CS 378: Programming for Performance
Assignment 5: Parallel Bellman Ford
Due: April 19th

April 20, 2015

Late submission policy: Submission can be at the most 2 days late. There
will be a 10% penalty for each day after the due date (cumulative).

Implement a parallel Bellman Ford algorithm in C++. Divide the nodes
in the graph uniformly between threads. Each thread should relax the edges
of all nodes assigned to it. Decide if any thread updated any node and if so,
iterate. Use a barrier to ensure that all threads have finished relaxation before
deciding to iterate. Relaxation and decision to iterate involve synchronization
across threads. Implement these different forms of synchronization (different
versions of the same algorithm):

1. Mutex on the graph: Before relaxing any edge, acquire a lock on the
graph. Release it after relaxation.

2. Mutex on each node: Before relaxing any edge, acquire a lock on the
destination node. Release it after relaxation.

3. Spin-lock on each node: For each edge to be relaxed, try acquiring a
lock on the destination node. If it succeeded, relax the edge and release
the lock. Otherwise, try relaxing it later, after relaxing the other edges.

4. Compare and swap: To relax an edge, perform an atomic update on
the destination node using std::atomic::compare_exchange weak() in
C++11 standard atomics library (more information below). You can also
implement a variant which tries relaxing the other edges if the compare
and swap fails, before trying to relax this edge again (similar to spin-lock).

In your implementation:
e Use either pthreads or OpenMP or C+-+11 threads.

e Read a graph from a command line that is formatted in the DIMACS
graph specification.


http://en.cppreference.com/w/cpp/atomic/atomic
http://www.dis.uniroma1.it/challenge9/format.shtml#graph

Use the Compressed Row Storage (CRS) format (more information below)
for storing the graph in memory.

For each form of synchronization:

Compile your code in ICC with flags -O3 -ipo -std=c++0x’.

Submit your run to the job scheduler on Stampede at TACC - use the
‘serial’ queue.

Use the DIMACS full USA road network (travel time) graph as input
(choose the first node as the start node).

Run your code on 1, 2, 4, 8, and 16 threads.
Validate that your implementation produces the correct answer.

Plot a graph of execution time vs. number of threads (strong scaling)
and compare its performance with that of other forms of synchronization.
Explain your results briefly.
Note: Report the execution time of the algorithm, not of the entire pro-
gram; do not include the time taken for reading a graph into memory in
the execution time reported.

Compressed Row Storage (CRS) format

0 11 0 0 0
0 0 29 0 37 29
0 0 11 45 0
0 29 37 0 11

TOWptT : (0 2 5 6 9 12 16 )
colind: ( 0 1 1 3 5 2 2 4 5 0 3 4 0 2 3 5)

values: ( 5.4 L1 63 7.7 88 11 2.9 37 29 9.0 1.1 45 11 29 3.7 11 )

Figure 1: Example of a sparse matrix stored in CRS format

Compressed Row Storage (CRS) is a format to store a sparse matrix com-
pactly. It only stores the non-zero values in the sparse matrix in a contiguous
array, one row after another starting from the first (in order). In each row, the
non-zero column values are stored one after another. Along with the values,
it maintains the column index of each value. It maintains another contiguous
array whose elements point to the first non-zero element of each row.


http://netlib.org/linalg/html_templates/node91.html
http://www.dis.uniroma1.it/challenge9/data/USA-road-t/USA-road-t.USA.gr.gz

for (i=0; i<N; ++i) for (i=0; i<N; ++i)

for (j=0; j<N; ++j) for (j=rowptr([il; j<rowptr[i+1]; ++j)
y[i] += A[i1[3]1 * x[j]; y[i] += values[j] * x[colind[jl];
(a) Dense matrix (b) Sparse matrix

Figure 2: Matrix Vector Multiply

Figure 1 shows a way in which a sparse matrix A is stored in CRS format.
rowptr is an array in which each element points to the first non-zero element
of that row. colind is an array which contains the column index of the non-
zero values, one row after another. values is an array which contains the
corresponding non-zero values, one row after another. To multiply the matrix
with a vector, Figure 2 shows the difference between accessing the values stored
in a CRS sparse matrix and those stored in a dense matrix.

Note: The column index and the values can be stored as distinct arrays or in a
single array of a structure that contains both.

Atomic compare and swap (C++11)

double old, new;
std::atomic<double> var;

double old, new, var; new = ...;
old = var;

new = ...; do
acquire lock on var; if (condition(old,new))
old = var; done = var.compare_exchange_weak(
if (condition(old,new)) old, new,

var = new; std::memory_order_acq_rel,
release lock on var; std: :memory_order_relaxed) ;

(a) Mutex else

done = true;
while (!done);

(b) Compare and swap
Figure 3: Synchronization primitives

Figure 3 shows a way to use C++11 atomic compare and swap to achieve the
same functionality as a mutex. var is the variable whose value is of type double
to be synchronized. It is declared as std: :atomic<double>. The function call
compare_exchange weak(old, new, ..) on var compares its value with old.
If it is equal, it sets new as its value and returns true. Otherwise, it copies its
value to old and returns false. All this is done atomically.



Notes

e Since the values you obtain will depend a lot on the machine and the input
you use, you must use Stampede and the DIMACS full USA road network
(travel time) graph for the numbers you report.

e You are being directed to write code in C++4 because the atomic compare
and swap is directly supported in C++11. The rest of the code can be
written C-style without using C++ features. As long as your code is in a
.cpp file, ICC will compile the code using its C++ compiler.

e Your implementation can use any standard C++ containers if you wish
(it is not mandatory).

e Validation can be done by inspecting every node in the graph and ensuring
that each neighbor is labeled no further than the node’s label plus the
edge length (in other words, running another iteration of Bellman-Ford
should not change the shortest distance of any node). In addtion, you can
verify that the output (the shortest distance to each node) of the parallel
execution is same of that of the single-threaded execution.

e During development, you can use smaller DIMACS graphs like the New
York travel time graph and the Florida travel time graph to validate your
programs.

Bonus points

You are welcome to experiment with and implement more optimizations (that
improve strong scaling). Briefly describe them and report their performance in
the report. Bonus points will be awarded based on the performance improve-
ment of the optimizations.

Deliverables

Submit (to canvas) source code of all your implementations and a report con-
taining all plots and analysis. Include a Makefile to build your program and a
README that contains instructions to verify your program. You will not be
given any points if we are not able to run your code on the DIMACS graph and
verify correctness.


http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.dis.uniroma1.it/challenge9/data/USA-road-t/USA-road-t.NY.gr.gz
http://www.dis.uniroma1.it/challenge9/data/USA-road-t/USA-road-t.NY.gr.gz
http://www.dis.uniroma1.it/challenge9/data/USA-road-t/USA-road-t.FLA.gr.gz

