.

#pragma omp parallel reduction(+: sum) num_threads(8) {

/* compute local sums here */

}

/*sum here contains sum of all local instances of sums */

10/29/2012

17

OpenMP Programming: Example

/* **
An OpenMP version of a threaded program to compute PI.
** */
#pragma omp parallel default(private) shared (npoints) \

reduction(+: sum) num_threads(8)

{
num_threads = omp_get_num_threads();
sample_points_per_thread = npoints / num_threads;
sum = 0;
for (i = 0; i < sample_points_per_thread; i++) {

rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
sum ++;

}

}

Specifying Concurrent Tasks in
OpenMP

• The parallel directive can be used in conjunction with
other directives to specify concurrency across iterations
and tasks.

• OpenMP provides two directives - for and sections -
to specify concurrent iterations and tasks.

• The for directive is used to split parallel iteration spaces
across threads. The general form of a for directive is as
follows:
#pragma omp for [clause list]

/* for loop */

• The clauses that can be used in this context are:
private, firstprivate, lastprivate,
reduction, schedule, nowait, and ordered.

Specifying Concurrent Tasks in
OpenMP: Example

#pragma omp parallel default(private) shared (npoints) \
reduction(+: sum) num_threads(8)

{
sum = 0;
#pragma omp for
for (i = 0; i < npoints; i++) {

rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
sum ++;

}
}

Assigning Iterations to Threads

• The schedule clause of the for directive
deals with the assignment of iterations to
threads.

• The general form of the schedule
directive is schedule(scheduling_class[, parameter]).

• OpenMP supports four scheduling classes:
static, dynamic, guided, and
runtime.

10/29/2012

18

Assigning Iterations to Threads:
Example

/* static scheduling of matrix multiplication loops */

#pragma omp parallel default(private) shared (a, b, c, dim) \

num_threads(4)

#pragma omp for schedule(static)

for (i = 0; i < dim; i++) {

for (j = 0; j < dim; j++) {

c(i,j) = 0;

for (k = 0; k < dim; k++) {

c(i,j) += a(i, k) * b(k, j);

}

}

}

Assigning Iterations to Threads:
Example

• Three different schedules using the static
scheduling class of OpenMP.

Parallel For Loops

• Often, it is desirable to have a sequence of
for-directives within a parallel construct
that do not execute an implicit barrier at
the end of each for directive.

• OpenMP provides a clause - nowait,
which can be used with a for directive.

Parallel For Loops: Example

#pragma omp parallel

{

#pragma omp for nowait

for (i = 0; i < nmax; i++)

if (isEqual(name, current_list[i])

processCurrentName(name);

#pragma omp for

for (i = 0; i < mmax; i++)

if (isEqual(name, past_list[i])

processPastName(name);

}

10/29/2012

19

The sections Directive
• OpenMP supports non-iterative parallel task assignment using the

sections directive.
• The general form of the sections directive is as follows:

#pragma omp sections [clause list]
{

[#pragma omp section
/* structured block */

]
[#pragma omp section

/* structured block */

]
...

}

The sections Directive: Example

#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{

taskA();
}
#pragma omp section
{

taskB();
}
#pragma omp section
{

taskC();
}

}
}

Nesting parallel Directives

• Nested parallelism can be enabled using
the OMP_NESTED environment variable.

• If the OMP_NESTED environment variable
is set to TRUE, nested parallelism is
enabled.

• In this case, each parallel directive creates
a new team of threads.

Synchronization Constructs in
OpenMP

• OpenMP provides a variety of
synchronization constructs:
#pragma omp barrier

#pragma omp single [clause list]

structured block

#pragma omp master

structured block

#pragma omp critical [(name)]

structured block

#pragma omp ordered

structured block

10/29/2012

20

OpenMP Library Functions

• In addition to directives, OpenMP also supports
a number of functions that allow a programmer
to control the execution of threaded programs.

/* thread and processor count */
void omp_set_num_threads (int
num_threads);

int omp_get_num_threads ();
int omp_get_max_threads ();
int omp_get_thread_num ();
int omp_get_num_procs ();
int omp_in_parallel();

OpenMP Library Functions
/* controlling and monitoring thread creation */
void omp_set_dynamic (int dynamic_threads);
int omp_get_dynamic ();
void omp_set_nested (int nested);
int omp_get_nested ();
/* mutual exclusion */
void omp_init_lock (omp_lock_t *lock);
void omp_destroy_lock (omp_lock_t *lock);
void omp_set_lock (omp_lock_t *lock);
void omp_unset_lock (omp_lock_t *lock);
int omp_test_lock (omp_lock_t *lock);

• In addition, all lock routines also have a nested lock counterpart
• for recursive mutexes.

Environment Variables in OpenMP

• OMP_NUM_THREADS: This environment variable
specifies the default number of threads created
upon entering a parallel region.

• OMP_SET_DYNAMIC: Determines if the number
of threads can be dynamically changed.

• OMP_NESTED: Turns on nested parallelism.

• OMP_SCHEDULE: Scheduling of for-loops if the
clause specifies runtime

Explicit Threads versus Directive
Based Programming

• Directives layered on top of threads facilitate a variety of thread-
related tasks.

• A programmer is rid of the tasks of initializing attributes objects, setting
up arguments to threads, partitioning iteration spaces, etc.

• There are some drawbacks to using directives as well.
• An artifact of explicit threading is that data exchange is more apparent.

This helps in alleviating some of the overheads from data movement,
false sharing, and contention.

• Explicit threading also provides a richer API in the form of condition
waits, locks of different types, and increased flexibility for building
composite synchronization operations.

• Finally, since explicit threading is used more widely than OpenMP,
tools and support for Pthreads programs are easier to find.

