Scheduling

Keshav Pingali
University of Texas, Austin

Goal of lecture

- So far, we have studied
 - how parallelism and locality arise in programs
 - ordering constraints between tasks for correctness or efficiency
- This lecture: How do we assign tasks to workers?
 - multicores: workers might be cores
 - distributed-memory machines: workers might be hosts/machines
- Scheduling
 - rich literature exists for dependence graph scheduling
 - most of it is not very useful in practice since they use unrealistic program and machine models
 - (e.g.) assume task execution times are known
 - nevertheless, it is useful to study it since it gives us intuition for what the issues are for scheduling in practice

Dependence DAG’s

- DAG with START and END nodes
 - all nodes reachable from START
 - END reachable from all nodes
 - START and END are not essential
- Nodes are computations
 - each computation can be executed by a processor in some number of time-steps
 - computation may require reading/writing shared memory
 - node weight: time taken by a processor to perform the computation
 - \(w_i \) is weight of node \(i \)
- Edges are precedence constraints
 - nodes other than START can be executed only after immediate predecessors in graph have been executed
 - known as dependencess
- Very old model
 - PERT charts (late 50’s)
 - Program Evaluation and Review Technique
 - developed by US Navy to manage Polaris submarine contracts

Computer model

- \(P \) identical processors
- Memory
 - processors have local memory
 - all shared-data is stored in global memory
- How does a processor know which nodes it must execute?
 - work assignment
- How does a processor know when it is safe to execute a node?
 - (e.g.) \(P1 \) executes node \(a \) and \(P2 \) executes
 - node \(b \), how does \(P2 \) know when \(P1 \) is done?
 - synchronisation
- For now, let us defer these questions
- In general, time to execute program depends on work assignment
 - for now, assume only that there is an idle processor and a ready node, that node is assigned
- \(T_P \) = best possible time to execute program on \(P \) processors
Work and critical path

- Work = \(\Sigma w_i \)
 - time required to execute program on one processor
 \(= T_1 \)

- Path weight
 - sum of weights of nodes on path

- Critical path
 - path from START to END
 - that has maximal weight
 - this work must be done sequentially, so you need this much time regardless of how many processors you have
 - call this \(T_\infty \)

Terminology

- Instantaneous parallelism
 \(\text{IP}(t) \) = maximum number of processors that can be kept busy at each point in execution of algorithm

- Maximal parallelism
 \(\text{MP} \) = highest instantaneous parallelism

- Average parallelism
 \(\text{AP} = \frac{T_1}{T_\infty} \)

 These are properties of the computation DAG, not of the machine or the work assignment

Computing critical path etc.

- Algorithm for computing earliest start times of nodes
 - Keep a value called minimum-start-time (mst) with each node, initialized to 0
 - Do a topological sort of the DAG
 • ignoring node weights
 • For each node \(n \) (≠ START) in topological order
 - for each node \(p \) in predecessors(\(n \))
 - \(\text{mst}_n = \max(\text{mst}_n, \text{mst}_p + w_p) \)
 - Complexity = \(O(|V|+|E|) \)

 - Critical path and instantaneous, maximal and average parallelism can easily be computed from this

Speed-up

- Speed-up(\(P \)) = \(\frac{T_1}{T_P} \)
 - intuitively, how much faster is it to execute program on \(P \) processors than on 1 processor?

- Bound on speed-up
 - regardless of how many processors you have, you need at least \(T_4 \) units of time
 - speed-up(\(P \)) ≤ \(\frac{T_1}{T_4} = \frac{1}{\text{CP}} \cdot \frac{1}{w_i} = \text{AP} \)
Amdahl's law

- Amdahl:
 - suppose a fraction p of a program can be done in parallel
 - suppose you have an unbounded number of parallel processors and they operate infinitely fast
 - speed-up will be at most $1/(1-p)$.
- Follows trivially from previous result.
- Plug in some numbers:
 - $p = 90\% \implies$ speed-up ≤ 10
 - $p = 99\% \implies$ speed-up ≤ 100
- To obtain significant speed-up, most of the program must be performed in parallel
 - serial bottlenecks can really hurt you

Scheduling

- Suppose $P \gg MP$
- There will be times during the execution when only a subset of “ready” nodes can be executed.
- Time to execute DAG can depend on which subset of P nodes is chosen for execution.
- To understand this better, it is useful to have a more detailed machine model

Machine Model

- Processors operate synchronously (in lock-step)
 - barrier synchronization in hardware
 - if a processor has reached step i, it can assume all other processors have completed tasks in all previous steps
- Each processor has private memory

Schedules

Schedule: function from node to (processor, start time)
Also known as “space-time mapping”

Schedule 1

<table>
<thead>
<tr>
<th>time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>START</td>
<td>a</td>
<td>c</td>
<td>END</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schedule 2

<table>
<thead>
<tr>
<th>time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>START</td>
<td>a</td>
<td>b</td>
<td>d</td>
<td>END</td>
</tr>
<tr>
<td>P1</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intuition: nodes along the critical path should be given preference in scheduling
Optimal schedules

- **Optimal schedule**
 - shortest possible schedule for a given DAG and the given number of processors
- **Complexity of finding optimal schedules**
 - one of the most studied problems in CS
- **DAG is a tree:**
 - level-by-level schedule is optimal (Aho, Hopcroft)
- **General DAGs**
 - variable number of processors (number of processors is input to problem): NP-complete
 - fixed number of processors
 - 2 processors: polynomial time algorithm
 - 3,4,5…: complexity is unknown!
- **Many heuristics available in the literature**

Heuristic: list scheduling

- **Maintain a list of nodes that are ready to execute**
 - all predecessor nodes have completed execution
- **Fill in the schedule cycle-by-cycle**
 - in each cycle, choose nodes from ready list
 - use heuristics to choose “best” nodes in case you cannot schedule all the ready nodes
- **One popular heuristic:**
 - assign node priorities before scheduling
 - priority of node n:
 - weight of maximal weight path from n to END
 - intuitively, the “further” a node is from END, the higher its priority

List scheduling algorithm

```plaintext
cycle c = 0;
ready-list = [START];
inflight-list = { }; 
while (|ready-list|+|inflight-list| > 0) { //schedule new tasks
  for each node n in ready-list in priority order { //schedule new tasks
    if (a processor is free at this cycle) {
      remove n from ready-list and add to inflight-list;
      add node to schedule at time cycle;
    }
    else break;
    c = c + 1; //increment time
  }
  for each node n in inflight-list {//determine ready tasks
    if (n finishes at time cycle) {
      remove n from inflight-list;
      add every ready successor of n in DAG to ready-list
    }
  }
}
```

Example

- Heuristic picks the good schedule
- Not always guaranteed to produce optimal schedule (otherwise we would have a polynomial time algorithm!)
Generating dependence graphs

- **How do we produce dependence graphs in the first place?**
- **Two approaches**
 - specify DAG explicitly
 - parallel programming
 - easy to make mistakes
 - data races: two tasks that write to same location but are not ordered by dependence
 - by compiler analysis of sequential programs
- **Let us study the second approach**
 - called **dependence analysis**

Data dependence

- **Basic blocks**
 - straight-line code
- **Nodes represent statements**
- **Edge \(S_1 \rightarrow S_2 \)**
 - flow dependence (read-after-write (RAW))
 - \(S_1 \) is executed before \(S_2 \) in basic block
 - \(S_1 \) writes to a variable that is read by \(S_2 \)
 - anti-dependence (write-after-read (WAR))
 - \(S_1 \) is executed before \(S_2 \) in basic block
 - \(S_1 \) reads from a variable that is written by \(S_2 \)
 - output-dependence (write-after-write (WAW))
 - \(S_1 \) is executed before \(S_2 \) in basic block
 - \(S_1 \) and \(S_2 \) write to the same variable
 - input-dependence (read-after-read (RAR)) (usually not important)
 - \(S_1 \) is executed before \(S_2 \) in basic block
 - \(S_1 \) and \(S_2 \) read from the same variable

Conservative approximation

- In real programs, we often cannot determine precisely whether a dependence exists
 - in example,
 - \(i = j \): dependence exists
 - \(i \neq j \): dependence does not exist
 - dependence may exist for some invocations and not for others
- **Conservative approximation**
 - when in doubt, assume dependence exists
 - at the worst, this will prevent us from executing some statements in parallel even if this would be legal
- **Aliasing:** two program names for the same storage location
 - (e.g.) \(X(i) \) and \(X(j) \) are may-aliases
 - may-aliasing is the major source of imprecision in dependence analysis

Putting it all together

- **Write sequential program.**
- **Compiler produces parallel code**
 - generates control-flow graph
 - produces computation DAG for each basic block by performing dependence analysis
 - generates schedule for each basic block
 - use list scheduling or some other heuristic
 - branch at end of basic block is scheduled on all processors
 - **Problem:**
 - average basic block is fairly small (~ 5 RISC instructions)
 - **One solution:**
 - transform the program to produce bigger basic blocks
One transformation: loop unrolling

- Original program
 for \(i = 1,100 \)
 \[X(i) = i \]

- Unroll loop 4 times: not very useful!
 for \(i = 1,100,4 \)
 \[
 \begin{align*}
 X(i) &= i \\
 i &= i+1 \\
 \end{align*}
 \]

Smarter loop unrolling

- Use new name for loop iteration variable in each unrolled instance
 for \(i = 1,100,4 \)

 \[
 \begin{align*}
 X(i) &= i \\
 i_1 &= i+1 \\
 X(i_1) &= i_1 \\
 i_2 &= i+2 \\
 X(i_2) &= i_2 \\
 i_3 &= i+3 \\
 X(i_3) &= i_3 \\
 \end{align*}
 \]

Array dependence analysis

- If compiler can also figure out that \(X(i), X(i+1), X(i+2), \) and \(X(i+3) \) are different locations, we get the following dependence graph for the loop body
 for \(i = 1,100,4 \)

 \[
 \begin{align*}
 X(i) &= i \\
 i_1 &= i+1 \\
 X(i_1) &= i_1 \\
 i_2 &= i+2 \\
 X(i_2) &= i_2 \\
 i_3 &= i+3 \\
 X(i_3) &= i_3 \\
 \end{align*}
 \]

Array dependence analysis (contd.)

- We will study techniques for array dependence analysis later in the course
- Problem can be formulated as an integer linear programming problem:
 - Is there an integer point within a certain polyhedron derived from the loop bounds and the array subscripts?
Two applications

• Static scheduling
 – create space-time diagram at compile-time
 – VLIW code generation
• Dynamic scheduling
 – create space-time diagram at runtime
 – multicore scheduling for dense linear algebra

Scheduling instructions for VLIW machines

• Processors → functional units
• Local memories → registers
• Global memory → memory
• Time → instruction
• Nodes in DAG are operations (load/store/add/mul/branch/...)
 – instruction-level parallelism
• List scheduling
 – useful for scheduling code for pipelined, superscalar and VLIW machines
 – used widely in commercial compilers
 – loop unrolling and array dependence analysis are also used widely

Historical note on VLIW processors

• Ideas originated in late 70’s-early 80’s
 • Two key people:
 – Bob Rau (Stanford, UIUC, TRW, Cydrome, HP)
 – Josh Fisher (NYU, Yale, Multiflow, HP)
 • Bob Rau’s contributions:
 – transformations for making basic blocks larger:
 – predication
 – software pipelining
 – hardware support for these techniques
 – predicated execution
 – rotating register files
 – most of these ideas were later incorporated into the Intel Itanium processor
 • Josh Fisher:
 – transformations for making basic blocks larger:
 – trace scheduling, uses key idea of branch probability
 – Multiflow compiler used loop unrolling

DAG scheduling for multicores

• Reality:
 – hard to build single cycle memory that can be accessed by large numbers of cores
• Architectural change:
 – decouple cores so there is no notion of a global step
 – each core/processor has its own PC and cache
 – memory is accessed independently by each core
• New problem:
 – since cores do not operate in lock-step, how does a core know when it is safe to execute a node?
• Solution: software synchronization
 – counter associated with each DAG node
 – decremented when predecessor task is done
 – Software synchronization increases overhead of parallel execution
 – cannot afford to synchronize at the instruction level
 – nodes of DAG must be coarse-grain: loop iterations

How does P2 know when P0 and P1 are done?
Increasing granularity: Block Matrix Algorithms

Original matrix multiplication

\[
\begin{align*}
\text{for } I &= 1, N \\
&\text{for } J = 1, N \\
&\text{for } K = 1, N \\
C(I,J) &= C(I,J) + A(I,K) * B(K,J)
\end{align*}
\]

Block (tiled) matrix multiplication

\[
\begin{align*}
\text{for } IB &= 1, N \text{ step } B \\
&\text{for } JB = 1, N \text{ step } B \\
&\text{for } KB = 1, N \text{ step } B \\
&\text{for } I = IB, IB+B-1 \\
&\text{for } J = JB, JB+B-1 \\
&\text{for } K = KB, KB+B-1 \\
C(I,J) &= C(I,J) + A(I,K) * B(K,J)
\end{align*}
\]

New problem

- Difficult to get accurate execution times of coarse-grain nodes
 - conditional inside loop iteration
 - cache misses
 - exceptions
 - O/S processes
- Solution: runtime scheduling

Example: DAGuE

- Dongarra et al (UTK)
- Programming model for specifying DAGs for parallel blocked dense linear algebra codes
 - nodes: block computations
 - DAG edges specified by programmer (see next slides)
- Runtime system
 - keeps track of ready nodes
 - assigns ready nodes to cores
 - determines if new nodes become ready when a node completes

DAGuE: Tiled QR (1)

\[
\begin{align*}
\text{FOR } k &= 0 \ldots, \text{SIZE-1} \\
&\text{A}([k], [k]) \leftarrow \text{DORANGE}([k], [k]) \\
\text{FOR } n &= k+1 \ldots, \text{SIZE-1} \\
&\text{A}([k], [n]) \leftarrow \text{DORANGE}([k], [n]) \\
&\text{FOR } n &= k+1 \ldots, \text{SIZE-1} \\
&\text{A}([n], [k]) \leftarrow \text{DORANGE}([n], [k]) \\
\end{align*}
\]

Tiled QR (using tiles and in/out notations)
Dataflow Graph for 2x2 processor grid Machine: 81 nodes, 648 cores

Summary of multicore scheduling

• Assumptions
 – DAG of tasks is known
 – each task is “heavy-weight” and executing task on one worker exploits adequate locality
 – no assumptions about runtime of tasks
 – no lock-step execution of processors or synchronous global memory

• Scheduling
 – keep a work-list of tasks that are ready to execute
 – use heuristic priorities to choose from ready tasks

Summary

• Dependence graphs
 – nodes are computations
 – edges are dependencies

• Static dependence graphs: obtained by
 – studying the algorithm
 – analyzing the program

• Limits on speed-ups
 – Amdahl’s law

• DAG scheduling
 – heuristic: list scheduling (many variations)
 – static and dynamic scheduling
 – applications: VLIW code generation, multicore scheduling for dense linear algebra

• Major limitations:
 – works for topology-driven algorithms with fixed neighborhoods since we know tasks and dependences before executing program
 – not very useful for data-driven algorithms since tasks are created dynamically
 – one solution: work-stealing, work-sharing. Study later.