
Graph Algorithms



Overview
• Graphs are very general data structures

– G = (V,E) where V is set of nodes, E is set of edges ⊆ VxV
– data structures such as dense and sparse matrices, sets, multi-

sets, etc. can be viewed as representations of graphs
• Algorithms on matrices/sets/etc. can usually be interpreted 

as graph algorithms
– but it may or may not be useful to do this
– sparse matrix algorithms can be usefully viewed as graph 

algorithms
• Some graph algorithms can be interpreted as matrix 

algorithms
– but it may or may not be useful to do this
– may be useful if graph structure is fixed as in graph analytics 

applications: 
• topology-driven algorithms can often be formulated in terms of a 

generalized sparse MVM



Graph-matrix duality
• Graph (V,E) as a matrix

– Choose an ordering of vertices
– Number them sequentially
– Fill in |V|x|V| matrix

• A(i,j) is w if graph has edge from node i to 
node j with label w

– Called adjacency matrix of graph
– Edge (u  v): 

• v is out-neighbor of u
• u is in-neighbor of v

• Observations:
– Diagonal entries: weights on self-loops
– Symmetric matrix  undirected 

graph
– Lower triangular matrix  no edges 

from lower numbered nodes to higher 
numbered nodes

– Dense matrix  clique (edge 
between every pair of nodes)
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Matrix-vector multiplication

• Matrix computation: y = Ax
• Graph interpretation:

– Each node i has two values (labels) 
x(i) and y(i)

– Each node i updates its label y using 
the x value from each out-neighbor j, 
scaled by the label on edge (i,j)

– Topology-driven, unordered 
algorithm

• Observation:
– Graph perspective shows dense 

MVM is special case of sparse MVM
– What is the interpretation of y = ATx ?
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Graph set/multiset duality

• Set/multiset is isomorphic to a 
graph
– labeled nodes 
– no edges

• “Opposite” of clique
• Algorithms on sets/multisets can 

be viewed as graph algorithms
• Usually no particular advantage to 

doing this but it shows generality 
of graph algorithms
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Sparse graph types

• Power-law graphs
– small number of very high degree nodes (hubs)
– low diameter: 

• get from a node to any other node in O(1) hops
• “six degrees of separation” (Karinthy 1929, Milgram 1967), on 

Facebook, it is 4.74
– typical of social network graphs like the Internet graph or the 

Facebook graph
• Uniform-degree graphs

– nodes have roughly same degree
– high diameter
– road networks, IC circuits, finite-element meshes 

• Random (Erdӧs-Rènyi) graphs
– constructed by random insertion of edges
– mathematically interesting but few real-life examples



Graph problem:SSSP

• Problem: single-source shortest-
path (SSSP) computation 

• Formulation:
– Given an undirected graph with 

positive weights on edges, and a 
node called the source

– Compute the shortest distance 
from source to every other node

• Variations: 
– Negative edge weights but no 

negative weight cycles
– All-pairs shortest paths
– Breadth-first search: all edge 

weights are 1
• Applications:

– GPS devices for driving directions
– social network analyses: 

centrality metrics
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SSSP Problem
• Many algorithms

– Dijkstra (1959)
– Bellman-Ford  (1957)
– Chaotic relaxation (1969)
– Delta-stepping (1998)

• Common structure:
– Each node has a label d that is 

updated repeatedly 
• initialized to 0 for source and        for all 

other nodes
• during algorithm: shortest known 

distance to that node from source
• termination: shortest distance from 

source
– All of them use the same operator: 

relax-edge(u,v):
if d[v] > d[u]+w(u,v)

then d[v]  d[u]+w(u,v)

relax-node(u): 
relax all edges connected to u
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Chaotic relaxation (1969)
• Active node:

– node whose label has been updated
– initially, only source is active

• Schedule for processing nodes
– pick active nodes at random

• Implementation
– use a (work)set or multiset to track active 

nodes
• TAO classification:

– unstructured graph, data-driven, 
unordered, local computation

– compare/contrast with DMR
• Parallelization: 

– process multiple work-set nodes in parallel
– conflict: two activities may try to update 

label of the same node 
• eg., B and C may try to update D

– amorphous data-parallelism
• Main inefficiency: number of node 

relaxations depends on the schedule
– can be exponential in the size of graph
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Dijkstra’s algorithm (1959)
• Active nodes: 

– node whose label has been updated
– initially, only  source is active

• Schedule for processing nodes:
– prefer nodes with smaller labels since they 

are more likely to have reached final values
• Implementation of work-set:

– priority queue of nodes, ordered by label
• Work-efficient ordered algorithm

– node is relaxed just once
– O(|E|*lg(|V|))

• TAO classification:
– unstructured graph, data-driven, ordered, 

local computation
– compare with tree summation

• Parallelism
– nodes with minimal labels can be done in 

parallel if they don’t conflict
– “level-by-level” parallelization
– limited parallelism for most graphs

• Main inefficiency:
– little parallelism in sparse graphs
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Delta-stepping (1998)
• Controlled chaotic relaxation

– Exploit the fact that SSSP is robust to 
priority inversions

– “soft” priorities
• Implementation of work-set:

– parameter: ∆
– sequence of sets
– nodes whose current distance is between 

n∆ and (n+1)∆ are put in the nth set
– nodes in each set are processed in parallel
– nodes in set n are completed before 

processing of nodes in set (n+1) are 
started

• implementation requires barrier 
synchronization: no worker can proceed past 
barrier until all workers are at the barrier

• ∆ = 1: Dijkstra
• ∆= ∞: Chaotic relaxation
• Picking an optimal ∆ : 

– depends on graph and machine
– high-diameter graph  large ∆
– find experimentally
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Delta-stepping (II)
• Standard implementation of 

work-set:
– nodes in set n are completed 

before processing of nodes in set 
(n+1) are started

– barrier synchronization between 
processing of successive sets

• Strict barrier synchronization is 
not actually needed 
– once set n is empty, some 

threads can begin executing 
active nodes from set (n+1) 
without waiting for all threads to 
finish executing nodes from set n 
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Bellman-Ford (1957)
• Bellman-Ford (1957):

– Iterate over all edges of graph in any 
order, relaxing each edge

– Do this |V| times
– O(|E|*|V|)

• TAO classification:
– unstructured graph, topology-driven, 

unordered, local computation
• Parallelism 

– one approach: optimistic 
parallelization

– repeat until no node label changes
• put all edges into workset
• workers get edges and apply relaxation 

operator if they can mark both nodes of 
edge, until workset is empty

– can we do better?
• since we may have to make O(|V|) 

sweeps over graph, it may be better to 
preprocess edges to avoid conflicts

• overhead of preprocessing can be 
amortized over the multiple sweeps 
over the graph
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Matching
• Given a graph G = (V,E), a 

matching is a subset of edges 
such that no edges in the 
subset have a node in common
– (eg) {(A,B),(C,D),(E,H)}
– Not a matching: {(A,B),(A,C)}

• Maximal matching: a matching 
to which no new edge can be 
added without destroying 
matching property
– (eg) {(A,B),(C,D),(E,H)}
– (eg) {(A,C),(B,D)(E,G),(F,H)}
– Can be computed in O(|E|) time 

using a simple greedy algorithm
• Preprocessing strategy:

– partition edges into matchings
– many possible partitions, some 

better than others
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Execution strategy
• Round-based execution

– in each round, edges in one 
matching are processed in parallel 
w/o neighborhood marking (data 
parallelism)

– barrier synchronization between 
rounds

• Disadvantage of round-based 
execution
– all workers must wait at the barrier 

even if there is just one straggler
– if we have 2 workers, round-based 

execution takes 6 steps
• Question: at a high level, there is 

some similarity to ∆-stepping:
– sequence of buckets
– finish one bucket before moving on 

to next
– what are the key differences in the 

implementations?

1. {(A,B),(C,D),(E,H)}
2.   {(A,C),(B,D),(E,G),(F,H)}
3.   {(D,E),(G,H)}
4.   {(D,F)}

Round-based execution



Another approach: interference graph
• Build interference graph (IG)

– nodes are activities (SSSP graph 
edges)

– edges represent conflicts 
between activities

• for our problem, SSSP edges have 
a node in common

• For our problem
– each SSSP graph edge 

represents a task
– edge between task i and task j 

in IG if edges corresponding to 
tasks i and j in SSSP graph have 
a node in common

Interference graph
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Interference graph  Dependence graph

• Generate dependence graph
– change edges in IG to directed 

edges (precedence edges)
– make sure there are no cycles
– simple approach: 

• number all nodes in interference 
graph and direct edges from 
lower numbered nodes to higher 
numbered nodes

• many other choices

– simplification: remove 
transitive edges
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Dependence graph
• Execution using dependence 

graph
– each node has counter with number 

of incoming edges
– any node with no incoming edges 

can be executed by a worker
– when task is done, counters at out-

neighbors are decremented, 
potentially making some of them 
sources

• requires marks to ensure correct 
execution

– execution terminates when all tasks 
have been completed

• Fewer ordering constraints 
between tasks than execution 
strategy based on matchings and 
rounds
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Inspector-executor

• When is inspector-executor parallelization possible?
– when active nodes and neighborhoods are known as soon as 

input is given but before actual computation is executed
• contrast:

– static parallelization: active nodes and neighborhoods known at compile-time 
modulo problem size (example: Jacobi)

– optimistic parallelization: active nodes and neighborhoods known only after 
program has been executed in parallel (example: DMR)

– binding time analysis: when do we know some information 
regarding program behavior? Example: types

• When is inspector-executor parallelization useful?
– when overhead of inspector can be amortized over many 

executions
• works for Bellman-Ford because we make O(|V|) sweeps over graph

– when overhead of inspector is small compared to executor
• sparse Cholesky factorization: inspector is called symbolic 

factorization, executor is called numerical factorization



Summary of SSSP Algorithms
• Chaotic relaxation

– parallelism but amount of work depends on execution 
order of active nodes

– unordered, data-driven algorithm: use sets/multisets
• Dijkstra’s algorithm

– work-efficient but difficult to extract parallelism
• level-by-level parallelism

– ordered, data-driven algorithm: use priority queues
• Delta-stepping

– controlled chaotic relaxation: parameter ∆
– ∆ permits trade-off between parallelism and extra work

• Bellman-Ford algorithm
– Inspector-executor parallelization: 

• inspector: use matchings or dependence graph to find parallelism 
after input is given



Machine learning

• Many machine learning algorithms are sparse 
graph algorithms

• Examples:
– Page rank: used to rank webpages to answer 

Internet search queries
– Recommender systems: used to make 

recommendations to users in Netflix, Amazon, 
Facebook etc.



Web search
• When you type a set of keywords to do an Internet 

search, which web-pages should be returned and 
in what order?

• Basic idea:
– offline:

• crawl the web and gather webpages into data center
• build an index from keywords to webpages

– online:
• when user types keywords, use index to find all pages 

containing the keywords
– key problem: 

• usually you end up with tens of thousands of pages 
• how do you rank these pages for the user?



Ranking pages
• Manual ranking

– Yahoo did something like this initially, but this solution does not scale
• Word counts

– order webpages by how many times keywords occur in webpages
– problem: easy to mess with ranking by having lots of meaningless 

occurrences of keyword
• Citations

– analogy with citations to articles
– if lots of webpages point to a webpage, rank it higher
– problem: easy to mess with ranking by creating lots of useless pages 

that point to your webpage 
• PageRank

– extension of citations idea
– weight link from webpage A to webpage B by “importance” of A
– if A has few links to it, its links are not very “valuable”
– how do we make this into an algorithm?



Web graph

• Directed graph: nodes represent webpages, edges represent links
– edge from u to v represents a link in page u to page v

• Size of graph: commoncrawl.org (2012)
– 3.5 billion nodes
– 128 billion links

• Intuitive idea of pageRank algorithm:
– each node in graph has a weight (pageRank) that represents its 

importance
– assume all edges out of a node are equally important 
– importance of edge is scaled by the pageRank of source node

u
v

Webgraph from commoncrawl.org
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PageRank (simple version)

• Iterative algorithm: 
– compute a series PR0, PR1, PR2, … of node labels

• Iterative formula:

– ∀v∈V. PR0(v) = 1/N 
– ∀v∈V. PRi+1 v = ∑u∈in−neighbors(v)

PRi(u)
out−degree(u)

• Implement with two fields PRcurrent and PRnext in each node

u
PRcurrent
PRnext

PRcurrent
PRnext

v
Graph G = (V,E)
|V| = N



Page Rank (contd.)

• Small twist needed to handle nodes with no 
outgoing edges

• Damping factor: d
– small constant: 0.85
– assume each node may also contribute its pageRank to 

a randomly selected node with probability (1-d)
• Iterative formula

– ∀v∈V. PR0(v) = 1
N

– ∀v∈V. PRi+1 v = 1−d
N

+ d ∗ ∑u∈in−neighbors(v)
PRi(u)

out−degree(u)



PageRank example

• Nice example from Wikipedia
• Note

– B and E have many in-edges 
but pageRank of B is much 
greater

– C has only one in-edge but high 
pageRank because its in-edge 
is very valuable

• Caveat:
– search engines use many 

criteria in addition to pageRank
to rank webpages



Parallelization of pageRank
• TAO classification

– topology: unstructured graph
– active nodes:

• topology-driven, unordered
– operator: local computation

• PageRanknext values at all 
nodes can be computed in 
parallel

• Which algorithm does this 
remind you of?
– Jacobi iteration with 5-point stencil
– main difference: topology

• 5-point stencil: regular grid, uniform 
degree graph

• web-graph: power-law graph
• this has a major impact on 

implementation, as we will see later



PageRank discussion

• Vertex program (GraphLab):
– value at node is updated using values 

at immediate neighbors
– very limited notion of neighborhood 

but adequate for pageRank and some 
ML algorithms

• CombBlas: combinatorial BLAS
– generalized sparse MVM: + and * in 

MVM are generalized to other 
operations like ∨ and ∧

– adequate for pageRank
• Interesting application of TAO

– standard pageRank is topology-driven
– can you think of a data-driven version 

of pageRank?



Recommender system
• Problem

– given a database of users, items, and ratings given by 
each user to some of the items

– predict ratings that user might give to items he has 
not rated yet (usually, we are interested only in the 
top few items in this set)

• Netflix challenge
– in 2006, Netflix released a subset of their database 

and offered $1 million prize to anyone who improved 
their algorithm by 10%

– triggered a lot of interest in recommender systems
– prize finally given to BellKor’s Pragmatic Chaos team 

in 2009



Data structure for database

• Sparse matrix view:
– rows are users
– columns are movies
– A(u,m) = v is user u has given 

rating v to movie m
• Graph view:

– bipartite graph
– two sets of nodes, one for users, 

one for movies
– edge (u,m) with label v

• Recommendation problem:
– predict missing entries in sparse 

matrix
– predict labels of missing edges in 

bipartite graph
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One approach: matrix completion

• Optimization problem
– Find m×k matrix W and k×n matrix 

H (k << min(m,n)) such that A ≈ WH
– Low-rank approximation
– H and W are dense so all missing 

values are predicted
• Graph view

– Label of user nodes i is vector 
corresponding to row Wi*

– Label of movie node j is vector 
corresponding to column H*j

– If graph has edge (u,m), inner 
product of labels on u and m must 
be approximately equal to label on 
edge
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One algorithm:SGD
• Stochastic gradient descent (SGD)
• Iterative algorithm:

– initialize all node labels to some 
arbitrary values

– iterate until convergence
• visit all edges (u,m) in some order and 

update node labels at u and m based on 
the residual

• TAO analysis:
– topology: unstructured (power-law) 

graph
– active edges: topology-driven, 

unordered
– operator: local computation

• Parallelism in SGD:
– edges that form a matching can be 

processed in parallel
• What algorithm does this remind you 

of?
– Bellman-Ford
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Summary of discussion          
of algorithms



What we have learned (I)
• Data-centric view of algorithms
• TAO classification
• Unordered algorithms

– lots of parallelism for large problem sizes
– soft priorities need in many/most algorithms (e.g. chaotic SSSP)
– don’t-care non-determinism in some algorithms (DMR)

• Topology-driven algorithms
– iterate over data structure
– no explicit work-list needed

• Data-driven algorithms
– need efficient parallel work-list (put/get)
– may need to support soft priorities (e.g. chaotic SSSP)

• Some problems 
– have both ordered and unordered algorithms (e.g. SSSP)
– have both topology-driven and data-driven algorithms (e.g. 

SSSP, pageRank)
– data-driven algorithm may be more work-efficient than topology-

driven one



What we have learned (II)
• Amorphous data-parallelism

– data-parallelism is special case
• Parallelization strategies:

– key question: when do you know the active nodes 
and neighborhoods?

• static: known at compile-time (modulo problem size)
• inspector-executor: after input is given but before program is 

executed
• optimistic: after program has finished execution

• Implementation concepts:
– edge matchings in graphs
– synchronization

• barrier synchronization: coarse-grain
• marking graph elements, get/put on work-lists: mutual 

exclusion, fine-grain



What we will study (I)
• Parallel architectures: workers can be heterogeneous and may be 

organized in different ways
– vector architectures, GPUs, FPGAs
– shared and distributed-memory architectures

• Synchronization: coordination between workers
– coarse-grain synchronization: barriers
– fine-grain synchronization: locks, lock-free instructions

• application: marking of graph elements, work-lists, mutual exclusion
• Scheduling activities on workers 

– locality: temporal, spatial, network
– load-balancing
– minimize conflicts between concurrent activities (optimistic parallelization)

• Concurrent data structure implementations
– graphs/sparse matrices
– work sets/multisets

• soft priorities
– priority queues



What we will study (II)

• Programming language issues
– how do we express information about parallelism, 

locality, scheduling, data structure 
implementations?

– how do we simplify parallel programming so most 
application programmers can benefit from 
parallelism without having to write parallel code?

• Parallel notations and libraries
– shared-memory: pThreads, MPI, Galois
– distributed-memory: MPI



Lock-step execution
• With 2 workers, we can execute all 

tasks in 5 steps with the right 
schedule 
– (A,B), (E,H)
– (C,D), (E,G)
– (B,D), (F,H)
– (D,E), (G,H)
– (A,C), (D,F)

• Two implementations:
– synchronous execution: assign work to 

workers as specified above (no need 
for work-lists) and use barrier 
synchronization between steps

– autonomous execution:
• threads proceed independently of each 

other
• each node of dependence graph has an 

integer counter initialized to the number 
of in-edges

• free thread grabs any node with zero 
counter, executes it, and then updates 
counters at out-neighbors in the DAG

• updating counters needs fine-grain 
synchronization: must mark nodes before 
updating their counters
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