| Scheduling |
| :---: |
| Keshav Pingali |
| University of Texas, Austin |

## Goal of lecture

- So far, we have studied
- how parallelism and locality arise in programs
- ordering constraints between tasks for correctness or efficiency
- This lecture: How do we assign tasks to workers?
- multicore: workers might be cores
- distributed-memory machines: workers might be hosts/machines
- Scheduling
- rich literature exists for dependence graph scheduling
- most of it is not very useful in practice since they use unrealistic program and machine models
- (e.g.) assume task execution times are known
- nevertheless, it is useful to study it since it gives us intuition for what the issues are for scheduling in practice



## Computer model

- P identical processors
- Memory
processors have local memory
- all shared-data is stored in global memory

How does a processor know which nodes it must execute?
How does a processor know when it is safe to execute a node?
(eg) if P1 executes node a and P2 executes
node b, how does P2 know when P1 is done synchronization

- For now, let us defer these questions
- In general, time to execute program depends on work assignment
for now, assume only that if there is an idle
processor and a ready node, that node is assigned immediately to an idle processor $T_{p}=$ best possible time to execute program on P processors



## Work and critical path

- Work $={ }_{\ll}{ }_{1} W_{i}$
- time required to execute program on one processor $=T_{1}$
- Path weight
- sum of weights of nodes on path
- Critical path
- path from START to END that has maximal weight
- this work must be done sequentially, so you need this much time regardless of how many processors you have

- call this $\mathrm{T}_{4}$

Terminology

- Instantaneous parallelism IP(t) = maximum number of processors that can be kept busy at each point in execution of algorithm
- Maximal parallelism


MP = highest instantaneous parallelism
Average parallelism
$A P=T_{1} / T_{4}$

- These are properties of the computation DAG, not of the machine or the work assignment


Instantaneous and average parallelism

## Computing critical path etc.

- Algorithm for computing earliest start times of nodes
- Keep a value called minimum-start-time (mst) with each node, initialized to 0
- Do a topological sort of the DAG
- ignoring node weights
- For each node n ( $\neq$ START) in topological order
- for each node $p$ in predecessors( $n$ )
$-\mathrm{mst}_{\mathrm{n}}=\max \left(\mathrm{mst}_{n}, \mathrm{mst}_{\mathrm{p}}+\mathrm{w}_{\mathrm{p}}\right)$
- Complexity $=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Critical path and instantaneous, maximal and average parallelism can easily be computed from this


## Speed-up

- Speed-up $(P)=T_{1} / T_{P}$
- intuitively, how much faster is it to execute program on P processors than on 1 processor?
- Bound on speed-up
- regardless of how many processors you have, you need at least $T_{4}$ units of time
- speed-up $(P) \%_{\%} T_{1} / T_{4}={ }_{<}{ }_{1} w_{i} / C P=A P$


## Amdahl's law

- Amdahl:
- suppose a fraction $p$ of a program can be done in parallel
- suppose you have an unbounded number of parallel processors and they operate infinitely fast
- speed-up will be at most 1/(1-p).
- Follows trivially from previous result.
- Plug in some numbers
- $p=90 \% \rightarrow$ speed-up \% 10
- p=99\% $\rightarrow$ speed-up\% 100
- To obtain significant speed-up, most of the program must be performed in parallel
- serial bottlenecks can really hurt you


## Scheduling

- Suppose P\%MP
- There will be times during the execution when only a subset of "ready" nodes can be executed.
- Time to execute DAG can depend on which subset of $P$ nodes is chosen for execution.
- To understand this better, it is useful to have a more detailed machine model



What if we only had 2 processors?

## Machine Model

- Processors operate
synchronously (in lock-step)
- barrier synchronization in hardware
- if a processor has reached step $i$, it can assume all other processors have completed tasks in all previous steps

- Each processor has private memory


## Schedules

Schedule: function from node to (processor, start time)
Also known as "space-time mapping"

## Schedule 1



Schedule 2


Intuition: nodes along the critical path should be given preference in scheduling


## Heuristic: list scheduling

- Maintain a list of nodes that are ready to execute - all predecessor nodes have completed execution
- Fill in the schedule cycle-by-cycle
- in each cycle, choose nodes from ready list
- use heuristics to choose "best" nodes in case you cannot schedule all the ready nodes
- One popular heuristic:
- assign node priorities before scheduling
- priority of node n:
- weight of maximal weight path from $n$ to END
- intuitively, the "further" a node is from END, the higher its priority


## List scheduling algorithm

cycle $\mathrm{c}=0$;
ready-list $=\{$ START $\} ;$
inflight-list $=\{ \}$;
while (|ready-list|+|inflight-list| > 0) \{
for each node n in ready-list in priority order \{//schedule new tasks
if (a processor is free at this cycle) \{
remove n from ready-list and add to inflight-list;
add node to schedule at time cycle;
\}
else break;
\} $=$
= $c+1$; //increment time
for each node n in inflight-list \{//determine ready tasks if ( n finishes at time cycle) $\{$
remove n from inflight-list
add every ready successor of $n$ in DAG to ready-list
\}
\} $\}$
\}


## Generating dependence graphs

- How do we produce dependence graphs in the first place?
- Two approaches
- specify DAG explicitly
- parallel programming
- easy to make mistakes
- data races: two tasks that write to same location but are not ordered by dependence
- by compiler analysis of sequential programs
- Let us study the second approach
- called dependence analysis


## Data dependence

- Basic blocks
- straight-line code

Nodes represent statements

- Edge $\mathrm{S}_{1} \rightarrow \mathrm{~S}_{2}$
- flow dependence (read-after-write (RAW))
- $S_{1}$ is executed before $S_{2}$ in basic block
$\mathrm{S}_{1}$ writes to a variable that is read by S
- anti-dependence (write-after-read (WAR))
- $\mathrm{S}_{1}$ is executed before $\mathrm{S}_{2}$ in basic block
- $S_{1}$ reads from a variable that is written by $S_{2}$
- output-dependence (write-after-write (WAW))
- $S_{1}$ is executed before $S_{2}$ in basic block
$S_{1}$ and $S_{2}$ write to the same variable
- input-dependence (read-after-read (RAR)) (usually not important)
$\mathrm{S}_{1}$ is executed before $\mathrm{S}_{2}$ in basic block
$\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ read from the same variable


## Conservative approximation

- In real programs, we often cannot determine
precisely whether a dependence exists
- in example,
- $\mathrm{i}=\mathrm{j}$ : dependence exists
$\mathrm{i} \neq \mathrm{j}$ : dependence does not exist
- dependence may exist for some invocations and no for others
- Conservative approximation
- when in doubt, assume dependence exists
- at the worst, this will prevent us from executing some statements in parallel even if this would be legal
- Aliasing: two program names for the same storage location
- (e.g.) $X(i)$ and $X(j)$ are may-aliases
- may-aliasing is the major source of imprecision in dependence analysis


## Putting it all together

- Write sequential program.
- Compiler produces parallel code
- generates control-flow graph
- produces computation DAG for each basic block by performing dependence analysis
- generates schedule for each basic block
- use list scheduling or some other heuristic
- branch at end of basic block is scheduled on all processors
- Problem:
- average basic block is fairly small (~5 RISC instructions)
- One solution
- transform the program to produce bigger basic blocks


## One transformation: loop unrolling

- Original program
for $i=1,100$
$X(i)=i$
- Unroll loop 4 times: not very useful!
for $\mathrm{i}=1,100,4$
X(i) $=\mathrm{i}$
- $i=i+1$
$x(i)=i$
$i=i+1$
$X(i)=i$
$i=i+1$
$x(i)=i$


## Smarter loop unrolling

- Use new name for loop iteration variable in each unrolled instance
for $\mathrm{i}=1,100,4$
$X(i)=$
o $i 1=i+1$
$x(i 1)=i 1$.
© $\mathrm{i} 2=\mathrm{i}+2$
$X(i 2)=i 2$.
- $\mathrm{i} 3=\mathrm{i}+3$
$. x(i 3)=13$.


## Array dependence analysis

- If compiler can also figure out that $\mathrm{X}(\mathrm{i}), \mathrm{X}(\mathrm{i}+1), \mathrm{X}(\mathrm{i}+2)$, and $X(i+3)$ are different locations, we get the following dependence graph for the loop body

$$
\begin{aligned}
& \text { for } i=1,100,4 \\
& X(i)=i \\
& i 1=i+1 \\
& X(i 1)=i 1 \\
& i 2=i+2 \\
& X(i 2)=i 2 \\
& i 3=i+3 \\
& X(i 3)=i 3
\end{aligned}
$$

## Array dependence analysis (contd.)

- We will study techniques for array dependence analysis later in the course
- Problem can be formulated as an integer linear programming problem:
- Is there an integer point within a certain polyhedron derived from the loop bounds and the array subscripts?


## Two applications

- Static scheduling
- create space-time diagram at compile-time
- VLIW code generation
- Dynamic scheduling
- create space-time diagram at runtime
- multicore scheduling for dense linear algebra


## Scheduling instructions for VLIW machines

- Processors $\rightarrow$ functional units
- Local memories $\rightarrow$ registers
- Global memory $\rightarrow$ memory
- Time $\rightarrow$ instruction
- Nodes in DAG are operations (load/store/add/mul/branch/..) - instruction-level parallelism
- List scheduling
- useful for scheduling code for pipelined, superscalar and VLIW machines
- used widely in commercial compilers
- loop unrolling and array dependence analysis are also used widely



## DAG scheduling for multicores

- Reality:
- hard to build single cycle memory that can be accessed by large numbers of cores
- Architectural change
- decouple cores so there is no notion of a global
step
- each core/processor has its own PC and cache
- memory is accessed independently by each core
New problem:
- since cores do not operate in lock-step, how does a core know when it is safe to execute a node?
- Solution: software synchronization
- counter associated with each DAG node
- decremented when predecessor task is done

Software synchronization increases overhead
of parallel execution
$\rightarrow$ cannot afford to synchronize at the instruction level
$\rightarrow$ nodes of DAG must be coarse-grain: loop iterations


P0: a
P1: b P2: c d

How does P2 know when P0 and P1 are done?


- Dongarra et al (UTK) slides)
- Runtime system
- assigns ready nodes to cores
- determines if new nodes become ready when a node completes


## New problem

- Difficult to get accurate execution times of coarse-grain nodes
- conditional inside loop iteration
- cache misses
- exceptions
- O/S processes
- ....
- Solution: runtime scheduling


## Example: DAGuE

- Programming model for specifying DAGs for parallel blocked dense linear algebra codes
- nodes: block computations
- DAG edges specified by programmer (see next
- keeps track of ready nodes


## DAGuE: Tiled QR (1)

FOR $k=0$.. SIER-1
$\mathrm{A}[\mathrm{k}][\mathrm{k}], \mathrm{T}[\mathrm{k}][\mathrm{k}]<-\operatorname{DGERRT}(\mathrm{A}[\mathrm{k}][\mathrm{k}]$
FOR $m=k+1$.. SIZE-1
$\mathrm{A}[\mathrm{k}][\mathrm{k}], \mathrm{A}[\mathrm{m}][\mathrm{k}], \mathrm{T}[\mathrm{m}][\mathrm{k}]<$
$\operatorname{DTSRRT}(\mathrm{A}[k][\mathrm{k}], \mathrm{A}[m][\mathrm{k}], \mathrm{T}[m][k])$
FOR $n=k+1$.. SIZE-1
$\mathrm{A}[\mathrm{k}][\mathrm{n}]<-\operatorname{DORMQR}(\mathrm{A}[\mathrm{k}][\mathrm{k}], \mathrm{T}[\mathrm{k}][\mathrm{k}], \mathrm{A}[\mathrm{k}][\mathrm{n}])$
FOR $m=k+1 .$. SI2E-1
$A[k][n], A[m][n]<-$
$\operatorname{DSSMQR}(A[m][k], T[m][k], a[k][n], A[m][n])$


Tiled $Q R$ (using tiles and in/out notations)


## Summary of multicore scheduling

- Assumptions
- DAG of tasks is known
- each task is "heavy-weight" and executing task on one worker exploits adequate locality
- no assumptions about runtime of tasks
- no lock-step execution of processors or synchronous global memory
- Scheduling
- keep a work-list of tasks that are ready to execute
- use heuristic priorities to choose from ready tasks


