

Basic GPU Performance

CS378 – Spring 2015

Sreepathi Pai

Outline

● System Performance
● GPU Occupancy
● Data Layout and Work Distribution
● Static Scheduling of Work

System Performance

● GPU + CPU forms a heterogeneous system
– “A system where programmer must choose where to perform a

computation” (definition-in-progress)

● Parallel execution is possible
– CPU and GPU can be working on work independently in parallel

– In fact, GPU allows data transfers in parallel to GPU execution

● Consider distributing work so that all execution units (CPU
and GPU) are fully occupied

● Not easy to do manually, but no automatic solution widely
accepted yet

Measurement Pitfalls

Keep in mind:
● A GPU program is a parallel CPU program

– i.e. GPU code sometimes runs on a separate thread

● A CPU + GPU system is a distributed system
– i.e. clocks are unsynchronized

– especially across GPU cores

● Use timelines not intervals to reason about performance
– timelines capture overlap

– timelines illustrate critical path

– NVIDIA Profiler provides timelines

How not to time a GPU kernel

struct stopwatch va;

clock_start (&va) ;
vector_add_1 <<<14 8, 384>>>(ga , gb , gc , N) ;∗
clockstop (&va) ;

printf (TIMEFMT ”s \n” , va.elapsed.tv_sec , va.elapsed.tv_nsec) ;

● Output is approx. 40μs on my machine
● NVIDIA Compute Profiler:

gputime=[14078.336] (μs)

Vector-Addition

Vector Addition + Transfer Time

GPU Occupancy

GPU Occupancy – contd.

● GPUs divide resources among threads to
enable hardware multithreading

● The number of concurrent threads is
determined by the resource that is
exhausted first

● Occupancy is the ratio of running concurrent
threads to the maximum number of SM
threads

● Residency is the number of thread blocks
that can run concurrently on the SM

● NVIDIA provides an occupancy calculator
that calculates this number for different
GPUs

Resource Available Maximum

Threads 2048 1024/block

Shared
Memory

48K (max) 48K/block

Registers 65536 255/thread

Thread
Blocks

16 16/SM

Resources are per SM on NVIDIA Kepler

kernel<<<2048, 32>>>()

threads/block: 32
registers: 100/thread -> 3200/block
shared mem: 1K/block

residency: 16, exceeds maximum thread blocks
occupancy: 16*32/2048 = 25%

kernel<<<2048, 32>>>()

threads/block: 32
registers: 160/thread -> 5120/block
shared mem: 1K/block

residency: 12, exceeds maximum registers
occupancy: 12*32/2048 = 18%

Should occupancy be maximized?

● NVIDIA Manual – roughly, yes
● But:

Volkov, V., “Better Performance at Lower Occupancy”, GTC 2010

Volkov's Summary

● Do more parallel work per thread to hide
latency with fewer threads (i.e. increase ILP)

● Use more registers per thread to access slower
shared memory less

● Both may be accomplished by computing
multiple outputs per thread

[Note that Volkov underutilizes threads, but maxes out
registers!]

Data Layout
struct pt {
 int x;
 int y;
};

__global__
void aos_kernel(int n_pts, struct pt *p) {
 int tid = blockIdx.x * blockDim.x + threadIdx.x;
 int nthreads = blockDim.x * gridDim.x;

 for(int i = tid; i < n_pts; i += nthreads) {
 p[i].x = i;
 p[i].y = i * 10;
 }
}

In main():

struct pt *p;
cudaMalloc(&p, ...)

struct pt {
 int *x;
 int *y;
};

__global__
void soa_kernel(int n_pts, struct pt p) {
 int tid = blockIdx.x * blockDim.x + threadIdx.x;
 int nthreads = blockDim.x * gridDim.x;

 for(int i = tid; i < n_pts; i += nthreads) {
 p.x[i] = i;
 p.y[i] = i * 10;
 }
}

In main():

struct pt p;
cudaMalloc(&p.x, ...)
cudaMalloc(&p.y, ...)

Array of Structure (AoS) Structure of Arrays (SoA)

Which, if any, is faster?

SoA vs AoS Results

Why?

AoS vs SoA memory layout

p[0].x p[0].y p[1].x p[1].y p[2].x p[2].y p[3].x p[3].y

p.x[0] p.x[1] p.x[2] p.x[3] p.x[4] p.x[5] p.x[6] p.x[7]

p.y[0] p.y[1] p.y[2] p.y[3] p.y[4] p.y[5] p.y[6] p.y[7]

p[i].x = i;

p[0].x p[0].y p[1].x p[1].y p[2].x p[2].y p[3].x p[3].y

p[i].y = i * 10;

p.x[i] = i;

p.y[i] = i * 10;

Assigning Work to Threads

start = tid * blksize;
end = start + blksize;

for(i = start; i < N && i < end; i++)
 a[i] = b[i] + c[i]

start = tid;

for(i = start; i < N; i+=nthreads)
 a[i] = b[i] + c[i]

Blocked Interleaved/Striped

Which, if any, is faster?

Blocking v/s Striped

Exploiting Spatial Locality (1)
Texture Cache

● Textures are 2-D images that are “wrapped” around 3-D models
● Exhibit 2-D locality, so textures have a separate cache
● GPU contains a texture fetch unit that non-graphics programs can

also use
– Step 1: map arrays to textures

– Step 2: replace array reads by tex1Dfetch(), tex2Dfetch()

● Catch: Only read-only data can be cached
– you can write to the array, but it may not become visible through the texture

in the same kernel call

● Easiest way to use textures:
– const __restrict__ *

Exploiting Spatial Locality (2)
Shared Memory

● “Shared Memory” is on-chip software-
managed cache, also known as a
scratchpad

● 48K maximum size
● Partitioned among thread blocks
● __shared__ qualifier places items in

shared memory
● Can be used for communicating

between threads of the same thread
block

__shared__ int x;

if(threadIdx.x == 0)
x = 1;

__syncthreads(); //required!

printf(“%d\n”, x);

Using Shared Memory (SGEMM)

__shared__ float c_sub[BLOCKSIZE][BLOCKSIZE];

// calculate c_sub

__syncthreads();

// write out c_sub to memory

NVIDIA CUDA C Programming Guide

Constant Data

● 64KB of “constant” data
– not written by kernel

● Suitable for read-only, “broadcast” data
● All threads in a warp read the same constant

data item at the same time
– what type of locality is this?

● Uses: Filter coefficients

Summary of
data access performance

● Layout data structures in memory to maximize
bandwidth utilization

● Assign work to threads to maximize bandwidth
utilization

● Rethink caching strategies
– identify readonly data

– identify blocks that you can load into shared memory

– identify tables of constants

Distributing Regular Work
Scalar Product

● Problem: Given n pairs of vectors, all w
elements wide, compute the scalar products of
all the pairs
– Multiplications: n*w

– Additions: n*w

● How shall we distribute work?

Scheme 1: Split Source Vectors

● Split each vector, and distribute the splits to
individual thread blocks

Scheme 2: Split Destination Vector

● Each thread block calculates one scalar
product

If only one scheme is used ...

Samadi et al. Adaptive Input-aware Compilation for Graphics Engines, PLDI ’12.

Solution

● Enough work to saturate GPU
● Just not distributed evenly
● Make two versions – whole-GPU and per-

thread-block
● Choose between two versions at runtime

depending on input size
● See MonteCarlo in the CUDA SDK (4.2) for an

example

Conclusion

● Focus on full system performance
● Use GPU resources judiciously

– don't focus on only maximizing occupancy

● Layout data in memory well
– SoA usually performs better

– Take advantage of read-only, blocked, and constant characteristics

● Distribute computation well
– take memory accesses into account

– be aware of the pitfalls of static scheduling for different input sizes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

