<u>Cache Models</u> <u>and</u> <u>Program Transformations</u>

Goal of lecture

- Develop abstractions of real caches for understanding program performance
- Study the cache performance of matrixvector multiplication (MVM)
 - simple but important computational science kernel
- Understand MVM program transformations
 for improving performance

Matrix-vector product

• Code:

for i = 1, N

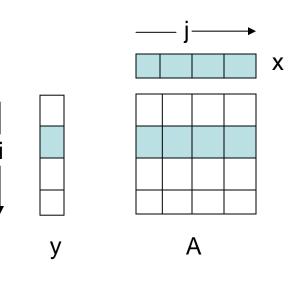
- for j = 1, N
 - $y(i) = y(i) + A(i,j)^* x(j)$
- Total number of references = 4N²
 - This assumes that all elements of A,x,y are stored in memory
 - Smart compilers nowadays can register-allocate y(i) in the inner loop
 - You can get this effect manually for i = 1,N

$$temp = y(i)$$

 $temp = temp + A(i,j)^*x(j)$

$$y(i) = temp$$

 To keep things simple, we will not do this but our approach applies to this optimized code as well



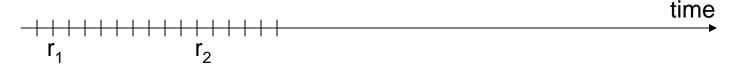
Cache abstractions

- Real caches are very complex
- Science is all about tractable and useful abstractions (models) of complex phenomena

- models are usually approximations

- Can we come up with cache abstractions that are both tractable and useful?
- Focus:
 - two-level memory model: cache + memory

Stack distance



Address stream from processor

- r₁, r₂: two memory references
 - r₁ occurs earlier than r₂
- stackDistance(r₁,r₂): number of distinct cache lines referenced between r₁ and r₂
- Stack distance was defined by defined by Mattson et al (IBM Systems Journal paper)
 - arguably the most important paper in locality

Modeling approach

- First approximation:
 - ignore conflict misses
 - only cold and capacity misses
- Most problems have some notion of "problem size"
 - (eg) in MVM, the size of the matrix (N) is a natural measure of problem size
- Question: how does the miss ratio change as we increase the problem size?
- Even this is hard, but we can often estimate miss ratios at two extremes
 - large cache model: problem size is small compared to cache capacity
 - small cache model: problem size is large compared to cache capacity
 - we will define these more precisely in the next slide.

Large and small cache models

- Large cache model
 - no capacity misses
 - only cold misses

• Small cache model

- cold misses: first reference to a line
- capacity misses: possible for succeeding references to a line
 - let r₁ and r₂ be two successive references to a line
 - assume r₂ will be a capacity miss if stackDistance(r₁,r₂) is some function of problem size
 - argument: as we increase problem size, the second reference will become a miss sooner or later
- For many problems, we can compute
 - miss ratios for small and large cache models
 - problem size transition point from large cache model to small cache model

MVM study

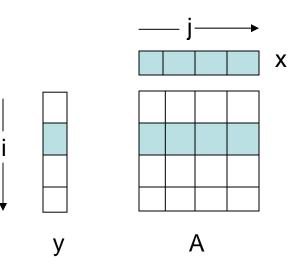
- We will study five scenarios
 - Scenario I
 - i,j loop order, line size = 1 number
 - Scenario II
 - j,i loop order, line size = 1 number
 - Scenario III
 - i,j loop order, line size = b numbers
 - Scenario IV
 - j,i loop order, line size = b numbers
 - Scenario V
 - blocked code, line size = b numbers

Scenario I

- Code:
 - for i = 1, N

for
$$j = 1, N$$

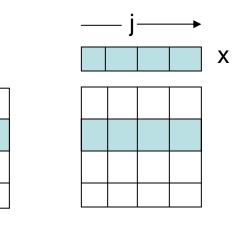
- $y(i) = y(i) + A(i,j)^*x(j)$
- Inner loop is known as DDOT in NA literature if working on doubles:
 - Double-precision DOT product
- Cache line size
 - 1 number
- Large cache model:
 - Misses:
 - A: N² misses
 - x: N misses
 - y: N misses
 - Total = N^2 +2N
 - Miss ratio = $(N^2+2N)/4N^2$
 - ~ 0.25 + 0.5/N



Scenario I (contd.)

Address stream: y(1) A(1,1) x(1) y(1) y(1) A(1,2) x(2) y(1) y(1) A(1,N) x(N) y(1) y(2) A(2,1) x(1) y(2)

- Small cache model:
 - A: N² misses
 - x: N + N(N-1) misses (reuse distance=O(N))
 - y: N misses (reuse distance=O(1))
 - Total = $2N^2 + N$
 - Miss ratio = $(2N^2+N)/4N^2$
 - $\sim 0.5 + 0.25/N$
- Transition from large cache model to small cache model
 - As problem size increases, when do capacity misses begin to occur?
 - Subtle issue: depends on replacement policy (see next slide)



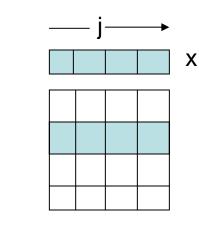
Α

y

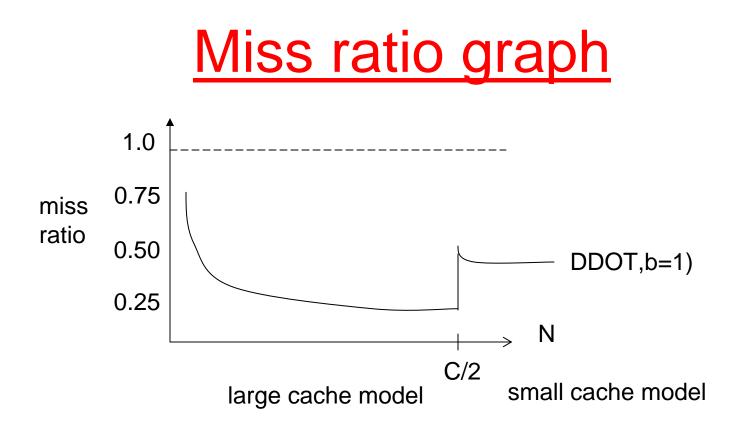
Scenario I (contd.)

Address stream: y(1) A(1,1) x(1) y(1) y(1) A(1,2) x(2) y(1) y(1) A(1,N) x(N) y(1) y(2) A(2,1) x(1) y(2)

- Question: as problem size increases, when do capacity misses begin to occur?
- Depends on replacement policy:
 - Optimal replacement:
 - do the best job you can, knowing everything about the computation
 - only x needs to be cache-resident
 - elements of A can be "streamed in" and tossed out of cache after use
 - So we need room for (N+2) numbers
 - Transition: N+2 > C \rightarrow N ~C
 - LRU replacement
 - by the time we get to end of a row of A, first few elements of x are "cold" but we do not want them to be replaced
 - Transition: $(2N+2) > C \rightarrow N \sim C/2$
- Note:
 - optimal replacement requires perfect knowledge about future
 - most real caches use LRU or something close to it
 - some architectures support "streaming"
 - in hardware
 - in software: hints to tell processor not to cache certain references



y



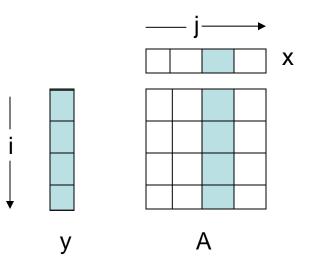
 Jump from large cache model to small cache model will be more gradual in reality because of conflict misses

Scenario II

• Code:

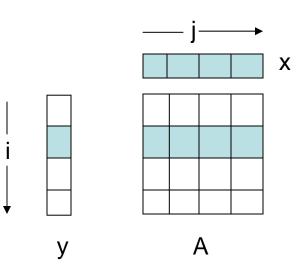
for j = 1,N for i = 1,N $y(i) = y(i) + A(i,j)^*x(j)$

- Inner loop is known as AXPY in NA literature $\mathbf{y} = \alpha \cdot \mathbf{x} + \mathbf{y}$
- Miss ratio picture exactly the same as Scenario I
 - roles of x and y are interchanged



Scenario III

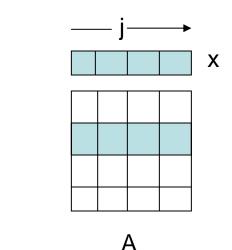
- Code:
 - for i = 1, N
 - for j = 1, N
 - $y(i) = y(i) + A(i,j)^*x(j)$
- Cache line size
 - b numbers
- Large cache model:
 - Misses:
 - A: N²/b misses
 - x: N/b misses
 - y: N/b misses
 - Total = $(N^2+2N)/b$
 - Miss ratio = $(N^2+2N)/4bN^2$
 - $\sim 0.25/b + 0.5/bN$



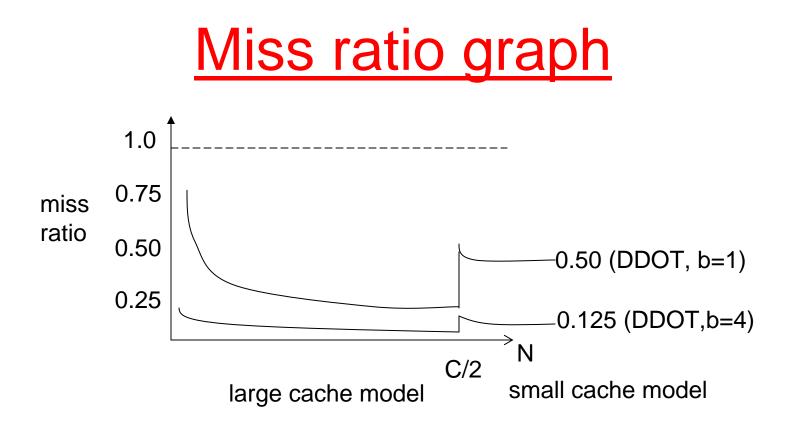
Scenario III (contd.)

Address stream: y(1) A(1,1) x(1) y(1) y(1) A(1,2) x(2) y(1) y(1) A(1,N) x(N) y(1) y(2) A(2,1) x(1) y(2)

- Small cache model:
 - A: N²/b misses
 - x: N/b + N(N-1)/b misses (reuse distance=O(N))
 - y: N/b misses (reuse distance=O(1))
 - Total = $(2N^2+N)/b$
 - Miss ratio = $(2N^2+N)/4bN^2$
 - ~ 0.5/b + 0.25/bN
- Transition from large cache model to small cache model
 - As problem size increases, when do capacity misses begin to occur?
 - LRU: roughly when (2N+2b) = C
 - N ~ C/2
 - Optimal: roughly when (N+2b) ~ C \rightarrow N ~ C
- So miss ratio picture for Scenario III is similar to that of Scenario I but the y-axis is scaled down by b
- Typical value of b = 4 (SGI Octane)



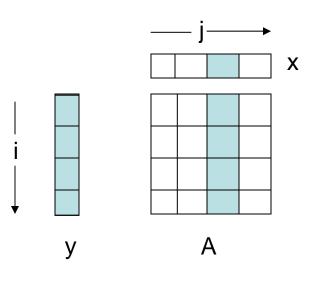
y

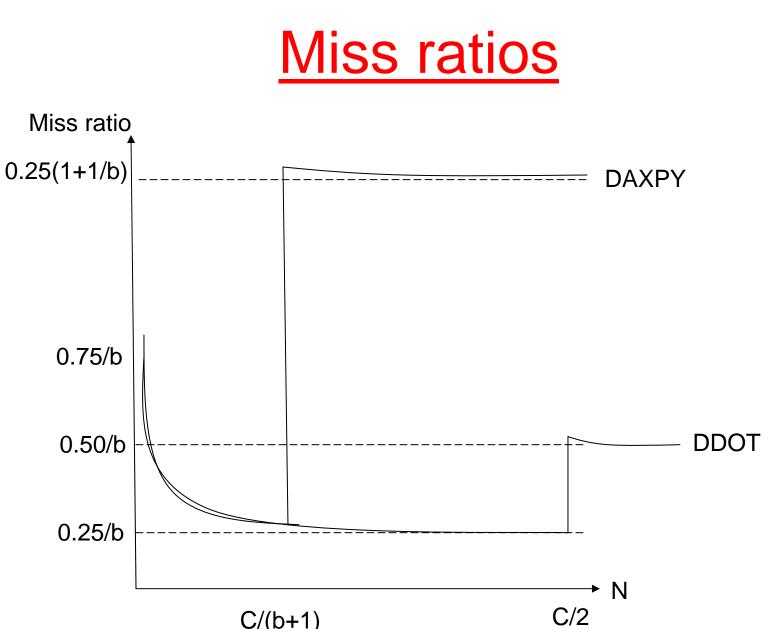


 Jump from large cache model to small cache model will be more gradual in reality because of conflict misses

Scenario IV

- Code:
 - for j = 1, N
 - for i = 1, N
 - $y(i) = y(i) + A(i,j)^*x(j)$
- Large cache model:
 - Same as Scenario III
- Small cache model:
 - Misses:
 - A: N²
 - x: N/b
 - y: N/b + N(N-1)/b = N^2/b
 - Total: N²(1+1/b) + N/b
 - Miss ratio = 0.25(1+1/b) + 0.25/bN
- Transition from large cache to small cache model
 - LRU: Nb + N +b = C \rightarrow N ~ C/(b+1)
 - optimal: $N + 2b \sim C \rightarrow N \sim C$
- Transition happens much sooner than in Scenario III (with LRU replacement)



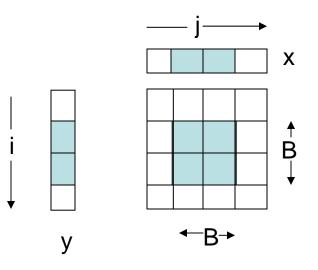


C/(b+1)

<u>Scenario V</u>

- Intuition: perform blocked MVM so that data for each blocked MVM fits in cache
 - One estimate for B: all data for block MVM must fit in cache
 - → B2 + 2B ~ C
 - → B ~sqrt(C)
 - Actually we can do better than this
- Code: blocked code
 - for bi = 1,N,B
 - for bj = 1, N, B

- for j = bj,min(bj+B-1,N)
 - $y(i)=y(i)+A(i,j)^*x(j)$
- Choose block size B so
 - you have large cache model while executing block
 - B is as large as possible (to reduce loop overhead)
 - for our example, this means B~c/2 for row-major order of storage and LRU replacement
- Since entire MVM computation is a sequence of block MVMs, this means miss ratio will be 0.25/b independent of N!



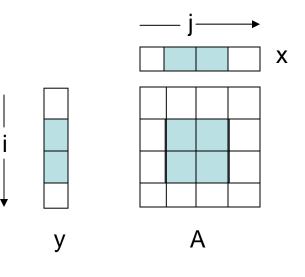
Scenario V (contd.)

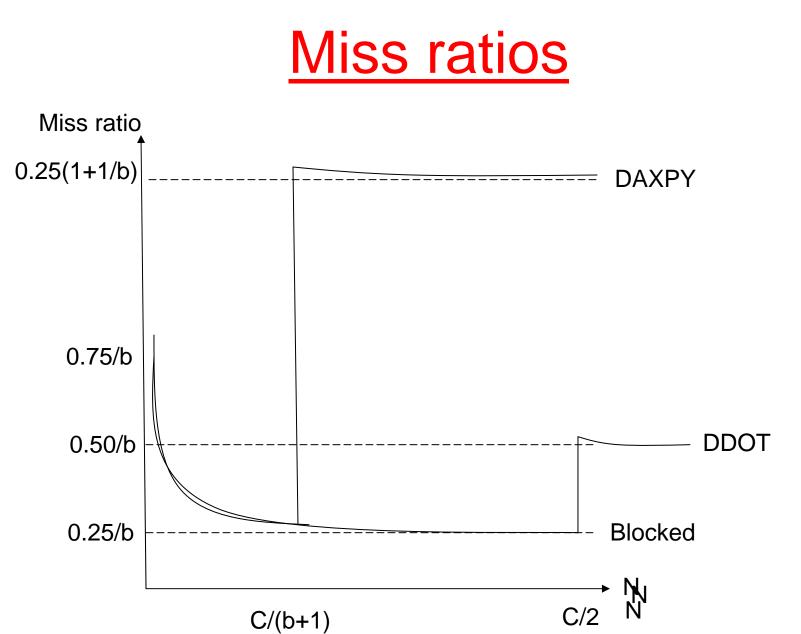
• Code: blocked code

for bi = 1,N,B for bj = 1,N,B for i = bi,min(bi+B-1,N) for j = bj,min(bj+B-1,N) y(i)=y(i)+A(i,j)*x(j)

Better code: interchange the two outermost loops and fuse bi and i loops for bj = 1,N,B for i = 1,N for j = bi,min(bi+B-1,N) $y(i)=y(i)+A(I,j)^*x(j)$

This has the same memory behavior as doublyblocked loop but less loop overhead.





Key transformations

- Loop permutation for i = 1,N for j = 1,N S
 S
 for j = 1,N for i = 1,N S
 S
 for i = 1,N
- Strip-mining
 - for i = 1, N \rightarrow for bi = 1, N, BS for i = bi, min(bi+B-1, N) S
- Loop tiling = strip-mine and interchange

<u>Notes</u>

- Strip-mining does not change the order in which loop body instances are executed
 - so it is always legal
- Loop permutation and tiling do change the order in which loop body instances are executed

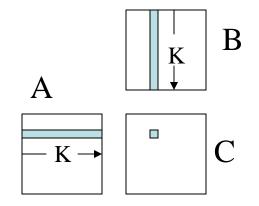
 so they are not always legal
- For MVM and MMM, they are legal, so there are many variations of these kernels that can be generated by using these transformations
 - different versions have different memory behavior as we have seen

Matrix multiplication

- We have studied MVM in detail.
- In dense linear algebra, matrix-matrix multiplication is more important.
- Everything we have learnt about MVM carries over to MMM fortunately, but there are more variations to consider since there are three matrices and three loops.

<u>MMM</u>

DO I = 1, N//row-major storage DO J = 1, N DO K = 1, N C(I,J) = C(I,J) + A(I,K)*B(K,J)

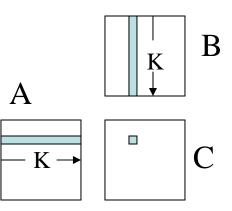


IJK version of matrix multiplication

- Three loops: I,J,K
- You can show that all six permutations of these three loops compute the same values.
- As in MVM, the cache behavior of the six versions is different

<u>MMM</u>

DO I = 1, N//row-major storage DO J = 1, N DO K = 1, N C(I,J) = C(I,J) + A(I,K)*B(K,J)

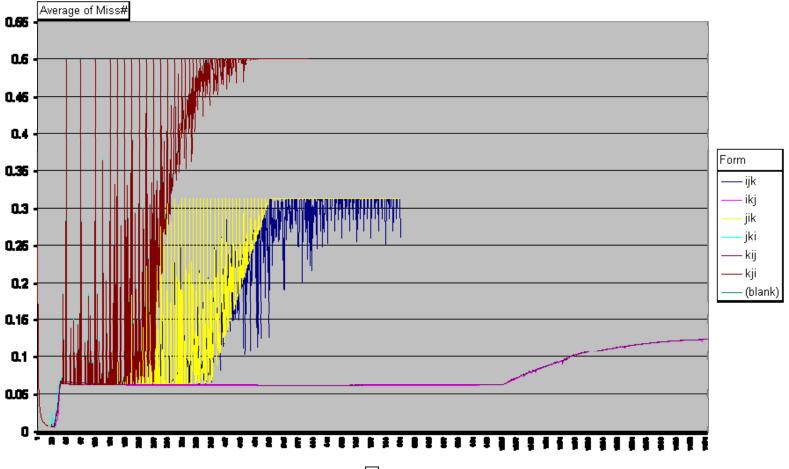


- K loop innermost
 - A: good spatial locality
 - C: good temporal locality
- I loop innermost
 - B: good temporal locality
- J loop innermost
 - B,C: good spatial locality
 - A: good temporal locality
- So we would expect IKJ/KIJ versions to perform best, followed by IJK/JIK, followed by JKI/KJI

MMM miss ratios (simulated)

L1 Cache Miss Ratio for Intel Pentium III

- MMM with N = 1...1300
- 16KB 32B/Block 4-way 8-byte elements

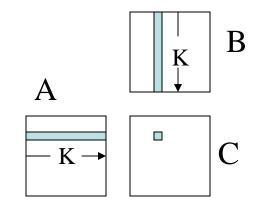


Observations

- Miss ratios depend on which loop is in innermost position
 - so there are three distinct miss ratio graphs
- Large cache behavior can be seen very clearly and all six version perform similarly in that region
- Big spikes are due to conflict misses for particular matrix sizes
 - notice that versions with J loop innermost have few conflict misses (why?)

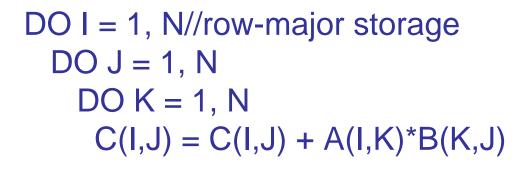
IJK version

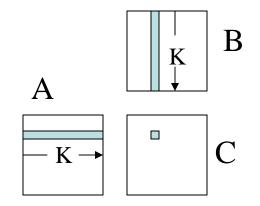
DO I = 1, N//row-major storage DO J = 1, N DO K = 1, N C(I,J) = C(I,J) + A(I,K)*B(K,J)



- Large cache scenario:
 - Matrices are small enough to fit into cache
 - Only cold misses, no capacity misses
 - Miss ratio:
 - Data size = 3 N²
 - Each miss brings in b floating-point numbers
 - Miss ratio = $3 N^2/b^*4N^3 = 0.75/bN$ (eg) 0.019 (b = 4,N=10)

IJK version (large cache)

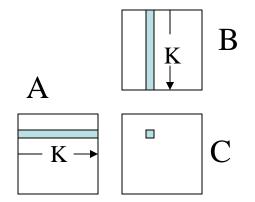




- Large cache scenario:
 - Matrices are small enough to fit into cache
 - Only cold misses, no capacity misses
 - Miss ratio:
 - Data size = 3 N²
 - Each miss brings in b floating-point numbers
 - Miss ratio = $3 N^2/b^* 4N^3 = 0.75/bN = 0.019$ (b = 4,N=10)

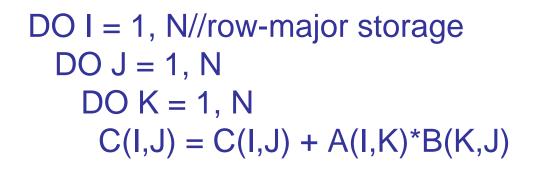
IJK version (small cache)

DO I = 1, N DO J = 1, N DO K = 1, N C(I,J) = C(I,J) + A(I,K)*B(K,J)



- Small cache scenario:
 - Matrices are large compared to cache
 - stack distance is not O(1) => miss
 - Cold and capacity misses
 - Miss ratio:
 - C: N²/b misses (good temporal locality)
 - A: N³/b misses (good spatial locality)
 - B: N³ misses (poor temporal and spatial locality)
 - Miss ratio \rightarrow 0.25 (b+1)/b = 0.3125 (for b = 4)

Miss ratios for other versions



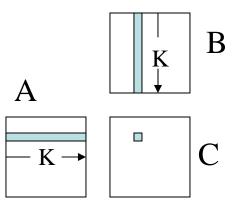
IJK version of matrix multiplication

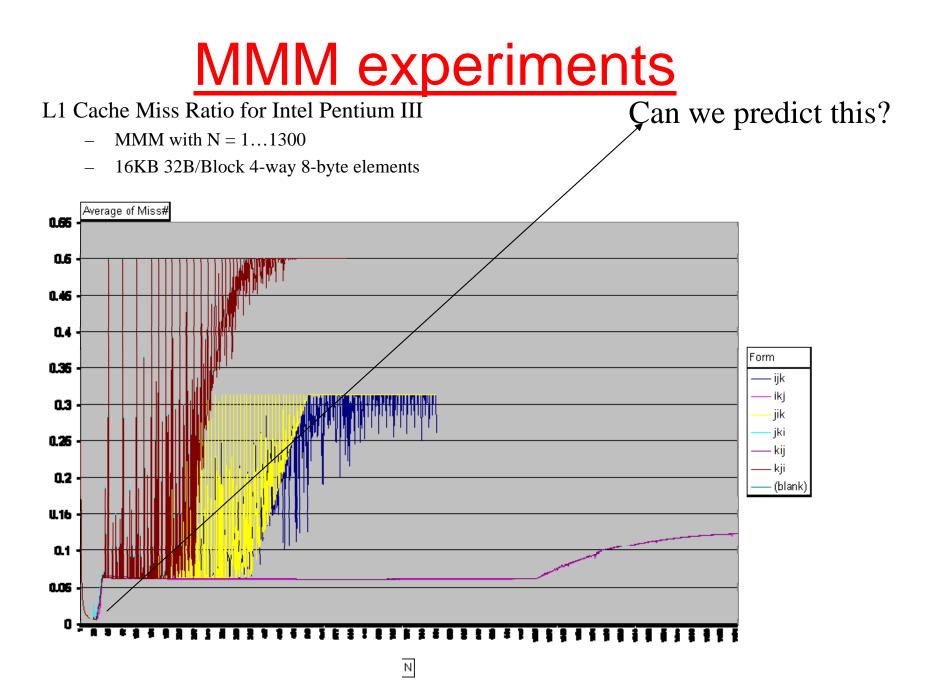
- K loop innermost
 - A: good spatial locality
 - C: good temporal locality
- 0.25(b+1)/b

 $(N^{2}/b + N^{3} + N^{3})/4N^{3} \rightarrow 0.5$

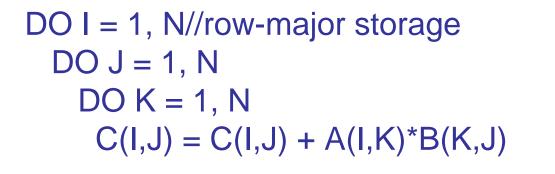
 $(N^{3}/b + N^{3}/b + N^{2}/b)/4N^{3} \rightarrow 0.5/b$

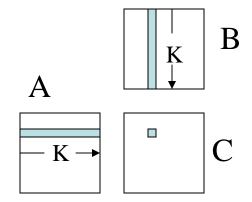
- I loop innermost
 - B: good temporal locality
- J loop innermost
 - B,C: good spatial locality
 - A: good temporal locality
- So we would expect IKJ/KIJ versions to perform best, followed by IJK/JIK, followed by JKI/KJI



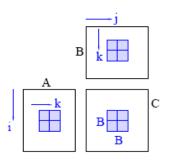


Transition out of large cache





- Find the data element(s) that are reused with the largest stack distance
- Determine the condition on N for that to be less than C
- For our problem:
 - $N^2 + N + b < C$ (with optimal replacement)
 - $N^2 + 2N < C$ (with LRU replacement)
 - In either case, we get $N \sim sqrt(C)$
 - For our cache, we get N ~ 45 which agrees quite well with data



As in blocked MVM, we actually need to stripmine only two loops

<u>Notes</u>

- So far, we have considered a two-level memory hierarchy
- Real machines have multiple level memory hierarchies
- In principle, we need to block for all levels of the memory hierarchy
- In practice, matrix multiplication with really large matrices is very rare
 - MMM shows up mainly in blocked matrix factorizations
 - therefore, it is enough to block for registers, and L1/L2 cache levels
- How do we organize such a code?
 - We will study the code produced by ATLAS.
 - ATLAS also introduces us to self-optimizing programs.