Graph Algorithms

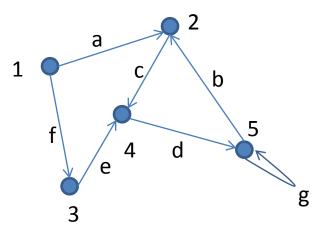
Overview

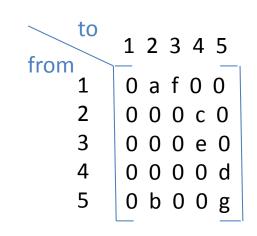
- Graphs are very general data structures
 - G = (V,E) where V is set of nodes, E is set of edges \subseteq VxV
 - data structures such as dense and sparse matrices, sets, multisets, etc. can be viewed as representations of graphs
- Algorithms on matrices/sets/etc. can usually be interpreted as graph algorithms
 - but it may or may not be useful to do this
 - sparse matrix algorithms can be usefully viewed as graph algorithms
- Some graph algorithms can be interpreted as matrix algorithms
 - but it may or may not be useful to do this
 - may be useful if graph structure is fixed as in graph analytics applications:
 - topology-driven algorithms can often be formulated in terms of a generalized sparse MVM

Graph-matrix duality

• Graph (V,E) as a matrix

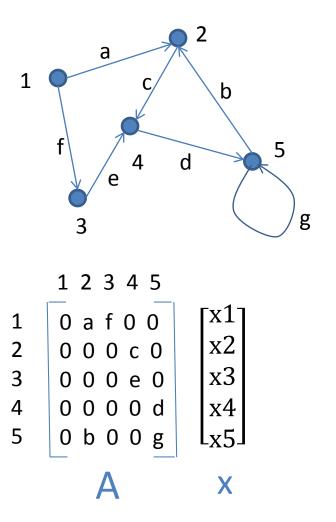
- Choose an ordering of vertices
- Number them sequentially
- Fill in |V|x|V| matrix
 - A(i,j) is w if graph has edge from node i to node j with label w
- Called *adjacency matrix* of graph
- Edge (u \rightarrow v):
 - v is *out-neighbor* of u
 - u is in-neighbor of v
- Observations:
 - Diagonal entries: weights on self-loops
 - Symmetric matrix $\leftarrow \rightarrow$ undirected graph
 - Lower triangular matrix ← → no edges from lower numbered nodes to higher numbered nodes
 - Dense matrix ← → clique (edge between every pair of nodes)





Matrix-vector multiplication

- Matrix computation: <u>y</u> = A<u>x</u>
- Graph interpretation:
 - Each node i has two values (labels)
 x(i) and y(i)
 - Each node i updates its label y using the x value from each out-neighbor j, scaled by the label on edge (i,j)
 - Topology-driven, unordered algorithm
- Observation:
 - Graph perspective shows dense
 MVM is special case of sparse MVM
 - What is the interpretation of $\underline{y} = A^T \underline{x}$?

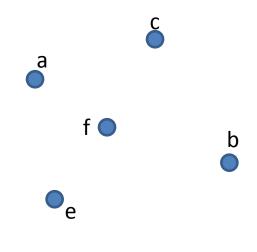


Graph set/multiset duality

- Set/multiset is isomorphic to a graph
 - labeled nodes
 - no edges
- "Opposite" of clique
- Algorithms on sets/multisets can be viewed as graph algorithms
- Usually no particular advantage to doing this but it shows generality of graph algorithms

{a,c,f,e,b}

<u>Set</u>

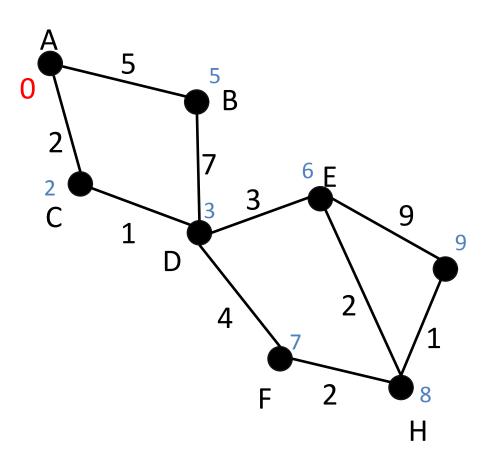


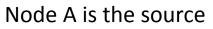
Sparse graph types

- Power-law graphs
 - small number of very high degree nodes (hubs)
 - low diameter:
 - get from a node to any other node in O(1) hops
 - "six degrees of separation" (Karinthy 1929, Milgram 1967), on Facebook, it is 4.74
 - typical of social network graphs like the Internet graph or the Facebook graph
- Uniform-degree graphs
 - nodes have roughly same degree
 - high diameter
 - road networks, IC circuits, finite-element meshes
- Random (Erdös-Rènyi) graphs
 - constructed by random insertion of edges
 - mathematically interesting but few real-life examples

Graph problem:SSSP

- Problem: single-source shortestpath (SSSP) computation
- Formulation:
 - Given an undirected graph with positive weights on edges, and a node called the source
 - Compute the shortest distance from source to every other node
- Variations:
 - Negative edge weights but no negative weight cycles
 - All-pairs shortest paths
 - Breadth-first search: all edge weights are 1
- Applications:
 - GPS devices for driving directions
 - social network analyses: centrality metrics





SSSP Problem

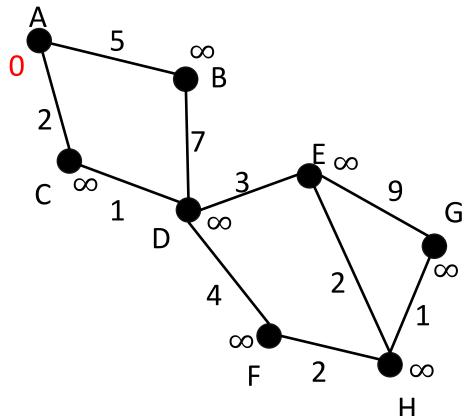
- Many algorithms
 - Dijkstra (1959)
 - Bellman-Ford (1957)
 - Chaotic relaxation (1969)
 - Delta-stepping (1998)
- Common structure:
 - Each node has a label d that is updated repeatedly
 - initialized to 0 for source and ∞ for all other nodes
 - during algorithm: shortest known distance to that node from source
 - termination: shortest distance from source
 - All of them use the same *operator*:

```
relax-edge(u,v):

if d[v] > d[u]+w(u,v)

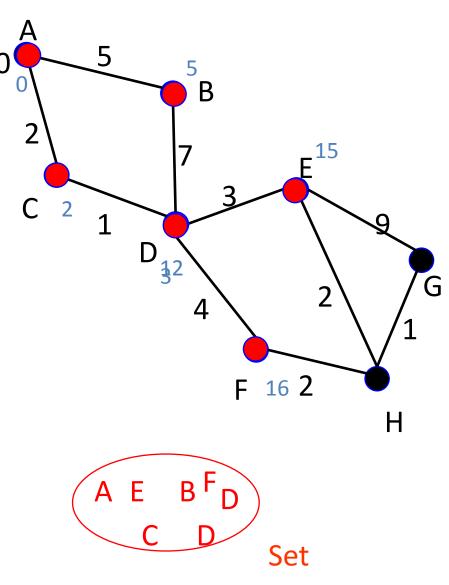
then d[v] ← d[u]+w(u,v)
```

relax-node(u): relax all edges connected to u



Chaotic relaxation (1969)

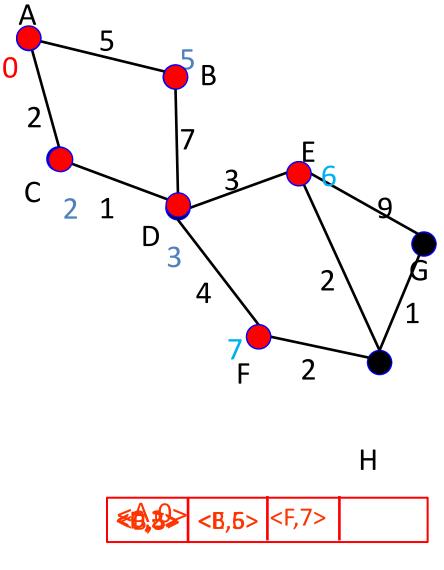
- Active node:
 - node whose label has been updated
 - initially, only source is active
- Schedule for processing nodes
 - pick active nodes at random
- Implementation
 - use a (work)set or multiset to track active nodes
- TAO classification:
 - unstructured graph, data-driven, unordered, local computation
 - compare/contrast with DMR
- Parallelization:
 - process multiple work-set nodes in parallel
 - conflict: two activities may try to update label of the same node
 - eg., B and C may try to update D
 - amorphous data-parallelism
- Main inefficiency: number of node relaxations depends on the schedule
 - can be exponential in the size of graph



Dijkstra's algorithm (1959)

• Active nodes:

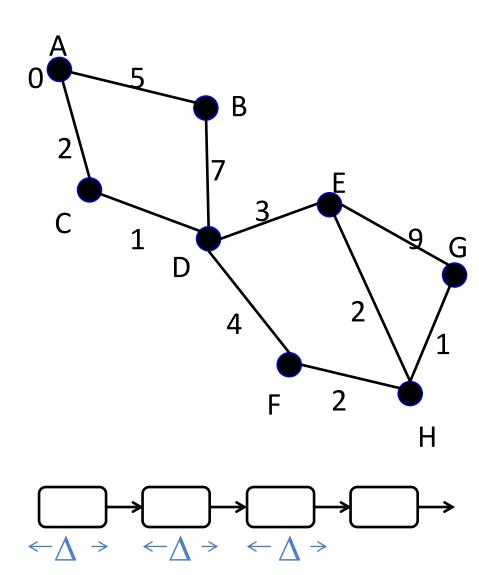
- node whose label has been updated
- initially, only source is active
- Schedule for processing nodes:
 - prefer nodes with smaller labels since they are more likely to have reached final values
- Implementation of work-set:
 - priority queue of nodes, ordered by label
- Work-efficient ordered algorithm
 - node is relaxed just once
 - O(|E|*lg(|V|))
- TAO classification:
 - unstructured graph, data-driven, ordered, local computation
 - compare with tree summation
- Parallelism
 - nodes with minimal labels can be done in parallel if they don't conflict
 - "level-by-level" parallelization
 - limited parallelism for most graphs
- Main inefficiency:
 - little parallelism in sparse graphs



Priority queue

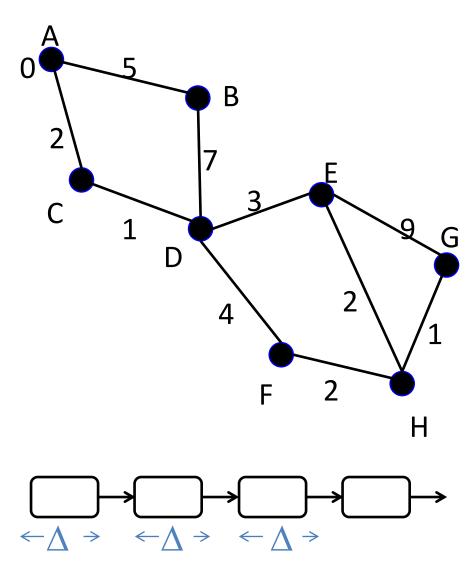
Delta-stepping (1998)

- Controlled chaotic relaxation
 - Exploit the fact that SSSP is robust to priority inversions
 - "soft" priorities
- Implementation of work-set:
 - parameter: Δ
 - sequence of sets
 - nodes whose current distance is between $n\Delta$ and $(n+1)\Delta$ are put in the nth set
 - nodes in each set are processed in parallel
 - nodes in set n are completed before processing of nodes in set (n+1) are started
 - implementation requires barrier synchronization: no worker can proceed past barrier until all workers are at the barrier
- $\Delta = 1$: Dijkstra
- $\Delta = \infty$: Chaotic relaxation
- Picking an optimal Δ :
 - depends on graph and machine
 - − high-diameter graph → large Δ
 - find experimentally



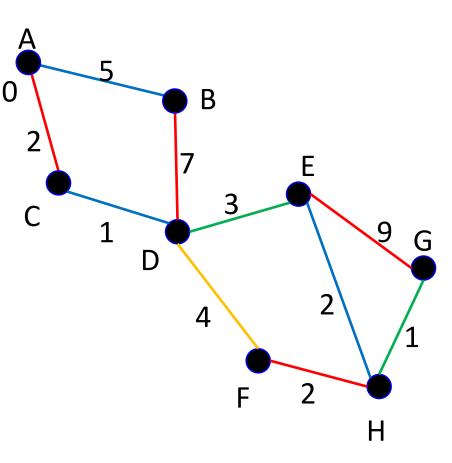
Delta-stepping (II)

- Standard implementation of work-set:
 - nodes in set n are completed
 before processing of nodes in set
 (n+1) are started
 - barrier synchronization between processing of successive sets
- Strict barrier synchronization is not actually needed
 - once set n is empty, some threads can begin executing active nodes from set (n+1) without waiting for all threads to finish executing nodes from set n



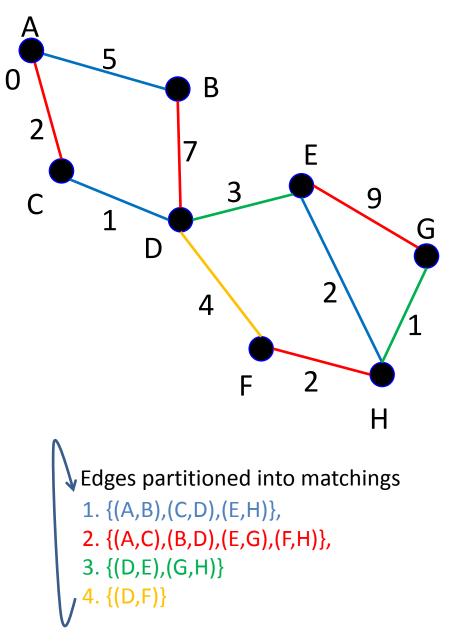
Bellman-Ford (1957)

- Bellman-Ford (1957):
 - Iterate over all edges of graph in any order, relaxing each edge
 - Do this |V| times
 - O(|E|*|V|)
- TAO classification:
 - unstructured graph, topology-driven, unordered, local computation
- Parallelism
 - one approach: optimistic parallelization
 - repeat until no node label changes
 - put all edges into workset
 - workers get edges and apply relaxation operator if they can mark both nodes of edge, until workset is empty
 - can we do better?
 - since we may have to make O(|V|) sweeps over graph, it may be better to preprocess edges to avoid conflicts
 - overhead of preprocessing can be amortized over the multiple sweeps over the graph



<u>Matching</u>

- Given a graph G = (V,E), a matching is a subset of edges such that no edges in the subset have a node in common
 - (eg) {(A,B),(C,D),(E,H)}
 - Not a matching: {(A,B),(A,C)}
- Maximal matching: a matching to which no new edge can be added without destroying matching property
 - (eg) {(A,B),(C,D),(E,H)}
 - (eg) {(A,C),(B,D)(E,G),(F,H)}
 - Can be computed in O(|E|) time using a simple greedy algorithm
- Preprocessing strategy:
 - partition edges into matchings
 - many possible partitions, some better than others



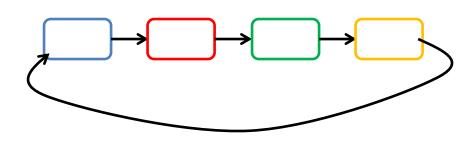
Execution strategy

• Round-based execution

- in each round, edges in one matching are processed in parallel w/o neighborhood marking (data parallelism)
- barrier synchronization between rounds
- Disadvantage of round-based execution
 - all workers must wait at the barrier even if there is just one straggler
 - if we have 2 workers, round-based execution takes 6 steps
- Question: at a high level, there is some similarity to ∆-stepping:
 - sequence of buckets
 - finish one bucket before moving on to next
 - what are the key differences in the implementations?

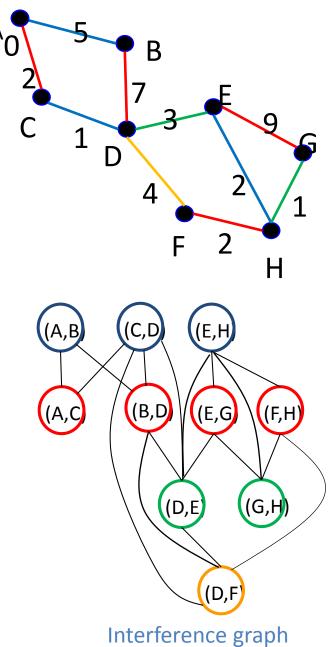
Round-based execution

- 1. {(A,B),(C,D),(E,H)}
- 2. {(A,C),(B,D),(E,G),(F,H)}
- 3. {(D,E),(G,H)}
- 4. {(D,F)}



Another approach: interference graph

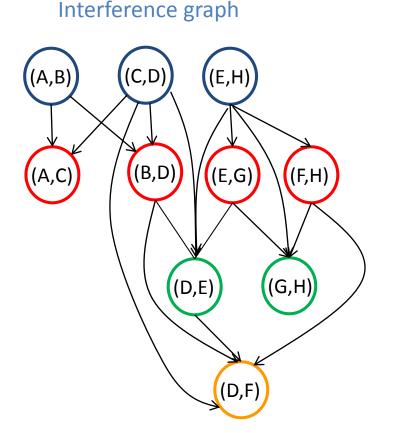
- Build interference graph (IG)
 - nodes are activities (SSSP graph edges)
 - edges represent conflicts between activities
 - for our problem, SSSP edges have a node in common
- For our problem
 - each SSSP graph edge represents a task
 - edge between task i and task j in IG if edges corresponding to tasks i and j in SSSP graph have a node in common



<u>Interference graph → Dependence graph</u>

• Generate dependence graph

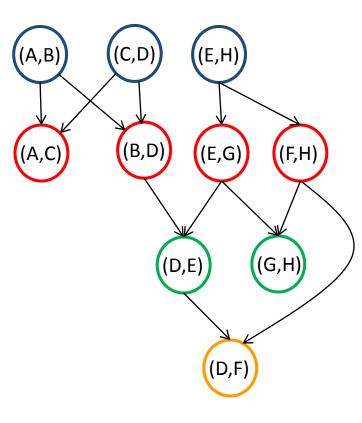
- change edges in IG to directed edges (precedence edges)
- make sure there are no cycles
- simple approach:
 - number all nodes in interference graph and direct edges from lower numbered nodes to higher numbered nodes
 - many other choices
- simplification: remove transitive edges



Dependence graph

- Execution using dependence graph
 - each node has counter with number of incoming edges
 - any node with no incoming edges can be executed by a worker
 - when task is done, counters at outneighbors are decremented, potentially making some of them sources
 - requires marks to ensure correct execution
 - execution terminates when all tasks have been completed
- Fewer ordering constraints between tasks than execution strategy based on matchings and rounds

Dependence graph



Inspector-executor

- When is inspector-executor parallelization possible?
 - when active nodes and neighborhoods are known as soon as input is given but before actual computation is executed
 - contrast:
 - static parallelization: active nodes and neighborhoods known at compile-time modulo problem size (example: Jacobi)
 - optimistic parallelization: active nodes and neighborhoods known only after program has been executed in parallel (example: DMR)
 - binding time analysis: when do we know some information regarding program behavior? Example: types
- When is inspector-executor parallelization useful?
 - when overhead of inspector can be amortized over many executions
 - works for Bellman-Ford because we make O(|V|) sweeps over graph
 - when overhead of inspector is small compared to executor
 - sparse Cholesky factorization: inspector is called symbolic factorization, executor is called numerical factorization

Summary of SSSP Algorithms

Chaotic relaxation

- parallelism but amount of work depends on execution order of active nodes
- unordered, data-driven algorithm: use sets/multisets
- Dijkstra's algorithm
 - work-efficient but difficult to extract parallelism
 - level-by-level parallelism
 - ordered, data-driven algorithm: use priority queues
- Delta-stepping
 - controlled chaotic relaxation: parameter Δ
 - Δ permits trade-off between parallelism and extra work
- Bellman-Ford algorithm
 - Inspector-executor parallelization:
 - inspector: use matchings or dependence graph to find parallelism after input is given

Machine learning

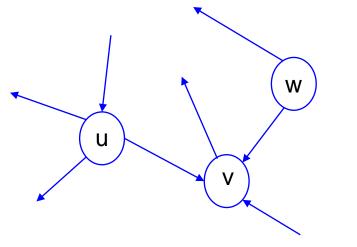
- Many machine learning algorithms are sparse graph algorithms
- Examples:
 - Page rank: used to rank webpages to answer
 Internet search queries
 - Recommender systems: used to make recommendations to users in Netflix, Amazon, Facebook etc.

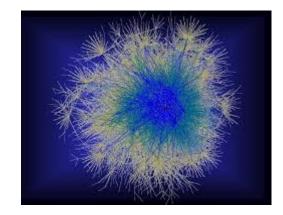
- When you type a set of keywords to do an Internet search, which web-pages should be returned and in what order?
- Basic idea:
 - offline:
 - crawl the web and gather webpages into data center
 - build an index from keywords to webpages
 - online:
 - when user types keywords, use index to find all pages containing the keywords
 - key problem:
 - usually you end up with tens of thousands of pages
 - how do you rank these pages for the user?

Ranking pages

- Manual ranking
 - Yahoo did something like this initially, but this solution does not scale
- Word counts
 - order webpages by how many times keywords occur in webpages
 - problem: easy to mess with ranking by having lots of meaningless occurrences of keyword
- Citations
 - analogy with citations to articles
 - if lots of webpages point to a webpage, rank it higher
 - problem: easy to mess with ranking by creating lots of useless pages that point to your webpage
- PageRank
 - extension of citations idea
 - weight link from webpage A to webpage B by "importance" of A
 - if A has few links to it, its links are not very "valuable"
 - how do we make this into an algorithm?

Web graph



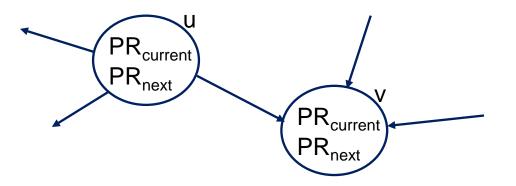


Webgraph from commoncrawl.org

- Directed graph: nodes represent webpages, edges represent links
 - edge from u to v represents a link in page u to page v
- Size of graph: commoncrawl.org (2012)
 - 3.5 billion nodes
 - 128 billion links
- Intuitive idea of pageRank algorithm:
 - each node in graph has a weight (pageRank) that represents its importance
 - assume all edges out of a node are equally important
 - importance of edge is scaled by the pageRank of source node

PageRank (simple version)

Graph G = (V,E)|V| = N



- Iterative algorithm:
 - compute a series PR₀, PR₁, PR₂, ... of node labels
- Iterative formula:

-
$$\forall$$
v∈V. PR₀(v) = 1/N

-
$$\forall v \in V. PR_{i+1}(v) = \sum_{u \in in-neighbors(v)} \frac{PR_i(u)}{out-degree(u)}$$

• Implement with two fields PR_{current} and PR_{next} in each node

Page Rank (contd.)

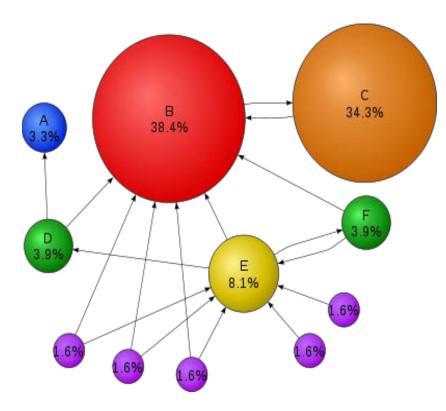
- Small twist needed to handle nodes with no outgoing edges
- Damping factor: d
 - small constant: 0.85
 - assume each node may also contribute its pageRank to a randomly selected node with probability (1-d)
- Iterative formula

$$- \forall v \in V. PR_0(v) = \frac{1}{N}$$

-
$$\forall v \in V. PR_{i+1}(v) = \frac{1-d}{N} + d * \sum_{u \in in-neighbors(v)} \frac{PR_i(u)}{out-degree(u)}$$

PageRank example

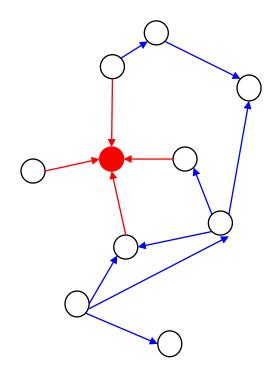
- Nice example from Wikipedia
- Note
 - B and E have many in-edges but pageRank of B is much greater
 - C has only one in-edge but high pageRank because its in-edge is very valuable
- Caveat:
 - search engines use many criteria in addition to pageRank to rank webpages



Parallelization of pageRank

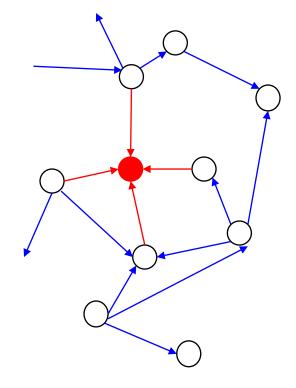
TAO classification

- topology: unstructured graph
- active nodes:
 - topology-driven, unordered
- operator: local computation
- PageRank_{next} values at all nodes can be computed in parallel
- Which algorithm does this remind you of?
 - Jacobi iteration with 5-point stencil
 - main difference: topology
 - 5-point stencil: regular grid, uniform degree graph
 - web-graph: power-law graph
 - this has a major impact on implementation, as we will see later



PageRank discussion

- Vertex program (GraphLab):
 - value at node is updated using values at immediate neighbors
 - very limited notion of neighborhood but adequate for pageRank and some ML algorithms
- CombBlas: combinatorial BLAS
 - generalized sparse MVM: + and * in MVM are generalized to other operations like v and
 - adequate for pageRank
- Interesting application of TAO
 - standard pageRank is topology-driven
 - can you think of a data-driven version of pageRank?



Recommender system

• Problem

- given a database of users, items, and ratings given by each user to some of the items
- predict ratings that user might give to items he has not rated yet (usually, we are interested only in the top few items in this set)
- Netflix challenge
 - in 2006, Netflix released a subset of their database and offered \$1 million prize to anyone who improved their algorithm by 10%
 - triggered a lot of interest in recommender systems
 - prize finally given to BellKor's Pragmatic Chaos team in 2009

Data structure for database

• Sparse matrix view:

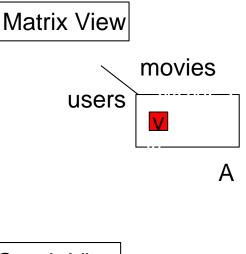
- rows are users
- columns are movies
- A(u,m) = v is user u has given rating v to movie m

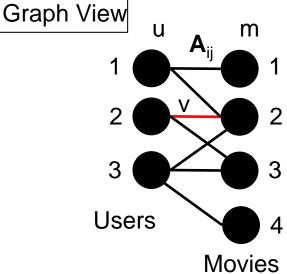
• Graph view:

- bipartite graph
- two sets of nodes, one for users, one for movies
- edge (u,m) with label v

• Recommendation problem:

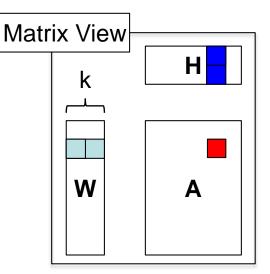
- predict missing entries in sparse matrix
- predict labels of missing edges in bipartite graph

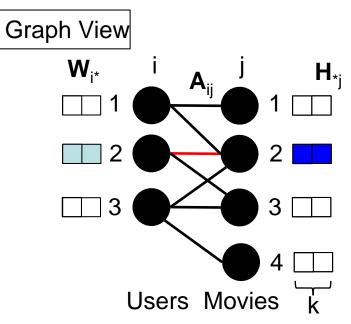




One approach: matrix completion

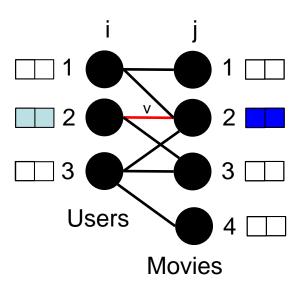
- Optimization problem
 - Find m×k matrix W and k×n matrix
 H (k << min(m,n)) such that A ≈ WH
 - Low-rank approximation
 - H and W are dense so all missing values are predicted
- Graph view
 - Label of user nodes i is vector corresponding to row W_{i*}
 - Label of movie node j is vector corresponding to column H_{*i}
 - If graph has edge (u,m), inner product of labels on u and m must be approximately equal to label on edge





One algorithm:SGD

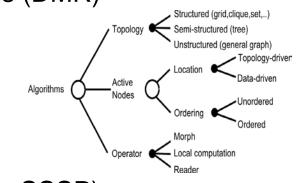
- Stochastic gradient descent (SGD)
- Iterative algorithm:
 - initialize all node labels to some arbitrary values
 - iterate until convergence
 - visit all edges (u,m) in some order and update node labels at u and m based on the residual
- TAO analysis:
 - topology: unstructured (power-law) graph
 - active edges: topology-driven, unordered
 - operator: local computation
- Parallelism in SGD:
 - edges that form a matching can be processed in parallel
- What algorithm does this remind you of?
 - Bellman-Ford



Summary of discussion of algorithms

What we have learned (I)

- Data-centric view of algorithms
- TAO classification
- Unordered algorithms
 - lots of parallelism for large problem sizes
 - soft priorities need in many/most algorithms (e.g. chaotic SSSP)
 - don't-care non-determinism in some algorithms (DMR)
- Topology-driven algorithms
 - iterate over data structure
 - no explicit work-list needed
- Data-driven algorithms
 - need efficient parallel work-list (put/get)
 - may need to support soft priorities (e.g. chaotic SSSP)
- Some problems
 - have both ordered and unordered algorithms (e.g. SSSP)
 - have both topology-driven and data-driven algorithms (e.g. SSSP, pageRank)
 - data-driven algorithm may be more work-efficient than topologydriven one



What we have learned (II)

- Amorphous data-parallelism
 - data-parallelism is special case
- Parallelization strategies:
 - key question: when do you know the active nodes and neighborhoods?
 - static: known at compile-time (modulo problem size)
 - inspector-executor: after input is given but before program is executed
 - optimistic: after program has finished execution
- Implementation concepts:
 - edge matchings in graphs
 - synchronization
 - barrier synchronization: coarse-grain
 - marking graph elements, get/put on work-lists: mutual exclusion, fine-grain

What we will study (I)

- Parallel architectures: workers can be heterogeneous and may be organized in different ways
 - vector architectures, GPUs, FPGAs
 - shared and distributed-memory architectures
- Synchronization: coordination between workers
 - coarse-grain synchronization: barriers
 - fine-grain synchronization: locks, lock-free instructions
 - application: marking of graph elements, work-lists, mutual exclusion
- Scheduling activities on workers
 - locality: temporal, spatial, network
 - load-balancing
 - minimize conflicts between concurrent activities (optimistic parallelization)
- Concurrent data structure implementations
 - graphs/sparse matrices
 - work sets/multisets
 - soft priorities
 - priority queues

What we will study (II)

- Programming language issues
 - how do we express information about parallelism, locality, scheduling, data structure implementations?
 - how do we simplify parallel programming so most application programmers can benefit from parallelism without having to write parallel code?
- Parallel notations and libraries
 - shared-memory: pThreads, MPI, Galois
 - distributed-memory: MPI

Lock-step execution

- With 2 workers, we can execute all tasks in 5 steps with the right schedule step worker
 - (A,B), (E,H)
 - (C,D), (E,G)
 - (B,D), (F,H)
 - (D,E), (G,H)
 - (A,C), (D,F)
- Two implementations:
 - synchronous execution: assign work to workers as specified above (no need for work-lists) and use barrier synchronization between steps
 - autonomous execution:
 - threads proceed independently of each other
 - each node of dependence graph has an integer counter initialized to the number of in-edges
 - free thread grabs any node with zero counter, executes it, and then updates counters at out-neighbors in the DAG
 - updating counters needs fine-grain • synchronization: must mark nodes before updating their counters

