
Graph Algorithms

Overview
• Graphs are very general data structures

– G = (V,E) where V is set of nodes, E is set of edges ⊆ VxV
– data structures such as dense and sparse matrices, sets, multi-

sets, etc. can be viewed as representations of graphs
• Algorithms on matrices/sets/etc. can usually be interpreted

as graph algorithms
– but it may or may not be useful to do this
– sparse matrix algorithms can be usefully viewed as graph

algorithms
• Some graph algorithms can be interpreted as matrix

algorithms
– but it may or may not be useful to do this
– may be useful if graph structure is fixed as in graph analytics

applications:
• topology-driven algorithms can often be formulated in terms of a

generalized sparse MVM

Graph-matrix duality
• Graph (V,E) as a matrix

– Choose an ordering of vertices
– Number them sequentially
– Fill in |V|x|V| matrix

• A(i,j) is w if graph has edge from node i to
node j with label w

– Called adjacency matrix of graph
– Edge (u  v):

• v is out-neighbor of u
• u is in-neighbor of v

• Observations:
– Diagonal entries: weights on self-loops
– Symmetric matrix  undirected

graph
– Lower triangular matrix  no edges

from lower numbered nodes to higher
numbered nodes

– Dense matrix  clique (edge
between every pair of nodes)

1

2

3

4
5

a

bc

d
e

f

g

0 a f 0 0
0 0 0 c 0
0 0 0 e 0
0 0 0 0 d
0 b 0 0 g

1
2
3
4
5

1 2 3 4 5
from

to

Matrix-vector multiplication

• Matrix computation: y = Ax
• Graph interpretation:

– Each node i has two values (labels)
x(i) and y(i)

– Each node i updates its label y using
the x value from each out-neighbor j,
scaled by the label on edge (i,j)

– Topology-driven, unordered
algorithm

• Observation:
– Graph perspective shows dense

MVM is special case of sparse MVM
– What is the interpretation of y = ATx ?

1

2

3

4 5

a

bc

d
e

f

g

0 a f 0 0
0 0 0 c 0
0 0 0 e 0
0 0 0 0 d
0 b 0 0 g

1
2
3
4
5

1 2 3 4 5

A x

x1
x2
x3
x4
x5

Graph set/multiset duality

• Set/multiset is isomorphic to a
graph
– labeled nodes
– no edges

• “Opposite” of clique
• Algorithms on sets/multisets can

be viewed as graph algorithms
• Usually no particular advantage to

doing this but it shows generality
of graph algorithms

a

b

c

e

f

{a,c,f,e,b}
Set

Graph

Sparse graph types

• Power-law graphs
– small number of very high degree nodes (hubs)
– low diameter:

• get from a node to any other node in O(1) hops
• “six degrees of separation” (Karinthy 1929, Milgram 1967), on

Facebook, it is 4.74
– typical of social network graphs like the Internet graph or the

Facebook graph
• Uniform-degree graphs

– nodes have roughly same degree
– high diameter
– road networks, IC circuits, finite-element meshes

• Random (Erdӧs-Rènyi) graphs
– constructed by random insertion of edges
– mathematically interesting but few real-life examples

Graph problem:SSSP

• Problem: single-source shortest-
path (SSSP) computation

• Formulation:
– Given an undirected graph with

positive weights on edges, and a
node called the source

– Compute the shortest distance
from source to every other node

• Variations:
– Negative edge weights but no

negative weight cycles
– All-pairs shortest paths
– Breadth-first search: all edge

weights are 1
• Applications:

– GPS devices for driving directions
– social network analyses:

centrality metrics

A

B

C
D

E

F
H

2

5

1

7

4

3

2

9

2

1

0 5

2
3

6

7

8

9

Node A is the source

SSSP Problem
• Many algorithms

– Dijkstra (1959)
– Bellman-Ford (1957)
– Chaotic relaxation (1969)
– Delta-stepping (1998)

• Common structure:
– Each node has a label d that is

updated repeatedly
• initialized to 0 for source and for all

other nodes
• during algorithm: shortest known

distance to that node from source
• termination: shortest distance from

source
– All of them use the same operator:

relax-edge(u,v):
if d[v] > d[u]+w(u,v)

then d[v]  d[u]+w(u,v)

relax-node(u):
relax all edges connected to u

G

A

B

C
D

E

F
H

2

5

1

7

4

3

2

9

2

1

0 ∞

∞

∞
∞

∞

∞

∞∞

Chaotic relaxation (1969)
• Active node:

– node whose label has been updated
– initially, only source is active

• Schedule for processing nodes
– pick active nodes at random

• Implementation
– use a (work)set or multiset to track active

nodes
• TAO classification:

– unstructured graph, data-driven,
unordered, local computation

– compare/contrast with DMR
• Parallelization:

– process multiple work-set nodes in parallel
– conflict: two activities may try to update

label of the same node
• eg., B and C may try to update D

– amorphous data-parallelism
• Main inefficiency: number of node

relaxations depends on the schedule
– can be exponential in the size of graph

A

B

C
D

E

F

G

H

2

5

1

7

4

3

2

9

2

1

A B
C

DE F

0

D Set

0
5

2

12

15

16

3

Dijkstra’s algorithm (1959)
• Active nodes:

– node whose label has been updated
– initially, only source is active

• Schedule for processing nodes:
– prefer nodes with smaller labels since they

are more likely to have reached final values
• Implementation of work-set:

– priority queue of nodes, ordered by label
• Work-efficient ordered algorithm

– node is relaxed just once
– O(|E|*lg(|V|))

• TAO classification:
– unstructured graph, data-driven, ordered,

local computation
– compare with tree summation

• Parallelism
– nodes with minimal labels can be done in

parallel if they don’t conflict
– “level-by-level” parallelization
– limited parallelism for most graphs

• Main inefficiency:
– little parallelism in sparse graphs

H

<A,0> <B,5><C,2><D,3>

A

B

C
D

E

F

G

2

5

1

7

4

3

2

9

2

1

0

2

5

3

6

7

<B,5> <E,6> <F,7>

Priority queue

Delta-stepping (1998)
• Controlled chaotic relaxation

– Exploit the fact that SSSP is robust to
priority inversions

– “soft” priorities
• Implementation of work-set:

– parameter: ∆
– sequence of sets
– nodes whose current distance is between

n∆ and (n+1)∆ are put in the nth set
– nodes in each set are processed in parallel
– nodes in set n are completed before

processing of nodes in set (n+1) are
started

• implementation requires barrier
synchronization: no worker can proceed past
barrier until all workers are at the barrier

• ∆ = 1: Dijkstra
• ∆= ∞: Chaotic relaxation
• Picking an optimal ∆ :

– depends on graph and machine
– high-diameter graph  large ∆
– find experimentally

A

B

C
D

E

F

G

H

2

5

1

7

4

3

2

9

2

1

0

∆ ∆ ∆

Delta-stepping (II)
• Standard implementation of

work-set:
– nodes in set n are completed

before processing of nodes in set
(n+1) are started

– barrier synchronization between
processing of successive sets

• Strict barrier synchronization is
not actually needed
– once set n is empty, some

threads can begin executing
active nodes from set (n+1)
without waiting for all threads to
finish executing nodes from set n

A

B

C
D

E

F

G

H

2

5

1

7

4

3

2

9

2

1

0

∆ ∆ ∆

Bellman-Ford (1957)
• Bellman-Ford (1957):

– Iterate over all edges of graph in any
order, relaxing each edge

– Do this |V| times
– O(|E|*|V|)

• TAO classification:
– unstructured graph, topology-driven,

unordered, local computation
• Parallelism

– one approach: optimistic
parallelization

– repeat until no node label changes
• put all edges into workset
• workers get edges and apply relaxation

operator if they can mark both nodes of
edge, until workset is empty

– can we do better?
• since we may have to make O(|V|)

sweeps over graph, it may be better to
preprocess edges to avoid conflicts

• overhead of preprocessing can be
amortized over the multiple sweeps
over the graph

A

B

C
E

F
H

2

5

1

7

4

3

2

9

2

1

0

GD

Matching
• Given a graph G = (V,E), a

matching is a subset of edges
such that no edges in the
subset have a node in common
– (eg) {(A,B),(C,D),(E,H)}
– Not a matching: {(A,B),(A,C)}

• Maximal matching: a matching
to which no new edge can be
added without destroying
matching property
– (eg) {(A,B),(C,D),(E,H)}
– (eg) {(A,C),(B,D)(E,G),(F,H)}
– Can be computed in O(|E|) time

using a simple greedy algorithm
• Preprocessing strategy:

– partition edges into matchings
– many possible partitions, some

better than others

A

B

C
D

E

F
H

2

5

1

7

4

3

2

9

2

1

0

G

1. {(A,B),(C,D),(E,H)},
2. {(A,C),(B,D),(E,G),(F,H)},
3. {(D,E),(G,H)}
4. {(D,F)}

Edges partitioned into matchings

Execution strategy
• Round-based execution

– in each round, edges in one
matching are processed in parallel
w/o neighborhood marking (data
parallelism)

– barrier synchronization between
rounds

• Disadvantage of round-based
execution
– all workers must wait at the barrier

even if there is just one straggler
– if we have 2 workers, round-based

execution takes 6 steps
• Question: at a high level, there is

some similarity to ∆-stepping:
– sequence of buckets
– finish one bucket before moving on

to next
– what are the key differences in the

implementations?

1. {(A,B),(C,D),(E,H)}
2. {(A,C),(B,D),(E,G),(F,H)}
3. {(D,E),(G,H)}
4. {(D,F)}

Round-based execution

Another approach: interference graph
• Build interference graph (IG)

– nodes are activities (SSSP graph
edges)

– edges represent conflicts
between activities

• for our problem, SSSP edges have
a node in common

• For our problem
– each SSSP graph edge

represents a task
– edge between task i and task j

in IG if edges corresponding to
tasks i and j in SSSP graph have
a node in common

Interference graph

(A,B) (C,D) (E,H)

(A,C) (B,D) (E,G) (F,H)

(D,E) (G,H)

(D,F)

B

C
D

E

F
H

2
5

1
7

4

3

2

9

2
1

0

G

A

Interference graph  Dependence graph

• Generate dependence graph
– change edges in IG to directed

edges (precedence edges)
– make sure there are no cycles
– simple approach:

• number all nodes in interference
graph and direct edges from
lower numbered nodes to higher
numbered nodes

• many other choices

– simplification: remove
transitive edges

(A,B) (C,D) (E,H)

(A,C) (B,D) (E,G) (F,H)

(D,E) (G,H)

(D,F)

Interference graph

Dependence graph
• Execution using dependence

graph
– each node has counter with number

of incoming edges
– any node with no incoming edges

can be executed by a worker
– when task is done, counters at out-

neighbors are decremented,
potentially making some of them
sources

• requires marks to ensure correct
execution

– execution terminates when all tasks
have been completed

• Fewer ordering constraints
between tasks than execution
strategy based on matchings and
rounds

(A,B) (C,D) (E,H)

(A,C) (B,D) (E,G) (F,H)

(D,E) (G,H)

(D,F)

Dependence graph

Inspector-executor

• When is inspector-executor parallelization possible?
– when active nodes and neighborhoods are known as soon as

input is given but before actual computation is executed
• contrast:

– static parallelization: active nodes and neighborhoods known at compile-time
modulo problem size (example: Jacobi)

– optimistic parallelization: active nodes and neighborhoods known only after
program has been executed in parallel (example: DMR)

– binding time analysis: when do we know some information
regarding program behavior? Example: types

• When is inspector-executor parallelization useful?
– when overhead of inspector can be amortized over many

executions
• works for Bellman-Ford because we make O(|V|) sweeps over graph

– when overhead of inspector is small compared to executor
• sparse Cholesky factorization: inspector is called symbolic

factorization, executor is called numerical factorization

Summary of SSSP Algorithms
• Chaotic relaxation

– parallelism but amount of work depends on execution
order of active nodes

– unordered, data-driven algorithm: use sets/multisets
• Dijkstra’s algorithm

– work-efficient but difficult to extract parallelism
• level-by-level parallelism

– ordered, data-driven algorithm: use priority queues
• Delta-stepping

– controlled chaotic relaxation: parameter ∆
– ∆ permits trade-off between parallelism and extra work

• Bellman-Ford algorithm
– Inspector-executor parallelization:

• inspector: use matchings or dependence graph to find parallelism
after input is given

Machine learning

• Many machine learning algorithms are sparse
graph algorithms

• Examples:
– Page rank: used to rank webpages to answer

Internet search queries
– Recommender systems: used to make

recommendations to users in Netflix, Amazon,
Facebook etc.

Web search
• When you type a set of keywords to do an Internet

search, which web-pages should be returned and
in what order?

• Basic idea:
– offline:

• crawl the web and gather webpages into data center
• build an index from keywords to webpages

– online:
• when user types keywords, use index to find all pages

containing the keywords
– key problem:

• usually you end up with tens of thousands of pages
• how do you rank these pages for the user?

Ranking pages
• Manual ranking

– Yahoo did something like this initially, but this solution does not scale
• Word counts

– order webpages by how many times keywords occur in webpages
– problem: easy to mess with ranking by having lots of meaningless

occurrences of keyword
• Citations

– analogy with citations to articles
– if lots of webpages point to a webpage, rank it higher
– problem: easy to mess with ranking by creating lots of useless pages

that point to your webpage
• PageRank

– extension of citations idea
– weight link from webpage A to webpage B by “importance” of A
– if A has few links to it, its links are not very “valuable”
– how do we make this into an algorithm?

Web graph

• Directed graph: nodes represent webpages, edges represent links
– edge from u to v represents a link in page u to page v

• Size of graph: commoncrawl.org (2012)
– 3.5 billion nodes
– 128 billion links

• Intuitive idea of pageRank algorithm:
– each node in graph has a weight (pageRank) that represents its

importance
– assume all edges out of a node are equally important
– importance of edge is scaled by the pageRank of source node

u
v

Webgraph from commoncrawl.org

w

PageRank (simple version)

• Iterative algorithm:
– compute a series PR0, PR1, PR2, … of node labels

• Iterative formula:

– ∀v∈V. PR0(v) = 1/N
– ∀v∈V. PRi+1 v = ∑u∈in−neighbors(v)

PRi(u)
out−degree(u)

• Implement with two fields PRcurrent and PRnext in each node

u
PRcurrent
PRnext

PRcurrent
PRnext

v
Graph G = (V,E)
|V| = N

Page Rank (contd.)

• Small twist needed to handle nodes with no
outgoing edges

• Damping factor: d
– small constant: 0.85
– assume each node may also contribute its pageRank to

a randomly selected node with probability (1-d)
• Iterative formula

– ∀v∈V. PR0(v) = 1
N

– ∀v∈V. PRi+1 v = 1−d
N

+ d ∗ ∑u∈in−neighbors(v)
PRi(u)

out−degree(u)

PageRank example

• Nice example from Wikipedia
• Note

– B and E have many in-edges
but pageRank of B is much
greater

– C has only one in-edge but high
pageRank because its in-edge
is very valuable

• Caveat:
– search engines use many

criteria in addition to pageRank
to rank webpages

Parallelization of pageRank
• TAO classification

– topology: unstructured graph
– active nodes:

• topology-driven, unordered
– operator: local computation

• PageRanknext values at all
nodes can be computed in
parallel

• Which algorithm does this
remind you of?
– Jacobi iteration with 5-point stencil
– main difference: topology

• 5-point stencil: regular grid, uniform
degree graph

• web-graph: power-law graph
• this has a major impact on

implementation, as we will see later

PageRank discussion

• Vertex program (GraphLab):
– value at node is updated using values

at immediate neighbors
– very limited notion of neighborhood

but adequate for pageRank and some
ML algorithms

• CombBlas: combinatorial BLAS
– generalized sparse MVM: + and * in

MVM are generalized to other
operations like ∨ and ∧

– adequate for pageRank
• Interesting application of TAO

– standard pageRank is topology-driven
– can you think of a data-driven version

of pageRank?

Recommender system
• Problem

– given a database of users, items, and ratings given by
each user to some of the items

– predict ratings that user might give to items he has
not rated yet (usually, we are interested only in the
top few items in this set)

• Netflix challenge
– in 2006, Netflix released a subset of their database

and offered $1 million prize to anyone who improved
their algorithm by 10%

– triggered a lot of interest in recommender systems
– prize finally given to BellKor’s Pragmatic Chaos team

in 2009

Data structure for database

• Sparse matrix view:
– rows are users
– columns are movies
– A(u,m) = v is user u has given

rating v to movie m
• Graph view:

– bipartite graph
– two sets of nodes, one for users,

one for movies
– edge (u,m) with label v

• Recommendation problem:
– predict missing entries in sparse

matrix
– predict labels of missing edges in

bipartite graph

1
u mAij

Users

Movies

2

3

1

2

3

4

v

Matrix View

Graph View

U
se

rs

Moviesusers
movies

A

v

One approach: matrix completion

• Optimization problem
– Find m×k matrix W and k×n matrix

H (k << min(m,n)) such that A ≈ WH
– Low-rank approximation
– H and W are dense so all missing

values are predicted
• Graph view

– Label of user nodes i is vector
corresponding to row Wi*

– Label of movie node j is vector
corresponding to column H*j

– If graph has edge (u,m), inner
product of labels on u and m must
be approximately equal to label on
edge

1
i jAij

Users Movies

2

3

1

2

3

4

Wi* H*j

k

W

H

A

Matrix View

Graph View

U
se

rs

Movies
k

One algorithm:SGD
• Stochastic gradient descent (SGD)
• Iterative algorithm:

– initialize all node labels to some
arbitrary values

– iterate until convergence
• visit all edges (u,m) in some order and

update node labels at u and m based on
the residual

• TAO analysis:
– topology: unstructured (power-law)

graph
– active edges: topology-driven,

unordered
– operator: local computation

• Parallelism in SGD:
– edges that form a matching can be

processed in parallel
• What algorithm does this remind you

of?
– Bellman-Ford

1
i j

v

Users

Movies

2

3

1

2

3

4

Summary of discussion
of algorithms

What we have learned (I)
• Data-centric view of algorithms
• TAO classification
• Unordered algorithms

– lots of parallelism for large problem sizes
– soft priorities need in many/most algorithms (e.g. chaotic SSSP)
– don’t-care non-determinism in some algorithms (DMR)

• Topology-driven algorithms
– iterate over data structure
– no explicit work-list needed

• Data-driven algorithms
– need efficient parallel work-list (put/get)
– may need to support soft priorities (e.g. chaotic SSSP)

• Some problems
– have both ordered and unordered algorithms (e.g. SSSP)
– have both topology-driven and data-driven algorithms (e.g.

SSSP, pageRank)
– data-driven algorithm may be more work-efficient than topology-

driven one

What we have learned (II)
• Amorphous data-parallelism

– data-parallelism is special case
• Parallelization strategies:

– key question: when do you know the active nodes
and neighborhoods?

• static: known at compile-time (modulo problem size)
• inspector-executor: after input is given but before program is

executed
• optimistic: after program has finished execution

• Implementation concepts:
– edge matchings in graphs
– synchronization

• barrier synchronization: coarse-grain
• marking graph elements, get/put on work-lists: mutual

exclusion, fine-grain

What we will study (I)
• Parallel architectures: workers can be heterogeneous and may be

organized in different ways
– vector architectures, GPUs, FPGAs
– shared and distributed-memory architectures

• Synchronization: coordination between workers
– coarse-grain synchronization: barriers
– fine-grain synchronization: locks, lock-free instructions

• application: marking of graph elements, work-lists, mutual exclusion
• Scheduling activities on workers

– locality: temporal, spatial, network
– load-balancing
– minimize conflicts between concurrent activities (optimistic parallelization)

• Concurrent data structure implementations
– graphs/sparse matrices
– work sets/multisets

• soft priorities
– priority queues

What we will study (II)

• Programming language issues
– how do we express information about parallelism,

locality, scheduling, data structure
implementations?

– how do we simplify parallel programming so most
application programmers can benefit from
parallelism without having to write parallel code?

• Parallel notations and libraries
– shared-memory: pThreads, MPI, Galois
– distributed-memory: MPI

Lock-step execution
• With 2 workers, we can execute all

tasks in 5 steps with the right
schedule
– (A,B), (E,H)
– (C,D), (E,G)
– (B,D), (F,H)
– (D,E), (G,H)
– (A,C), (D,F)

• Two implementations:
– synchronous execution: assign work to

workers as specified above (no need
for work-lists) and use barrier
synchronization between steps

– autonomous execution:
• threads proceed independently of each

other
• each node of dependence graph has an

integer counter initialized to the number
of in-edges

• free thread grabs any node with zero
counter, executes it, and then updates
counters at out-neighbors in the DAG

• updating counters needs fine-grain
synchronization: must mark nodes before
updating their counters

(A,B) (C,D) (E,H)

(A,C) (B,D) (E,G) (F,H)

(D,E) (G,H)

(D,F)

0 1 2 3 4

P0 (A,B) (C,D) (B,D) (D,E) (A,C)

P1 (E,H) (E,G) (F,H) (G,H) (D,F)

w
orker

step

	Graph Algorithms
	Overview
	Graph-matrix duality
	Matrix-vector multiplication
	Graph set/multiset duality
	Sparse graph types
	Graph problem:SSSP
	SSSP Problem
	Chaotic relaxation (1969)
	Dijkstra’s algorithm (1959)
	Delta-stepping (1998)
	Delta-stepping (II)
	Bellman-Ford (1957)
	Matching
	Execution strategy
	Another approach: interference graph
	Interference graph  Dependence graph
	Dependence graph
	Inspector-executor
	Summary of SSSP Algorithms
	Machine learning
	Web search
	Ranking pages
	Web graph
	PageRank (simple version)
	Page Rank (contd.)
	PageRank example
	Parallelization of pageRank
	PageRank discussion
	Recommender system
	Data structure for database
	One approach: matrix completion
	One algorithm:SGD
	Summary of discussion of algorithms
	What we have learned (I)
	What we have learned (II)
	What we will study (I)
	What we will study (II)
	Lock-step execution

