Optimizing MMM & ATLAS Library Generator
Recall: MMM miss ratios

L1 Cache Miss Ratio for Intel Pentium III
- MMM with N = 1…1300
- 16KB 32B/Block 4-way 8-byte elements
IJK version (large cache)

DO I = 1, N // row-major storage
 DO J = 1, N
 DO K = 1, N
 C(I,J) = C(I,J) + A(I,K)*B(K,J)

- Large cache scenario:
 - Matrices are small enough to fit into cache
 - Only cold misses, no capacity misses
 - Miss ratio:
 - Data size = 3 N^2
 - Each miss brings in b floating-point numbers
 - Miss ratio = 3 N^2 / b*4N^3 = 0.75/bN = 0.019 (b = 4, N=10)
IJK version (small cache)

DO I = 1, N
DO J = 1, N
DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

- Small cache scenario:
 - Matrices are large compared to cache
 - reuse distance is not O(1) => miss
 - Cold and capacity misses
 - Miss ratio:
 - C: N^2/b misses (good temporal locality)
 - A: N^3/b misses (good spatial locality)
 - B: N^3 misses (poor temporal and spatial locality)
 - Miss ratio $\rightarrow 0.25 \frac{(b+1)}{b} = 0.3125$ (for $b = 4$)
MMM experiments

L1 Cache Miss Ratio for Intel Pentium III
- MMM with $N = 1 \ldots 1300$
- 16KB 32B/Block 4-way 8-byte elements

Can we predict this?
How large can matrices be and still not suffer capacity misses?

DO I = 1, M
 DO J = 1, N
 DO K = 1, P
 C(I,J) = C(I,J) + A(I,K)*B(K,J)

- How large can these matrices be without suffering capacity misses?
 - Each iteration of outermost loop walks over entire B matrix, so all of B must be in cache
 - We walk over rows of A and successive iterations of middle loop touch same row of A, so one row of A must be in cache
 - We walk over elements of C one at a time.
 - So inequality is NP + P + 1 <= C
Check with experiment

- For our machine, capacity of L1 cache is 16KB/8 doubles = 2^{11} doubles
- If matrices are square, we must solve $N^2 + N + 1 = 2^{11}$
 which gives us $N = 45$
- This agrees well with experiment.
High-level picture of high-performance MMM code

- Block the code for each level of memory hierarchy
 - Registers
 - L1 cache
 -

- Choose block sizes at each level using the theory described previously
 - Useful optimization: choose block size at level L+1 to be multiple of the block size at level L
ATLAS

- Library generator for MMM and other BLAS
- Blocks only for registers and L1 cache
- Uses search to determine block sizes, rather than the analytical formulas we used
 - Search takes more time, but we do it once when library is produced
- Let us study structure of ATLAS in little more detail
Our approach

- **Original ATLAS Infrastructure**

- **Model-Based ATLAS Infrastructure**
Let us focus on MMM:

```c
for (int i = 0; i < M; i++)
    for (int j = 0; j < N; j++)
        for (int k = 0; k < K; k++)
            C[i][j] += A[i][k]*B[k][j]
```

Properties

- Very good reuse: $O(N^2)$ data, $O(N^3)$ computation
- Many optimization opportunities
 - Few “real” dependencies
- Will run poorly on modern machines
 - Poor use of cache and registers
 - Poor use of processor pipelines
Optimizations

- Cache-level blocking (tiling)
 - Atlas blocks only for L1 cache
 - **NB**: L1 cache time size

- Register-level blocking
 - Important to hold array values in registers
 - **MU,NU**: register tile size

- Filling the processor pipeline
 - Unroll and schedule operations
 - **Latency, xFetch**: scheduling parameters

- Versioning
 - Dynamically decide which way to compute

- Back-end compiler optimizations
 - Scalar Optimizations
 - Instruction Scheduling
Cache-level blocking (tiling)

- **Tiling in ATLAS**
 - Only square tiles (NBxNBxNB)
 - Working set of tile fits in L1
 - Tiles are usually copied to continuous storage
 - Special “clean-up” code generated for boundaries

- **Mini-MMM**

  ```c
  for (int j = 0; j < NB; j++)
      for (int i = 0; i < NB; i++)
          for (int k = 0; k < NB; k++)
              C[i][j] += A[i][k] * B[k][j]
  ```

- **NB**: Optimization parameter
Register-level blocking

- **Micro-MMMM**
 - A: MUx1
 - B: 1xNU
 - C: MUxNU
 - MUxNU+MU+NU registers

- **Unroll loops by MU, NU, and KU**

- **Mini-MMMM with Micro-MMMM inside**

```java
for (int j = 0; j < NB; j += NU)
    for (int i = 0; i < NB; i += MU)
        load C[i..i+MU-1, j..j+NU-1] into registers
        for (int k = 0; k < NB; k++)
            load A[i..i+MU-1,k] into registers
            load B[k,j..j+NU-1] into registers
            multiply A’s and B’s and add to C’s
            store C[i..i+MU-1, j..j+NU-1]
```

- **Special clean-up code required if**
 NB is not a multiple of MU,NU,KU

- **MU, NU, KU: optimization parameters**
Scheduling

- FMA Present?
- Schedule Computation
 - Using Latency
- Schedule Memory Operations
 - Using IFetch, NFetch, FFetch
- Latency, xFetch: optimization parameters
Search Strategy

- **Multi-dimensional optimization problem:**
 - Independent parameters: NB, MU, NU, KU, ...
 - Dependent variable: MFlops
 - Function from parameters to variables is given implicitly; can be evaluated repeatedly

- **One optimization strategy:** orthogonal line search
 - Optimize along one dimension at a time, using reference values for parameters not yet optimized
 - Not guaranteed to find optimal point, but might come close
Find Best NB

- Search in following range
 - $16 \leq NB \leq 80$
 - $NB^2 \leq L1\text{Size}$
- In this search, use simple estimates for other parameters
 - (eg) KU: Test each candidate for
 - Full K unrolling ($KU = NB$)
 - No K unrolling ($KU = 1$)
Model-based optimization

- **Original ATLAS Infrastructure**

 - Detect Hardware Parameters
 - L1Size, NR, MulAdd, L*
 - ATLAS Search Engine (MMSearch)
 - NB, Mu, Nu, Ku, xFetch, MulAdd, Latency
 - ATLAS MM Code Generator (MMCase)

 → MFLOPS

 → MiniMMM Source

- **Model-Based ATLAS Infrastructure**

 - Detect Hardware Parameters
 - L1Size, L1I$Size, NR, MulAdd, L*
 - Model
 - NB, Mu, Nu, Ku, xFetch, MulAdd, Latency
 - ATLAS MM Code Generator (MMCase)

 → MiniMMM Source
Modeling for Optimization Parameters

- Optimization parameters
 - NB
 - Hierarchy of Models (later)
 - MU, NU
 - $MU \times NU + MU + NU + \text{Latency} \leq NR$
 - KU
 - maximize subject to L1 Instruction Cache
 - Latency
 - $[(L* + 1)/2]$
 - MulAdd
 - hardware parameter
 - xFetch
 - set to 2
Largest NB for no capacity/conflict misses

- If tiles are copied into contiguous memory, condition for only cold misses:
 - $3 \times \text{NB}^2 \leq \text{L1Size}$
Largest NB for no capacity misses

- **MMM:**
  ```java
  for (int j = 0; i < N; i++)
    for (int i = 0; j < N; j++)
      for (int k = 0; k < N; k++)
        c[i][j] += a[i][k] * b[k][j]
  ```

- **Cache model:**
 - Fully associative
 - Line size 1 Word
 - Optimal Replacement

- **Bottom line:**
 \(NB^2 + NB + 1 < C \)
 - One full matrix
 - One row / column
 - One element
Summary: Modeling for Tile Size (NB)

- Models of increasing complexity
 - $3 \times NB^2 \leq C$
 - Whole work-set fits in L1
 - $NB^2 + NB + 1 \leq C$
 - Fully Associative
 - Optimal Replacement
 - Line Size: 1 word
 - $\left\lfloor \frac{NB^2}{B} \right\rfloor + \left\lfloor \frac{NB}{B} \right\rfloor + 1 \leq \frac{C}{B}$ or $\left\lfloor \frac{NB^2}{B} \right\rfloor + NB + 1 \leq \frac{C}{B}$
 - Line Size > 1 word
 - $\left\lfloor \frac{NB^2}{B} \right\rfloor + 2 \left\lfloor \frac{NB}{B} \right\rfloor + \left(\left\lfloor \frac{NB}{B} \right\rfloor + 1 \right) \leq \frac{C}{B}$ or $\left\lfloor \frac{NB^2}{B} \right\rfloor + 3NB + 1 \leq \frac{C}{B}$
 - LRU Replacement
Summary of model

- **Estimating FMA:**
 Use the machine parameter FMA

- **Estimating \(L_s \):**

\[
L_s = \left\lfloor \frac{L_s \times |ALU_{FP}| + 1}{2} \right\rfloor
\]

- **Estimating \(M_U \) and \(N_U \):**

\[
M_U \times N_U + N_U + M_U + L_s \leq N_R
\]

1) \(M_U, N_U \leftarrow u \).
2) Solve constraint for \(u \).
3) \(M_U \leftarrow \max(u, 1) \).
4) Solve constraint for \(N_U \).
5) \(N_U \leftarrow \max(N_U, 1) \).
6) If \(M_U < N_U \) then swap \(M_U \) and \(N_U \).

- **Estimating \(N_B \):**

\[
\left\lfloor \frac{N_B^2}{B_1} \right\rfloor + 3 \left\lfloor \frac{N_B \times N_U}{B_1} \right\rfloor + \left\lfloor \frac{M_U}{B_1} \right\rfloor \times N_U \leq \frac{C_1}{B_1}
\]

Trim \(N_B \), to make it a multiple of \(M_U, N_U, \) and 2.

- **Estimating \(K_U \):**

Choose \(K_U \) as the maximum value for which mini-MMM fits in the L1 instruction cache. Trim \(K_U \) to make it divide \(N_B \) evenly.

- **Estimating \(F_F, I_F, \) and \(N_F \):**

\[
F_F = 0, I_F = 2, N_F = 2
\]
Experiments

- Ten modern architectures
- Model did well on
 - RISC architectures
 - UltraSparc: did better
- Model did not do as well on
 - Itanium
 - CISC architectures
- Substantial gap between ATLAS CGw/S and ATLAS Unleashed on some architectures
Some sensitivity graphs for Alpha 21264
Eliminating performance gaps

- Think globally, search locally
- Gap between model-based optimization and empirical optimization can be eliminated by
 - Local search:
 - for small performance gaps
 - in neighborhood of model-predicted values
 - Model refinement:
 - for large performance gaps
 - must be done manually
 - (future) machine learning: learn new models automatically
- Model-based optimization and empirical optimization are not in conflict
Small performance gap: Alpha 21264

ATLAS CGw/S:
- mini-MMM: 1300 MFlops
- NB = 72
- (MU,NU) = (4,4)

ATLAS Model:
- mini-MMM: 1200 MFlops
- NB = 84
- (MU,NU) = (4,4)

- Local search
 - Around model-predicted NB
 - Hill-climbing not useful
 - Search interval: [NB-lcm(MU,NU), NB+lcm(MU,NU)]
- Local search for MU,NU
 - Hill-climbing OK
Large performance gap: Itanium

MMM Performance

Performance of mini-MMM
- ATLAS CGw/S: 4000 MFlops
- ATLAS Model: 1800 MFlops

Problem with NB value
- ATLAS Model: 30
- ATLAS CGw/S: 80 (search space max)

Local search will not solve problem.
Itanium diagnosis and solution

- Memory hierarchy
 - L1 data cache: 16 KB
 - L2 cache: 256 KB
 - L3 cache: 3 MB

- Diagnosis:
 - Model tiles for L1 cache
 - On Itanium, FP values not cached in L1 cache!
 - Performance gap goes away if we model for L2 cache (NB = 105)
 - Obtain even better performance if we model for L3 cache (NB = 360, 4.6 GFlops)

- Problem:
 - Tiling for L2 or L3 may be better than tiling for L1
 - How do we determine which cache level to tile for??

- Our solution: model refinement + a little search
 - Determine tile sizes for all cache levels
 - Choose between them empirically
Large performance gap: Opteron

MMM Performance

Performance of mini-MMM
- ATLAS CGw/S: 2072 MFlops
- ATLAS Model: 1282 MFlops

Key differences in parameter values: MU/NU
- ATLAS CGw/S: (6,1)
- ATLAS Model: (2,1)
Opteron diagnosis and solution

- Opteron characteristics
 - Small number of logical registers
 - Out-of-order issue
 - Register renaming

- For such processors, it is better to
 - let hardware take care of scheduling dependent instructions,
 - use logical registers to implement a bigger register tile.

- x86 has 8 logical registers
 - register tiles must be of the form (x,1) or (1,x)
Refined model

- **Estimating FMA:**
 Use the machine parameter FMA

- **Estimating L_s:**

 \[
 L_s = \left\lfloor \frac{L_\ast \times |ALU_{FP}| + 1}{2} \right\rfloor
 \]

- **Estimating M_U and N_U:**

 \[
 M_U \times N_U + N_U + M_U + L_s \leq N_R
 \]

 1) $M_U, N_U \leftarrow u$.
 2) Solve constraint for u.
 3) $M_U \leftarrow \max(u, 1)$.
 4) Solve constraint for N_U.
 5) $N_U \leftarrow \max(N_U, 1)$.
 6) If $M_U < N_U$ then swap M_U and N_U.
 7) **Refined Model:** If $N_U = 1$ then
 - $M_U \leftarrow N_R - 2$
 - $N_U \leftarrow 1$
 - $FMA \leftarrow 1$

- **Estimating N_B:**

 \[
 \left\lfloor \frac{N_B^2}{B_1} \right\rfloor + 3 \left\lfloor \frac{N_B \times N_U}{B_1} \right\rfloor + \left\lfloor \frac{M_U}{B_1} \right\rfloor \times N_U \leq \frac{C_1}{B_1}
 \]

 Trim N_B, to make it a multiple of M_U, N_U, and 2.

- **Estimating K_U:**
 Choose K_U as the maximum value for which mini-MMM fits in the L1 instruction cache. Trim K_U to make it divide N_B evenly.

- **Estimating F_F, I_F, and N_F:**

 $F_F = 0, I_F = 2, N_F = 2$
• Refined model is not complex.
• Refined model by itself eliminates most performance gaps.
• Local search eliminates all performance gaps.
Future Directions

- Repeat study with FFTW/SPIRAL
 - Uses search to choose between algorithms
- Feed insights back into compilers
 - Build a linear algebra compiler for generating high-performance code for dense linear algebra codes
 - Start from high-level algorithmic descriptions
 - Use restructuring compiler technology
 - Part IBM PERCS Project
 - Generalize to other problem domains