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Outline

● System Performance
● GPU Occupancy
● Data Layout and Work Distribution
● Static Scheduling of Work



  

System Performance

● GPU + CPU forms a heterogeneous system
– “A system where programmer must choose where to perform a 

computation” (definition-in-progress)

● Parallel execution is possible
– CPU and GPU can be working on work independently in parallel

– In fact, GPU allows data transfers in parallel to GPU execution

● Consider distributing work so that all execution units (CPU 
and GPU) are fully occupied

● Not easy to do manually, but no automatic solution widely 
accepted yet



  

Measurement Pitfalls

Keep in mind:
● A GPU program is a parallel CPU program

– i.e. GPU code sometimes runs on a separate thread

● A CPU + GPU system is a distributed system
– i.e. clocks are unsynchronized 

– especially across GPU cores

● Use timelines not intervals to reason about performance
– timelines capture overlap

– timelines illustrate critical path

– NVIDIA Profiler provides timelines



  

How not to time a GPU kernel

struct stopwatch va;

clock_start (&va ) ;
vector_add_1 <<<14 8, 384>>>(ga , gb , gc , N) ;∗
clockstop (&va ) ;

printf (TIMEFMT ”s \n” , va.elapsed.tv_sec , va.elapsed.tv_nsec ) ;

● Output is approx. 40μs on my machine
● NVIDIA Compute Profiler: 

gputime=[ 14078.336 ] (μs)



  

Vector-Addition



  

Vector Addition + Transfer Time



  

GPU Occupancy



  

GPU Occupancy – contd.

● GPUs divide resources among threads to 
enable hardware multithreading

● The number of concurrent threads is 
determined by the resource that is 
exhausted first

● Occupancy is the ratio of running concurrent 
threads to the maximum number of SM 
threads

● Residency is the number of thread blocks 
that can run concurrently on the SM

● NVIDIA provides an occupancy calculator 
that calculates this number for different 
GPUs

Resource Available Maximum

Threads 2048 1024/block

Shared 
Memory

48K (max) 48K/block

Registers 65536 255/thread

Thread 
Blocks

16 16/SM

Resources are per SM on NVIDIA Kepler

kernel<<<2048, 32>>>()

threads/block: 32
registers: 100/thread -> 3200/block
shared mem: 1K/block

residency: 16, exceeds  maximum thread blocks
occupancy: 16*32/2048 = 25%

kernel<<<2048, 32>>>()

threads/block: 32
registers: 160/thread -> 5120/block
shared mem: 1K/block

residency: 12, exceeds  maximum registers
occupancy: 12*32/2048 = 18%



  

Should occupancy be maximized?

● NVIDIA Manual – roughly, yes
● But:

Volkov, V., “Better Performance at Lower Occupancy”, GTC 2010



  

Volkov's Summary

● Do more parallel work per thread to hide 
latency with fewer threads (i.e. increase ILP)

● Use more registers per thread to access slower 
shared memory less 

● Both may be accomplished by computing 
multiple outputs per thread

[Note that Volkov underutilizes threads, but maxes out 
registers!]



  

Data Layout
struct pt {
  int x;
  int y;
};    

__global__
void aos_kernel(int n_pts, struct pt *p) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int nthreads = blockDim.x * gridDim.x;

  for(int i = tid; i < n_pts; i += nthreads) {
    p[i].x = i;
    p[i].y = i * 10;
  }
}

In main():

struct pt *p;
cudaMalloc(&p, ...)

struct pt {
  int *x;
  int *y;
};    

__global__
void soa_kernel(int n_pts, struct pt p) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int nthreads = blockDim.x * gridDim.x;

  for(int i = tid; i < n_pts; i += nthreads) {
    p.x[i] = i;
    p.y[i] = i * 10;
  }
}

In main():

struct pt p;
cudaMalloc(&p.x, ...)
cudaMalloc(&p.y, ...)

Array of Structure (AoS) Structure of Arrays (SoA)

Which, if any, is faster?



  

SoA vs AoS Results



  

Why?



  

AoS vs SoA memory layout

p[0].x p[0].y p[1].x p[1].y p[2].x p[2].y p[3].x p[3].y

p.x[0] p.x[1] p.x[2] p.x[3] p.x[4] p.x[5] p.x[6] p.x[7]

p.y[0] p.y[1] p.y[2] p.y[3] p.y[4] p.y[5] p.y[6] p.y[7]

p[i].x = i;

p[0].x p[0].y p[1].x p[1].y p[2].x p[2].y p[3].x p[3].y

p[i].y = i * 10;

p.x[i] = i;

p.y[i] = i * 10;



  

Assigning Work to Threads

start = tid * blksize;
end = start + blksize;

for(i = start; i < N && i < end; i++)
    a[i] = b[i] + c[i]

start = tid;

for(i = start; i < N; i+=nthreads)
    a[i] = b[i] + c[i]

Blocked Interleaved/Striped

Which, if any, is faster?



  

Blocking v/s Striped



  

Exploiting Spatial Locality (1) 
Texture Cache

● Textures are 2-D images that are “wrapped” around 3-D models
● Exhibit 2-D locality, so textures have a separate cache
● GPU contains a texture fetch unit that non-graphics programs can 

also use
– Step 1: map arrays to textures

– Step 2: replace array reads by tex1Dfetch(), tex2Dfetch()

● Catch: Only read-only data can be cached
– you can write to the array, but it may not become visible through the texture 

in the same kernel call

● Easiest way to use textures:
– const __restrict__ *



  

Exploiting Spatial Locality (2)
Shared Memory

● “Shared Memory” is on-chip software-
managed cache, also known as a 
scratchpad

● 48K maximum size
● Partitioned among thread blocks
● __shared__ qualifier places items in 

shared memory
● Can be used for communicating 

between threads of the same thread 
block

__shared__ int x;

if(threadIdx.x == 0)
x = 1;

__syncthreads(); //required!

printf(“%d\n”, x);



  

Using Shared Memory (SGEMM)

__shared__ float c_sub[BLOCKSIZE][BLOCKSIZE];

// calculate c_sub

__syncthreads();

// write out c_sub to memory

NVIDIA CUDA C Programming Guide



  

Constant Data

● 64KB of “constant” data
– not written by kernel

● Suitable for read-only, “broadcast” data
● All threads in a warp read the same constant 

data item at the same time
– what type of locality is this?

● Uses: Filter coefficients



  

Summary of 
data access performance

● Layout data structures in memory to maximize 
bandwidth utilization

● Assign work to threads to maximize bandwidth 
utilization

● Rethink caching strategies
– identify readonly data

– identify blocks that you can load into shared memory

– identify tables of constants



  

Distributing Regular Work
Scalar Product

● Problem: Given n pairs of vectors, all w 
elements wide, compute the scalar products of 
all the pairs
– Multiplications: n*w

– Additions: n*w

● How shall we distribute work?



  

Scheme 1: Split Source Vectors

● Split each vector, and distribute the splits to 
individual thread blocks



  

Scheme 2: Split Destination Vector

● Each thread block calculates one scalar 
product



  

If only one scheme is used ...

Samadi et al.  Adaptive Input-aware Compilation for Graphics Engines, PLDI ’12.



  

Solution

● Enough work to saturate GPU
● Just not distributed evenly
● Make two versions – whole-GPU and per-

thread-block
● Choose between two versions at runtime 

depending on input size
● See MonteCarlo in the CUDA SDK (4.2) for an 

example



  

Conclusion

● Focus on full system performance
● Use GPU resources judiciously

– don't focus on only maximizing occupancy

● Layout data in memory well
– SoA usually performs better

– Take advantage of read-only, blocked, and constant characteristics

● Distribute computation well
– take memory accesses into account

– be aware of the pitfalls of static scheduling for different input sizes
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