

Introduction to GPUs

CS378 – Spring 2015

Sreepathi Pai

Outline

● Introduction to Accelerators
– Specifically, GPUs

– What can you use them for?

– When should you consider using them?

● GPU Programming Models
– How to write programs that use GPUs

Beyond the CPU

● Single-core CPU performance has essentially
stagnated

● 10 years ago, the solution was multicore and
increased parallelism
– x86: 16 cores on chip, AMD Interlagos, 2011

● Applications need increased performance
– Big data, brain simulation, scientific simulation, ...

● So if you're going to write parallel code, are there
faster, viable alternatives to the CPU?

GPU Floating Point Performance

Owens et al., A Survey of General-Purpose Computation on Graphics Hardware

The rise of the GPU - 1990s

● The CPU has always been slow
for Graphics Processing
– Visualization

– Games

● Graphics processing is
inherently parallel and there is a
lot of parallelism – O(pixels)

● GPUs were built to do graphics
processing only

● Initially, hardwired logic
replicated to provide parallelism
– Little to no programmability

Wikipedia; Kaufman et al. (2009)

GPUs – a decade ago

● Like CPUs, GPUs benefited from Moore's Law
● Evolved from fixed-function hardwired logic to flexible,

programmable ALUs
● Around 2004, GPUs were programmable “enough” to do

some non-graphics computations
– Severely limited by graphics programming model (shader

programming)

● In 2006, GPUs became “fully” programmable
– NVIDIA releases “CUDA” language to write non-graphics

programs that will run on GPUs

GPU Performance Today

NVIDIA, CUDA C Programming Guide

Memory Bandwidth

NVIDIA, CUDA C Programming Guide

GPUs today

● GPUs are widely deployed as accelerators
● Intel Paper

– 10x vs 100x Myth

● GPUs so successful that other CPU alternatives
are dead
– Sony/IBM Cell BE
– Clearspeed RSX

● Kepler K40 GPUs from NVIDIA have performance
of 4TFlops (peak)
– CM-5, #1 system in 1993 was ~60 Gflops (Linpack)
– ASCI White (#1 2001) was 4.9 Tflops (Linpack)

Top 500 Supercomputers

Titan (#1 2012)

Top 500 Supercomputers

Tianhe 1A (#1 2010)

Accelerator-based Systems

● CPUs have always depended on co-processors
– I/O co-processors to handle slow I/O

– Math co-processors to speed up computation

● These have mostly been transparent
– Drop in the co-processor and everything sped up

● The GPU is not a transparent accelerator for
general purpose computations
– Only graphics code is sped up transparently

● Code must be rewritten to target GPUs

Using a GPU

1.You must retarget code for the GPU
– rewrite, recompile, translate, etc.

The Two (Three?) Kinds of GPUs

Type 1: Discrete GPUs

Primary benefits: More computational power,
more memory B/W

CPU

GPU

The Two (Three?) Kinds of GPUs

Type 2 and 3: Integrated GPUs

Primary distinction: Share system memory

Primary benefits: Less power (energy)

CPU

GPU

Intel

The NVIDIA Kepler

GPU
RAM

GPU
RAM

NVIDIA Kepler GK110 Whitepaper

Using a GPU

1.You must retarget code for the GPU

2.The working set must fit in GPU RAM

3.You must copy data to/from GPU RAM

NVIDIA Kepler SMX
256KB!

Partitioned
(user-defined)

192 FP/Int
64 DP

32 LD/ST

2-way
In-order

NVIDIA Kepler GK110 Whitepaper

How Threads Are Scheduled

NVIDIA Kepler GK110 Whitepaper

What happens
when threads in a warp diverge?

● Consider:
– if(tid % 2) dothis(); else dothat();

● Transparently, GPU splits warp (branch divergence)
– Record meeting point

– Execute one side of branch, wait

– Execute other side
– Recombine at meeting point

● SIMT Execution
● May happen on cache misses too! (memory divergence)

CPU vs the GPU

Parameter CPU GPU

Clockspeed > 1 GHz 700 MHz

RAM GB to TB 12 GB (max)

Memory B/W ~ 60 GB/s > 300 GB/s

Peak FP < 1 TFlop > 1 TFlop

Concurrent Threads O(10) O(1000) [O(10000)]

LLC cache size > 100MB (L3) [eDRAM]
O(10) [traditional]

< 2MB (L2)

Cache size per thread O(1 MB) O(10 bytes)

Software-managed cache None 48KB/SMX

Type OOO superscalar 2-way Inorder superscalar

Using a GPU

1.You must retarget code for the GPU

2.The working set must fit in GPU RAM

3.You must copy data to/from GPU RAM

4.Data accesses should be streaming

5.Or use scratchpad as user-managed cache

6.Lots of parallelism preferred (throughput, not latency)

7.SIMD-style parallelism best suited

8.High arithmetic intensity (FLOPs/byte) preferred

GPU Showcase Applications

● Graphics rendering
● Matrix Multiply
● FFT

See “Debunking the 100X GPU vs. CPU Myth: An Evaluation of
Throughput Computing on CPU and GPU” by V.W.Lee et al. for more
examples and a comparison of CPU and GPU

GPU Programming Models

Hierarchy of GPU
Programming Models

Model GPU CPU Equivalent

Vectorizing Compiler PGI CUDA Fortran gcc, icc, etc.

“Drop-in” Libraries cuBLAS ATLAS

Directive-driven OpenACC,
OpenMP-to-CUDA OpenMP

High-level languages
pyCUDA, OpenCL, CUDA

python

Mid-level languages pthreads + C/C++

Low-level languages - PTX, Shader

Bare-metal Assembly/Machine code SASS

● Ordered by increasing order of difficulty

● Ordered by increasing order of flexibility

“Drop-in” Libraries

● “Drop-in” replacements for popular CPU
libraries, examples from NVIDIA:
– CUBLAS/NVBLAS for BLAS (e.g. ATLAS)
– CUFFT for FFTW

– MAGMA for LAPACK and BLAS

● These libraries may still expect you to
manage data transfers manually

● Libraries may support multiple
accelerators (GPU + CPU + Xeon Phi)

GPU Libraries

● NVIDIA Thrust
– Like C++ STL

● Modern GPU
– At first glance: high-performance

library routines for sorting,
searching, reductions, etc.

– A deeper look: Specific “hard”
problems tackled in a different style

● NVIDIA CUB
– Low-level primitives for use in

CUDA kernels
–

Directive-driven Programming

● OpenACC, new standard for
“offloading” parallel work to an
accelerator

● Currently supported only by PGI
Accelerator compiler

● gcc 5.0 support is ongoing
● OpenMPC, a research compiler,

can compile OpenMP code +
extra directives to CUDA

#include <stdio.h>

#define N 1000000

int main(void) {

 double pi = 0.0f; long i;

 #pragma acc parallel loop reduction(+:pi)

 for (i=0; i<N; i++) {

 double t= (double)((i+0.5)/N);

 pi +=4.0/(1.0+t*t);

 }

 printf("pi=%16.15f\n",pi/N);

 return 0;

}

Python-based Tools (pyCUDA)

import pycuda.autoinit
import pycuda.driver as drv
import numpy
from pycuda.compiler import SourceModule

mod = SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
{
 const int i = threadIdx.x;
 dest[i] = a[i] * b[i];
}
""")

multiply_them = mod.get_function("multiply_them")

a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)

dest = numpy.zeros_like(a)

multiply_them(
 drv.Out(dest), drv.In(a), drv.In(b),
 block=(400,1,1), grid=(1,1))

print dest-a*b

CUDA Source Code

Automatic Data Transfers

Threads

OpenCL

● C99-based dialect for programming heterogenous
systems

● Originally based on CUDA
– nomenclature is different

● Supported by more than GPUs
– Xeon Phi, FPGAs, CPUs, etc.

● Source code is portable (somewhat)
– Performance may not be!

● Poorly supported by NVIDIA

CUDA

● “Compute Unified Device Architecture”
● First language to allow general-purpose

programming for GPUs
– preceded by shader languages

● Promoted by NVIDIA for their GPUs
● Not supported by any other accelerator

– though commercial CUDA-to-x86/64 compilers exist

● We will focus on CUDA programs

CUDA Architecture

● From 10000 feet – CUDA is like pthreads
● CUDA language – C++ dialect

– Host code (CPU) and GPU code in same file

– Special language extensions for GPU code

● CUDA Runtime API
– Manages runtime GPU environment

– Allocation of memory, data transfers, synchronization with GPU, etc.

– Usually invoked by host code

● CUDA Device API
– Lower-level API that CUDA Runtime API is built upon

–

CUDA �-calculation (GPU)

/* -*- mode: c++ -*- */
#include <cuda.h>
#include <stdio.h>

__global__
void pi_kernel(int N, double *pi_value) {
 int tid = blockIdx.x * blockDim.x + threadIdx.x;
 int nthreads = blockDim.x * gridDim.x;

 double pi = 0;

 for(int i = tid; i < N; i+=nthreads) {
 double t = ((i + 0.5) / N);
 pi += 4.0/(1.0+t*t);
 }

 pi_value[tid] = pi;
}

For CUDA Runtime API

Indicates GPU Kernel that can be called by CPU

Calculates thread identifier
and total number of threads

pi_value is stored in GPU memory
i.e. it is a pointer to GPU memory

CUDA �-calculation (CPU)
int main(void) {
 int NTHREADS = 2048;
 int N = 10485760;

 double *c_pi, *g_pi;
 size_t g_pi_size = NTHREADS * sizeof(double);

 c_pi = (double *) calloc(NTHREADS, sizeof(double));

 if(cudaMalloc(&g_pi, g_pi_size) != cudaSuccess) {
 fprintf(stderr, "failed to allocate memory!\n");
 exit(1);
 };

 pi_kernel<<<NTHREADS/256, 256>>>(N, g_pi);

 if(cudaMemcpy(c_pi, g_pi, g_pi_size, cudaMemcpyDeviceToHost) != cudaSuccess) {
 fprintf(stderr, "failed to copy data back to CPU!\n");
 exit(1);
 }

 double pi = 0;
 for(int i = 0; i < NTHREADS; i++)
 pi += c_pi[i];

 printf("pi=%16.15f\n", pi/N);
 return 0;
}

CPU and GPU pointers

CPU Allocation

GPU Allocation

Call GPU Kernel

Copy back pi_value

Reduce pi_value on GPU

CUDA Threading Model Details

● Hierarchical Threading
– Grid -> Thread Blocks -> Warps -> Threads

– pthreads has flat threading

● Only threads within same thread block can communicate and
synchronize with each other

● Maximum 1024 threads per thread block
– Differs by GPU generation

● Thread block is divided into mutually exclusive, equally-sized group
of threads called warps
– Warp size is hardware-dependent
– Usually 32 threads

Mapping Threads to
Hardware in CUDA

CUDA Limitations

● No standard library
● No parallel data structures
● No synchronization primitives (mutex, semaphores,

queues, etc.)
– you can roll your own

– only atomic*() functions provided

● Toolchain not as mature as CPU toolchain
– Felt intensely in performance debugging

● It's only been a decade :)

Summary

● GPUs are very interesting parallel machines
● They're not going away

– Xeon Phi might be pose huge challenge

● They're here and now
– You can buy one of them!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

