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Outline

● Introduction to Accelerators
– Specifically, GPUs

– What can you use them for?

– When should you consider using them?

● GPU Programming Models
– How to write programs that use GPUs



  

Beyond the CPU

● Single-core CPU performance has essentially 
stagnated

● 10 years ago, the solution was multicore and 
increased parallelism
– x86: 16 cores on chip, AMD Interlagos, 2011

● Applications need increased performance
– Big data, brain simulation, scientific simulation, ...

● So if you're going to write parallel code, are there 
faster, viable alternatives to the CPU?



  

GPU Floating Point Performance

Owens et al., A Survey of General-Purpose Computation on Graphics Hardware



  

The rise of the GPU - 1990s

● The CPU has always been slow 
for Graphics Processing
– Visualization

– Games

● Graphics processing is 
inherently parallel and there is a 
lot of parallelism – O(pixels)

● GPUs were built to do graphics 
processing only

● Initially, hardwired logic 
replicated to provide parallelism
– Little to no programmability

Wikipedia; Kaufman et al. (2009)



  

GPUs – a decade ago

● Like CPUs, GPUs benefited from Moore's Law
● Evolved from fixed-function hardwired logic to flexible, 

programmable ALUs
● Around 2004, GPUs were programmable “enough” to do 

some non-graphics computations
– Severely limited by graphics programming model (shader 

programming)

● In 2006, GPUs became “fully” programmable
– NVIDIA releases “CUDA” language to write non-graphics 

programs that will run on GPUs



  

GPU Performance Today

NVIDIA, CUDA C Programming Guide



  

Memory Bandwidth

NVIDIA, CUDA C Programming Guide



  

GPUs today

● GPUs are widely deployed as accelerators
● Intel Paper

– 10x vs 100x Myth

● GPUs so successful that other CPU alternatives 
are dead
– Sony/IBM Cell BE
– Clearspeed RSX

● Kepler K40 GPUs from NVIDIA have performance 
of 4TFlops (peak)
– CM-5, #1 system in 1993 was ~60 Gflops (Linpack)
– ASCI White (#1 2001) was 4.9 Tflops (Linpack)

Top 500 Supercomputers

Titan (#1 2012)

Top 500 Supercomputers

Tianhe 1A (#1 2010)



  

Accelerator-based Systems

● CPUs have always depended on co-processors
– I/O co-processors to handle slow I/O

– Math co-processors to speed up computation

● These have mostly been transparent
– Drop in the co-processor and everything sped up

● The GPU is not a transparent accelerator for 
general purpose computations
– Only graphics code is sped up transparently

● Code must be rewritten to target GPUs



  

Using a GPU

1.You must retarget code for the GPU
– rewrite, recompile, translate, etc.



  

The Two (Three?) Kinds of GPUs

Type 1: Discrete GPUs

Primary benefits: More computational power, 
more memory B/W

CPU

GPU



  

The Two (Three?) Kinds of GPUs

Type 2 and 3: Integrated GPUs

Primary distinction: Share system memory

Primary benefits: Less power (energy)

CPU

GPU

Intel



  

The NVIDIA Kepler

GPU
RAM

GPU
RAM

NVIDIA Kepler GK110 Whitepaper



  

Using a GPU

1.You must retarget code for the GPU

2.The working set must fit in GPU RAM

3.You must copy data to/from GPU RAM



  

NVIDIA Kepler SMX
256KB!

Partitioned
(user-defined)

192 FP/Int
64 DP

32 LD/ST

2-way 
In-order

NVIDIA Kepler GK110 Whitepaper



  

How Threads Are Scheduled

NVIDIA Kepler GK110 Whitepaper



  

What happens 
when threads in a warp diverge?

● Consider:
– if(tid % 2) dothis(); else dothat();

● Transparently, GPU splits warp (branch divergence)
– Record meeting point

– Execute one side of branch, wait

– Execute other side
– Recombine at meeting point

● SIMT Execution
● May happen on cache misses too! (memory divergence)



  

CPU vs the GPU

Parameter CPU GPU

Clockspeed > 1 GHz 700 MHz

RAM GB to TB 12 GB (max)

Memory B/W ~ 60 GB/s > 300 GB/s

Peak FP < 1 TFlop > 1 TFlop

Concurrent Threads O(10) O(1000) [O(10000)]

LLC cache size > 100MB (L3) [eDRAM]
O(10) [traditional]

< 2MB (L2)

Cache size per thread O(1 MB) O(10 bytes)

Software-managed cache None 48KB/SMX

Type OOO superscalar 2-way Inorder superscalar



  

Using a GPU

1.You must retarget code for the GPU

2.The working set must fit in GPU RAM

3.You must copy data to/from GPU RAM

4.Data accesses should be streaming

5.Or use scratchpad as user-managed cache

6.Lots of parallelism preferred (throughput, not latency)

7.SIMD-style parallelism best suited

8.High arithmetic intensity (FLOPs/byte) preferred



  

GPU Showcase Applications

● Graphics rendering
● Matrix Multiply
● FFT

See “Debunking the 100X GPU vs. CPU Myth: An Evaluation of 
Throughput Computing on CPU and GPU” by V.W.Lee et al. for more 
examples and a comparison of CPU and GPU



  

GPU Programming Models



  

Hierarchy of GPU 
Programming Models

Model GPU CPU Equivalent

Vectorizing Compiler PGI CUDA Fortran gcc, icc, etc.

“Drop-in” Libraries cuBLAS ATLAS

Directive-driven OpenACC, 
OpenMP-to-CUDA OpenMP

High-level languages
pyCUDA, OpenCL, CUDA

python

Mid-level languages pthreads + C/C++

Low-level languages - PTX, Shader

Bare-metal Assembly/Machine code SASS

● Ordered by increasing order of difficulty

● Ordered by increasing order of flexibility



  

“Drop-in” Libraries

● “Drop-in” replacements for popular CPU 
libraries, examples from NVIDIA:
– CUBLAS/NVBLAS for BLAS (e.g. ATLAS)
– CUFFT for FFTW

– MAGMA for LAPACK and BLAS

● These libraries may still expect you to 
manage data transfers manually

● Libraries may support multiple 
accelerators (GPU + CPU + Xeon Phi)



  

GPU Libraries

● NVIDIA Thrust
– Like C++ STL

● Modern GPU
– At first glance: high-performance 

library routines for sorting, 
searching, reductions, etc.

– A deeper look: Specific “hard” 
problems tackled in a different style

● NVIDIA CUB
– Low-level primitives for use in 

CUDA kernels
–



  

Directive-driven Programming

● OpenACC, new standard for 
“offloading” parallel work to an 
accelerator

● Currently supported only by PGI 
Accelerator compiler

● gcc 5.0 support is ongoing
● OpenMPC, a research compiler, 

can compile OpenMP code + 
extra directives to CUDA

#include <stdio.h>

#define N 1000000

int main(void) {

  double pi = 0.0f; long i;

  #pragma acc parallel loop reduction(+:pi)

  for (i=0; i<N; i++) {

     double t= (double)((i+0.5)/N);

     pi +=4.0/(1.0+t*t);

  }

  printf("pi=%16.15f\n",pi/N);

  return 0;

}



  

Python-based Tools (pyCUDA)

import pycuda.autoinit
import pycuda.driver as drv
import numpy
from pycuda.compiler import SourceModule

mod = SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
{
  const int i = threadIdx.x;
  dest[i] = a[i] * b[i];
}
""")

multiply_them = mod.get_function("multiply_them")

a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)

dest = numpy.zeros_like(a)

multiply_them(
        drv.Out(dest), drv.In(a), drv.In(b),
        block=(400,1,1), grid=(1,1))

print dest-a*b

CUDA Source Code

Automatic Data Transfers

Threads



  

OpenCL

● C99-based dialect for programming heterogenous 
systems

● Originally based on CUDA
– nomenclature is different

● Supported by more than GPUs
– Xeon Phi, FPGAs, CPUs, etc.

● Source code is portable (somewhat)
– Performance may not be!

● Poorly supported by NVIDIA



  

CUDA

● “Compute Unified Device Architecture”
● First language to allow general-purpose 

programming for GPUs
– preceded by shader languages

● Promoted by NVIDIA for their GPUs
● Not supported by any other accelerator

– though commercial CUDA-to-x86/64 compilers exist

● We will focus on CUDA programs



  

CUDA Architecture

● From 10000 feet – CUDA is like pthreads
● CUDA language – C++ dialect

– Host code (CPU) and GPU code in same file

– Special language extensions for GPU code

● CUDA Runtime API
– Manages runtime GPU environment

– Allocation of memory, data transfers, synchronization with GPU, etc.

– Usually invoked by host code

● CUDA Device API
– Lower-level API that CUDA Runtime API is built upon

–



  

CUDA  �-calculation (GPU)

/* -*- mode: c++ -*- */
#include <cuda.h>
#include <stdio.h>

__global__
void pi_kernel(int N, double *pi_value) {
  int tid = blockIdx.x * blockDim.x + threadIdx.x;
  int nthreads = blockDim.x * gridDim.x;

  double pi = 0;

  for(int i = tid; i < N; i+=nthreads) {
    double t = ((i + 0.5) / N);
    pi += 4.0/(1.0+t*t);
  }

  pi_value[tid] = pi;
}

For CUDA Runtime API

Indicates GPU Kernel that can be called by CPU

Calculates thread identifier 
and total number of threads

pi_value is stored in GPU memory
i.e. it is a pointer to GPU memory



  

CUDA  �-calculation (CPU)
int main(void) {
  int NTHREADS = 2048; 
  int N = 10485760;

  double *c_pi, *g_pi;
  size_t g_pi_size = NTHREADS * sizeof(double);

  c_pi = (double *) calloc(NTHREADS, sizeof(double));

  if(cudaMalloc(&g_pi, g_pi_size) != cudaSuccess) {
    fprintf(stderr, "failed to allocate memory!\n");
    exit(1);
  };

  pi_kernel<<<NTHREADS/256, 256>>>(N, g_pi);

  if(cudaMemcpy(c_pi, g_pi, g_pi_size, cudaMemcpyDeviceToHost) != cudaSuccess) {
    fprintf(stderr, "failed to copy data back to CPU!\n");
    exit(1);
  }

  double pi = 0;
  for(int i = 0; i < NTHREADS; i++)
    pi += c_pi[i];

  printf("pi=%16.15f\n", pi/N);
  return 0;
}  

CPU and GPU pointers

CPU Allocation

GPU Allocation

Call GPU Kernel

Copy back pi_value

Reduce pi_value on GPU



  

CUDA Threading Model Details

● Hierarchical Threading
– Grid -> Thread Blocks -> Warps -> Threads

– pthreads has flat threading

● Only threads within same thread block can communicate and 
synchronize with each other

● Maximum 1024 threads per thread block
– Differs by GPU generation

● Thread block is divided into mutually exclusive, equally-sized group 
of threads called warps
– Warp size is hardware-dependent
– Usually 32 threads



  

Mapping Threads to 
Hardware in CUDA



  

CUDA Limitations

● No standard library
● No parallel data structures
● No synchronization primitives (mutex, semaphores, 

queues, etc.)
– you can roll your own

– only atomic*() functions provided

● Toolchain not as mature as CPU toolchain
– Felt intensely in performance debugging

● It's only been a decade :)



  

Summary

● GPUs are very interesting parallel machines
● They're not going away

– Xeon Phi might be pose huge challenge 

● They're here and now
– You can buy one of them!
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