
1

Scheduling

Keshav Pingali

University of Texas, Austin

Goal of lecture

• So far, we have studied
– how parallelism and locality arise in programs
– ordering constraints between tasks for correctness or

efficiency
• This lecture: How do we assign tasks to workers?

– multicore: workers might be cores
– distributed-memory machines: workers might be

hosts/machines
• Scheduling

– rich literature exists for dependence graph scheduling
– most of it is not very useful in practice since they use

unrealistic program and machine models
• (e.g.) assume task execution times are known

– nevertheless, it is useful to study it since it gives us
intuition for what the issues are for scheduling in practice

Dependence DAG’s

• DAG with START and END nodes
– all nodes reachable from START
– END reachable from all nodes
– START and END are not essential

• Nodes are computations
– each computation can be executed by

a processor in some number of time-
steps

– computation may require
reading/writing shared-memory

– node weight: time taken by a processor
to perform that computation

– wi is weight of node i
• Edges are precedence constraints

– nodes other than START can be
executed only after immediate
predecessors in graph have been
executed

– known as dependences
• Very old model:

– PERT charts (late 50’s):
• Program Evaluation and Review

Technique
• developed by US Navy to manage

Polaris submarine contracts

i

START

END

Dependence DAG

Processors

1

P

…

M
e

m
o

ry

wi

Computer model
• P identical processors
• Memory

– processors have local memory
– all shared-data is stored in global memory

• How does a processor know which nodes it
must execute?

– work assignment
• How does a processor know when it is safe

to execute a node?
– (eg) if P1 executes node a and P2 executes

node b, how does P2 know when P1 is done?
– synchronization

• For now, let us defer these questions
• In general, time to execute program depends

on work assignment
– for now, assume only that if there is an idle

processor and a ready node, that node is
assigned immediately to an idle processor

• TP = best possible time to execute program
on P processors

START

END

Dependence DAG

Processors

1

P

…

M
e

m
o

ry

a

b

2

Work and critical path

• Work = Σ i wi
– time required to execute

program on one processor
= T1

• Path weight
– sum of weights of nodes on

path

• Critical path
– path from START to END

that has maximal weight
– this work must be done

sequentially, so you need
this much time regardless
of how many processors
you have

– call this T∞

START

END

Data

Computation DAG

Processors

1

P

…
wi

Terminology

• Instantaneous parallelism
IP(t) = maximum number of

processors that can be kept
busy at each point in execution
of algorithm

• Maximal parallelism
MP = highest instantaneous
parallelism

• Average parallelism
AP = T1/T∞

• These are properties of the
computation DAG, not of the
machine or the work assignment

1

2
3

time

1

1

1

1

1

1

1

1

1

1

Instantaneous and average parallelism

Computing critical path etc.

• Algorithm for computing earliest start times of nodes
– Keep a value called minimum-start-time (mst) with each node,

initialized to 0
– Do a topological sort of the DAG

• ignoring node weights

– For each node n (START) in topological order
• for each node p in predecessors(n)

– mstn = max(mstn, mstp + wp)

• Complexity = O(|V|+|E|)
• Critical path and instantaneous, maximal and average

parallelism can easily be computed from this

Speed-up

• Speed-up(P) = T1/TP

– intuitively, how much faster is it to execute
program on P processors than on 1
processor?

• Bound on speed-up
– regardless of how many processors you have,

you need at least T∞ units of time
– speed-up(P) ≤ T1/T∞ = Σ iwi /CP = AP

3

Amdahl’s law

• Amdahl:
– suppose a fraction p of a program can be done in parallel
– suppose you have an unbounded number of parallel processors

and they operate infinitely fast
– speed-up will be at most 1/(1-p).

• Follows trivially from previous result.
• Plug in some numbers:

– p = 90% speed-up ≤ 10
– p = 99% speed-up ≤ 100

• To obtain significant speed-up, most of the program must
be performed in parallel
– serial bottlenecks can really hurt you

Scheduling

• Suppose P ≤ MP
• There will be times during

the execution when only
a subset of “ready” nodes
can be executed.

• Time to execute DAG can
depend on which subset
of P nodes is chosen for
execution.

• To understand this better,
it is useful to have a more
detailed machine model

1

2
3

time

1

1

1

1

1

1

1

1

1

1

What if we only had 2 processors?

Machine Model

• Processors operate
synchronously (in lock-step)
– barrier synchronization in hardware

– if a processor has reached step i, it
can assume all other processors
have completed tasks in all previous
steps

• Each processor has private
memory

Shared memory

P1 P2 …… Pp

Schedules

0 1 2 3 4

P0 START a c END

P1 b d

START

END

a b c

d

0 1 2 3 4

P0 START a b d END

P1 c

Schedule 2

Schedule 1

P0

P1

1

1 1 1

1

1

Intuition: nodes along the critical path should be given preference in scheduling

Schedule: function from node to (processor, start time)
Also known as “space-time mapping”

sp
a

ce

time

time

spa
ce

4

Optimal schedules

• Optimal schedule
– shortest possible schedule for a given DAG and the given number of

processors
• Complexity of finding optimal schedules

– one of the most studied problems in CS
• DAG is a tree:

– level-by-level schedule is optimal (Aho, Hopcroft)
• General DAGs

– variable number of processors (number of processors is input to
problem): NP-complete

– fixed number of processors
• 2 processors: polynomial time algorithm
• 3,4,5…: complexity is unknown!

• Many heuristics available in the literature

Heuristic: list scheduling

• Maintain a list of nodes that are ready to execute
– all predecessor nodes have completed execution

• Fill in the schedule cycle-by-cycle
– in each cycle, choose nodes from ready list
– use heuristics to choose “best” nodes in case you cannot

schedule all the ready nodes

• One popular heuristic:
– assign node priorities before scheduling
– priority of node n:

• weight of maximal weight path from n to END
• intuitively, the “further” a node is from END, the higher its priority

List scheduling algorithm
cycle c = 0;
ready-list = {START};
inflight-list = { };
while (|ready-list|+|inflight-list| > 0) {

for each node n in ready-list in priority order { //schedule new tasks
if (a processor is free at this cycle) {

remove n from ready-list and add to inflight-list;
add node to schedule at time cycle;

}
else break;

}
c = c + 1; //increment time
for each node n in inflight-list {//determine ready tasks

if (n finishes at time cycle) {
remove n from inflight-list;
add every ready successor of n in DAG to ready-list

}
}

}

Example

0 1 2 3 4

P0 START a c END

P1 b d

START

END

a b c

d

P0

P1

1

1 1 1

1

1

sp
a

ce

time

1

2

2 3 2

4

Heuristic picks the good schedule

Not always guaranteed to produce optimal schedule
(otherwise we would have a polynomial time algorithm!)

5

Generating dependence graphs

• How do we produce dependence graphs in the
first place?

• Two approaches
– specify DAG explicitly

• parallel programming
• easy to make mistakes

– data races: two tasks that write to same location but are not
ordered by dependence

– by compiler analysis of sequential programs

• Let us study the second approach
– called dependence analysis

Data dependence

• Basic blocks
– straight-line code

• Nodes represent statements
• Edge S1 S2

– flow dependence (read-after-write (RAW))
• S1 is executed before S2 in basic block
• S1 writes to a variable that is read by S2

– anti-dependence (write-after-read (WAR))
• S1 is executed before S2 in basic block
• S1 reads from a variable that is written by S2

– output-dependence (write-after-write (WAW))
• S1 is executed before S2 in basic block
• S1 and S2 write to the same variable

– input-dependence (read-after-read (RAR)) (usually not important)
• S1 is executed before S2 in basic block
• S1 and S2 read from the same variable

Conservative approximation
• In real programs, we often cannot determine

precisely whether a dependence exists
– in example,

• i = j: dependence exists
• i j: dependence does not exist

– dependence may exist for some invocations and not
for others

• Conservative approximation
– when in doubt, assume dependence exists
– at the worst, this will prevent us from executing

some statements in parallel even if this would be
legal

• Aliasing: two program names for the same storage
location
– (e.g.) X(i) and X(j) are may-aliases
– may-aliasing is the major source of imprecision in

dependence analysis

Putting it all together

• Write sequential program.
• Compiler produces parallel code

– generates control-flow graph
– produces computation DAG for each basic block by performing

dependence analysis
– generates schedule for each basic block

• use list scheduling or some other heuristic
• branch at end of basic block is scheduled on all processors

• Problem:
– average basic block is fairly small (~ 5 RISC instructions)

• One solution:
– transform the program to produce bigger basic blocks

6

• Original program
for i = 1,100
X(i) = i

• Unroll loop 4 times: not very useful!
for i = 1,100,4

X(i) = i
i = i+1
X(i) = i
i = i+1
X(i) = i
i = i+1
X(i) = i

One transformation: loop unrolling

o

o

o

• Use new name for loop iteration variable in each
unrolled instance

for i = 1,100,4

X(i) = i

i1 = i+1

X(i1) = i1

i2 = i+2

X(i2) = i2

i3 = i+3

X(i3) = i3

Smarter loop unrolling

o

o

o

• If compiler can also figure out that X(i), X(i+1), X(i+2),
and X(i+3) are different locations, we get the following
dependence graph for the loop body

for i = 1,100,4
X(i) = i
i1 = i+1
X(i1) = i1
i2 = i+2
X(i2) = i2
i3 = i+3
X(i3) = i3

Array dependence analysis Array dependence analysis (contd.)

• We will study techniques for array
dependence analysis later in the course

• Problem can be formulated as an integer
linear programming problem:
– Is there an integer point within a certain

polyhedron derived from the loop bounds and
the array subscripts?

7

Two applications

• Static scheduling
– create space-time diagram at compile-time

– VLIW code generation

• Dynamic scheduling
– create space-time diagram at runtime

– multicore scheduling for dense linear algebra

Scheduling instructions for VLIW
machines

START

END

a b c

d

• Processors functional units
• Local memories registers
• Global memory memory
• Time instruction
• Nodes in DAG are operations

(load/store/add/mul/branch/..)
– instruction-level parallelism

• List scheduling
– useful for scheduling code for

pipelined, superscalar and VLIW
machines

– used widely in commercial compilers
– loop unrolling and array dependence

analysis are also used widely

Ops

Instruction

Historical note on VLIW
processors

• Ideas originated in late 70’s-early 80’s
• Two key people:

– Bob Rau (Stanford,UIUC, TRW, Cydrome, HP)
– Josh Fisher (NYU,Yale, Multiflow, HP)

• Bob Rau’s contributions:
– transformations for making basic blocks larger:

• predication
• software pipelining

– hardware support for these techniques
• predicated execution
• rotating register files

– most of these ideas were later incorporated
into the Intel Itanium processor

• Josh Fisher:
– transformations for making basic blocks larger:

• trace scheduling: uses key idea of branch
probabilities

– Multiflow compiler used loop unrolling

Bob Rau

Josh Fisher

DAG scheduling for multicores
• Reality:

– hard to build single cycle memory that can be
accessed by large numbers of cores

• Architectural change
– decouple cores so there is no notion of a global

step
– each core/processor has its own PC and cache
– memory is accessed independently by each

core
• New problem:

– since cores do not operate in lock-step, how
does a core know when it is safe to execute a
node?

• Solution: software synchronization
– counter associated with each DAG node
– decremented when predecessor task is done

• Software synchronization increases overhead
of parallel execution
 cannot afford to synchronize at the instruction

level
 nodes of DAG must be coarse-grain: loop

iterations

START

END

a b c

d

P0: a
P1: b
P2: c d

How does P2 know when
P0 and P1 are done?

8

Increasing granularity:
Block Matrix Algorithms

C00 = A00*B00 + A01*B10
C01 = A01*B11 + A00*B01
C11 = A11*B01 + A10*B01
C10 = A10*B00 + A11*B10

A00 A01

A11A10

C00 C01

C11C10

B00 B01

B11B10

Original matrix multiplication

for I = 1,N
for J = 1,N

for K = 1,N
C(I,J)= C(I,J)+A(I,K)*B(K,J)

Block (tiled) matrix multiplication

for IB = 1,N step B
for JB = 1,N step B

for KB = 1,N step B
for I = IB, IB+B-1

for J = JB, JB+B-1
for K = KB, KB+B-1

C(I,J) = C(I,J)+A(I,K)*B(K,J)

parallel loops

New problem

• Difficult to get accurate execution times of
coarse-grain nodes
– conditional inside loop iteration
– cache misses
– exceptions
– O/S processes
– ….

• Solution: runtime scheduling

Example: DAGuE

• Dongarra et al (UTK)
• Programming model for specifying DAGs for

parallel blocked dense linear algebra codes
– nodes: block computations
– DAG edges specified by programmer (see next

slides)
• Runtime system

– keeps track of ready nodes
– assigns ready nodes to cores
– determines if new nodes become ready when a

node completes

DAGuE: Tiled QR (1)

32

Tiled QR (using tiles and in/out notations)

9

DAGuE: Tiled QR (2)

33

Dataflow Graph for 2x2 processor grid Machine: 81 nodes, 648 cores

Tiled QR

Summary of multicore
scheduling

• Assumptions
– DAG of tasks is known
– each task is “heavy-weight” and executing task

on one worker exploits adequate locality
– no assumptions about runtime of tasks
– no lock-step execution of processors or

synchronous global memory

• Scheduling
– keep a work-list of tasks that are ready to execute
– use heuristic priorities to choose from ready tasks

Summary
• Dependence graphs

– nodes are computations
– edges are dependences

• Static dependence graphs: obtained by
– studying the algorithm
– analyzing the program

• Limits on speed-ups
– critical path
– Amdahl’s law

• DAG scheduling
– heuristic: list scheduling (many variations)
– static and dynamic scheduling
– applications: VLIW code generation, multicore scheduling for dense

linear algebra

• Major limitations:
– works for topology-driven algorithms with fixed neighborhoods since we

know tasks and dependences before executing program
– not very useful for data-driven algorithms since tasks are created

dynamically
• one solution: work-stealing, work-sharing. Study later.

