

Computing critical path etc.

- Algorithm for computing earliest start times of nodes

 Keep a value called minimum-start-time (mst) with each node, initialized to 0
 - Do a topological sort of the DAG
 - ignoring node weights
 - For each node n (≠ START) in topological order
 for each node p in predecessors(n)
 mst_n = max(mst_n, mst_p + w_p)
- Complexity = O(|V|+|E|)
- Critical path and instantaneous, maximal and average parallelism can easily be computed from this

Speed-up

- Speed-up(P) = T_1/T_P
 - intuitively, how much faster is it to execute program on P processors than on 1 processor?
- · Bound on speed-up
 - regardless of how many processors you have, you need at least $\rm T_4\,$ units of time
 - speed-up(P) $\& T_1/T_4 = \ll_1 w_i / CP = AP$

Amdahl's law

· Amdahl:

- suppose a fraction p of a program can be done in parallel
- suppose you have an unbounded number of parallel processors and they operate infinitely fast
- speed-up will be at most 1/(1-p).
- Follows trivially from previous result.
- Plug in some numbers:
 - p = 90% **→** speed-up ‰ 10
 - p = 99% → speed-up ‰ 100
- To obtain significant speed-up, most of the program must be performed in parallel
 - serial bottlenecks can really hurt you

Optimal schedules

· Optimal schedule

- shortest possible schedule for a given DAG and the given number of processors
- Complexity of finding optimal schedules
- one of the most studied problems in CS
- DAG is a tree: level-by-level schedule is optimal (Aho, Hopcroft) General DAGs
- variable number of processors (number of processors is input to problem): NP-complete
 fixed number of processors

 - 2 processors: polynomial time algorithm
 3,4,5...: complexity is unknown!
- · Many heuristics available in the literature

Heuristic: list scheduling

- · Maintain a list of nodes that are ready to execute - all predecessor nodes have completed execution
- Fill in the schedule cycle-by-cycle •
 - in each cycle, choose nodes from ready list
 - use heuristics to choose "best" nodes in case you cannot
- schedule all the ready nodes
- · One popular heuristic:
 - assign node priorities before scheduling
 - priority of node n:
 - · weight of maximal weight path from n to END
 - intuitively, the "further" a node is from END, the higher its priority

List scheduling algorithm cycle c = 0; ready-list = {START}; inflight-list = {}; while (Iready-list|+|inflight-list| > 0) { for each node n in ready-list in priority order { //schedule new tasks if (a processor is free at this cycle) { remove n from ready-list and add to inflight-list; add node to schedule at time cycle; / c = c + 1; //increment time for each node n in inflight-list {//determine ready tasks if (n finishes at time cycle) { remove n from inflight-list; add every ready successor of n in DAG to ready-list } } }

Generating dependence graphs

- · How do we produce dependence graphs in the first place?
- · Two approaches
 - specify DAG explicitly
 - parallel programming
 - easy to make mistakes
 - data races: two tasks that write to same location but are not ordered by dependence
 - by compiler analysis of sequential programs
- · Let us study the second approach
 - called dependence analysis

Data dependence

- output-dependence (write-after-write (WAW)) · S1 is executed before S2 in basic block
- S₁ and S₂ write to the same variable
 input-dependence (read-after-read (RAR)) (usually not important)
- S₁ is executed before S₂ in basic block
 S₁ and S₂ read from the same variable

Conservative approximation In real programs, we often cannot determine • precisely whether a dependence exists - in example, · i = j: dependence exists i ≠ j: dependence does not exist Example: - dependence may exist for some invocations and not procedure f (X,i,j) for others begin Conservative approximation X(i) = 10- when in doubt, assume dependence exists X(j) = 5; at the worst, this will prevent us from executing some statements in parallel even if this would be end legal Aliasing: two program names for the same storage • location (e.g.) X(i) and X(j) are may-aliases may-aliasing is the major source of imprecision in dependence analysis

Putting it all together		
• \	Write sequential program.	
• (Compiler produces parallel code	
	 generates control-flow graph 	
	 produces computation DAG for each basic block by performing dependence analysis 	
	 generates schedule for each basic block 	
	 use list scheduling or some other heuristic 	
	 branch at end of basic block is scheduled on all processors 	
• F	Problem:	
	 average basic block is fairly small (~ 5 RISC instructions) 	
• (One solution:	
	 transform the program to produce bigger basic blocks 	

Smarter loop unrolling

Use new name for loop iteration variable in each unrolled instance for i = 1,100,4
X(i) = i
i1 = i+1
X(i1) = i1
i2 = i+2
X(i2) = i2
i3 = i+3
X(i3) = i3

Array dependence analysis

 If compiler can also figure out that X(i), X(i+1), X(i+2), and X(i+3) are different locations, we get the following dependence graph for the loop body

for i = 1,100,4 X(i) = i i1 = i+1 X(i1) = i1 i2 = i+2 X(i2) = i2 X(i2) = i3 X(i3) = i3

Array dependence analysis (contd.)

- We will study techniques for array dependence analysis later in the course
- Problem can be formulated as an integer linear programming problem:
 - Is there an integer point within a certain polyhedron derived from the loop bounds and the array subscripts?

Two applications

- Static scheduling
 - create space-time diagram at compile-time
 - VLIW code generation

Dynamic scheduling

- create space-time diagram at runtime
- multicore scheduling for dense linear algebra

Scheduling instructions for VLIW machines

 \bigcirc START

ьÒ аĆ

 $\stackrel{\downarrow_{\mathsf{d}}}{\bigcirc}$

c

END

Ops

1 1

Instruction

- Processors → functional units
- Local memories → registers
- . Global memory → memory .
- Time → instruction .
- Nodes in DAG are operations (load/store/add/mul/branch/..)
- instruction-level parallelism . List scheduling
 - useful for scheduling code for pipelined, superscalar and VLIW machines
 - used widely in commercial compilers loop unrolling and array dependence analysis are also used widely

DAG scheduling for multicores · Reality: \bigcirc START hard to build single cycle memory that can be accessed by large numbers of cores Architectural change аĆ ьÒ cÒ decouple cores so there is no notion of a global step b, - each core/processor has its own PC and cache memory is accessed independently by each core _ New problem: END since cores do not operate in lock-step, how does a core know when it is safe to execute a node? P0: a P1: b Solution: software synchronization - counter associated with each DAG node P2: c d decremented when predecessor task is done

- Software synchronization increases overhead of parallel execution
- → cannot afford to synchronize at the instruction level

.

➔ nodes of DAG must be coarse-grain: loop iterations

How does P2 know when P0 and P1 are done?

Increasing granularity: Block Matrix Algorithms

Original matrix multiplication	E	B ₀₀ B ₀₁	
for $l = 1, N$	E	B ₁₀ B ₁₁	
for $J = 1, N$ for $K = 1, N$			
C(I,J) = C(I,J) + A(I,K) * B(K,J)	A_{00} A_{01} 0	$C_{00} C_{01}$	
Block (tiled) matrix multiplication	A ₁₀ A ₁₁ C	C ₁₀ C ₁₁	
for IB = 1,N step B			
for $JB = 1,N$ step B parallel loops	$C_{00} = A_{00} * B_{00} + A_{01} * B_{10}$		
for $KB = 1, N$ step B	$C_{01} = A_{01} * B_{11} + A_{00} * B_{01}$		
for I = IB. IB+B-1	$C_{11} = A_{11} * B_{01} + A_{10} * B_{01}$		
for $J = JB$, $JB+B-1$	$C_{10} = A_{10} * B_{00}$	+ A ₁₁ *B ₁₀	
for $K = KB$, $KB+B-1$			
C(I,J) = C(I,J) + A(I,K) * B(K,J)			

New problem

- Difficult to get accurate execution times of coarse-grain nodes
 - conditional inside loop iteration
 - cache misses
 - exceptions
 - O/S processes

-

· Solution: runtime scheduling

Example: DAGuE

- Dongarra et al (UTK)
- Programming model for specifying DAGs for parallel blocked dense linear algebra codes
 - nodes: block computations
 - DAG edges specified by programmer (see next slides)
- Runtime system
 - keeps track of ready nodes
 - assigns ready nodes to cores
 - determines if new nodes become ready when a node completes

DAGuE: Tiled QR (1)

- FOR k = 0 .. SIZE-1
 A[k][k], T[k][k] <- DGEQRT(A[k][k])
 FOR m = k+1 .. SIZE-1
 A[k][k], A[m][k], T[m][k] <DTSQRT(A[k][k], A[m][k], T[m][k])
 FOR n = k+1 .. SIZE-1
 A[k][n] <- DORMOR(A[k][k], T[k][k], A[k][n])
 FOR m = k+1 .. SIZE-1
 A[k][n], A[m][n] <DSSMQR(A[m][k], T[m][k], A[k][n], A[m][n])</pre>
 - Acta
 <th

Tiled QR (using tiles and in/out notations)

32

Summary of multicore scheduling

Assumptions

- DAG of tasks is known
- each task is "heavy-weight" and executing task on one worker exploits adequate locality
- no assumptions about runtime of tasks
- no lock-step execution of processors or synchronous global memory

Scheduling

- keep a work-list of tasks that are ready to execute
- use heuristic priorities to choose from ready tasks

