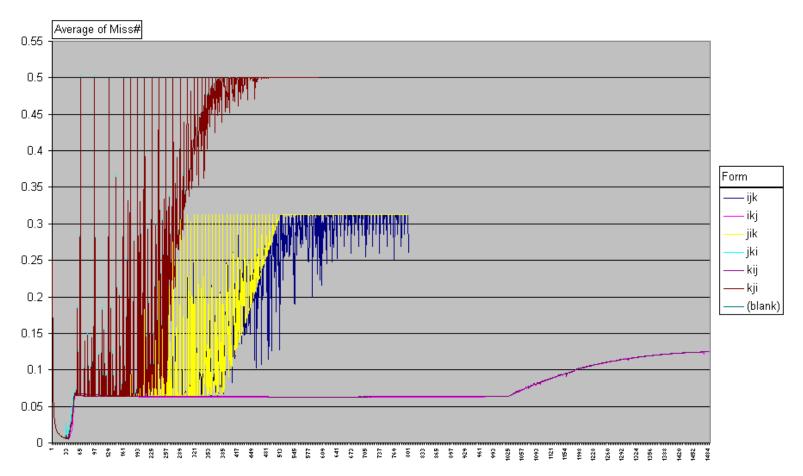
Optimizing MMM & ATLAS Library Generator

Recall: MMM miss ratios

L1 Cache Miss Ratio for Intel Pentium III

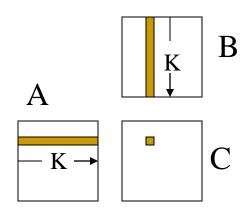
- MMM with N = 1...1300
- 16KB 32B/Block 4-way 8-byte elements



IJK version (large cache)

DO I = 1, N//row-major storage
DO J = 1, N
DO K = 1, N

$$C(I,J) = C(I,J) + A(I,K)*B(K,J)$$



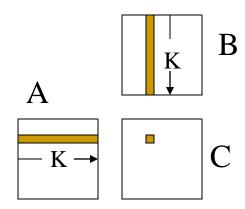
Large cache scenario:

- Matrices are small enough to fit into cache
- Only cold misses, no capacity misses
- Miss ratio:
 - Data size = $3 N^2$
 - Each miss brings in b floating-point numbers
 - Miss ratio = $3 N^2/b^*4N^3 = 0.75/bN = 0.019$ (b = 4,N=10)

IJK version (small cache)

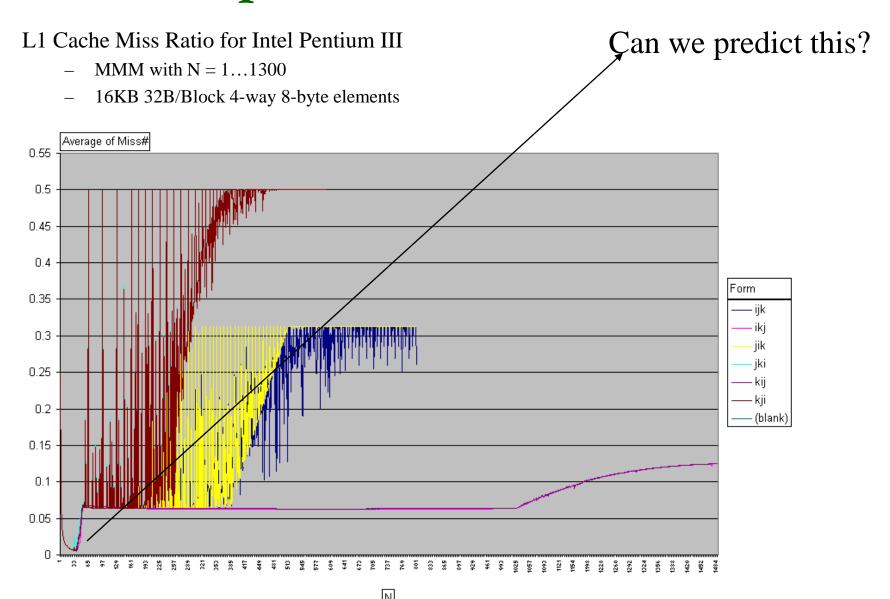
DO I = 1, N
DO J = 1, N
DO K = 1, N

$$C(I,J) = C(I,J) + A(I,K)*B(K,J)$$



- Small cache scenario:
 - Matrices are large compared to cache
 - reuse distance is not O(1) => miss
 - Cold and capacity misses
 - Miss ratio:
 - C: N²/b misses (good temporal locality)
 - A: N³/b misses (good spatial locality)
 - B: N³ misses (poor temporal and spatial locality)
 - Miss ratio \rightarrow 0.25 (b+1)/b = 0.3125 (for b = 4)

MMM experiments



How large can matrices be and still not suffer capacity misses?

Ν

DO I = 1, M
DO J = 1, N
DO K = 1, P

$$C(I,J) = C(I,J) + A(I,K)*B(K,J)$$

A

C

C

- How large can these matrices be without suffering capacity misses?
 - Each iteration of outermost loop walks over entire B matrix, so all of B must be in cache
 - We walk over rows of A and successive iterations of middle loop touch same row of A, so one row of A must be in cache
 - We walk over elements of C one at a time.
 - □ So inequality is NP + P + 1 <= C</p>

Check with experiment

- For our machine, capacity of L1 cache is 16KB/8 doubles = 2¹¹ doubles
- If matrices are square, we must solve

$$N^2 + N + 1 = 2^{11}$$

which gives us N = 45

This agrees well with experiment.

High-level picture of high-performance MMM code

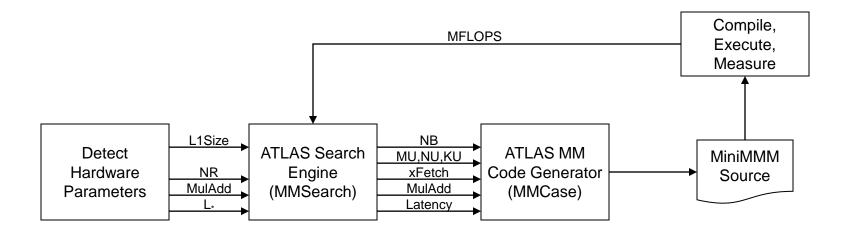
- Block the code for each level of memory hierarchy
 - Registers
 - L1 cache
 - **-**
- Choose block sizes at each level using the theory described previously
 - Useful optimization: choose block size at level
 L+1 to be multiple of the block size at level

ATLAS

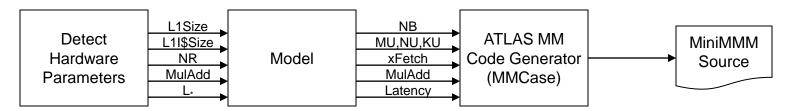
- Library generator for MMM and other BLAS
- Blocks only for registers and L1 cache
- Uses search to determine block sizes, rather than the analytical formulas we used
 - Search takes more time, but we do it once when library is produced
- Let us study structure of ATLAS in little more detail

Our approach

Original ATLAS Infrastructure



Model-Based ATLAS Infrastructure



BLAS

Let us focus on MMM:

```
for (int i = 0; i < M; i++)
  for (int j = 0; j < N; j++)
    for (int k = 0; k < K; k++)
    C[i][j] += A[i][k]*B[k][j]</pre>
```

Properties

- □ Very good reuse: O(N²) data, O(N³) computation
- Many optimization opportunities
 - Few "real" dependencies
- Will run poorly on modern machines
 - Poor use of cache and registers
 - Poor use of processor pipelines

Optimizations

- Cache-level blocking (tiling)
 - Atlas blocks only for L1 cache
 - NB: L1 cache time size
- Register-level blocking
 - Important to hold array values in registers
 - MU,NU: register tile size
- Filling the processor pipeline
 - Unroll and schedule operations
 - Latency, xFetch: scheduling parameters
- Versioning
 - Dynamically decide which way to compute
- Back-end compiler optimizations
 - Scalar Optimizations
 - Instruction Scheduling

Cache-level blocking (tiling)

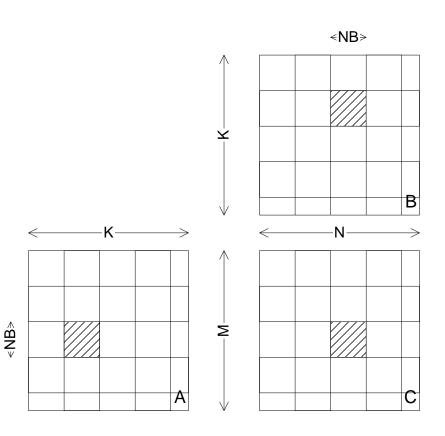
Tiling in ATLAS

- Only square tiles (NBxNBxNB)
- Working set of tile fits in L1
- Tiles are usually copied to continuous storage
- Special "clean-up" code generated for boundaries

Mini-MMM

```
for (int j = 0; j < NB; j++)
  for (int i = 0; i < NB; i++)
    for (int k = 0; k < NB; k++)
        C[i][j] += A[i][k] * B[k][j]</pre>
```

NB: Optimization parameter



Register-level blocking

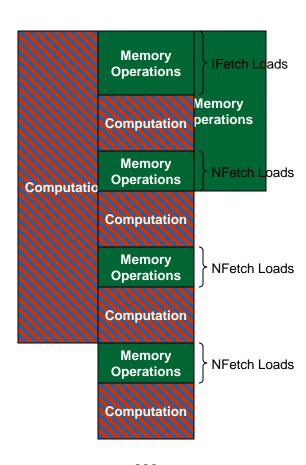
- Micro-MMM
 - □ A: MUx1
 - B: 1xNU
 - C: MUxNU
 - MUxNU+MU+NU registers
- Unroll loops by MU, NU, and KU
- Mini-MMM with Micro-MMM inside

- Special clean-up code required if NB is not a multiple of MU,NU,KU
- MU, NU, KU: optimization parameters



Scheduling

- FMA Present?
- Schedule Computation
 - Using Latency
- Schedule Memory Operations
 - Using IFetch, NFetch, FFetch



Latency, xFetch: optimization parameters

Search Strategy

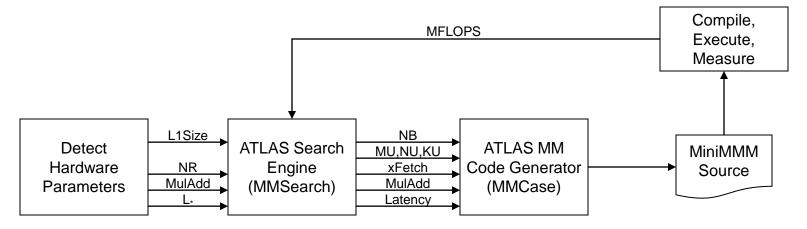
- Multi-dimensional optimization problem:
 - Independent parameters: NB,MU,NU,KU,...
 - Dependent variable: MFlops
 - Function from parameters to variables is given implicitly; can be evaluated repeatedly
- One optimization strategy: orthogonal line search
 - Optimize along one dimension at a time, using reference values for parameters not yet optimized
 - Not guaranteed to find optimal point, but might come close

Find Best NB

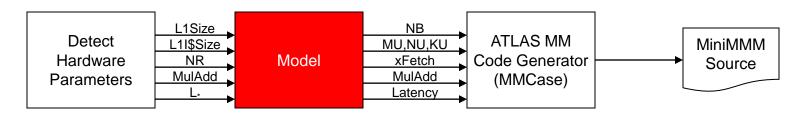
- Search in following range
 - □ 16 <= NB <= 80
 - □ NB² <= L1Size
- In this search, use simple estimates for other parameters
 - □ (eg) KU: Test each candidate for
 - Full K unrolling (KU = NB)
 - No K unrolling (KU = 1)

Model-based optimization

Original ATLAS Infrastructure



Model-Based ATLAS Infrastructure

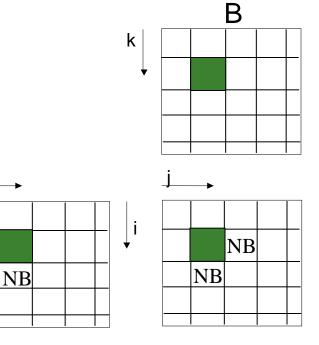


Modeling for Optimization Parameters

- Optimization parameters
 - - Hierarchy of Models (later)
 - MU, NU
 - $MU*NU+MU+NU+Latency \le NR$
 - □ KU
 - maximize subject to L1 Instruction Cache
 - Latency
 - 「(L_{*} + 1)/2]
 - MulAdd
 - hardware parameter
 - xFetch
 - set to 2

Largest NB for no capacity/conflict misses

- If tiles are copied into contiguous memory, condition for only cold misses:
 - □ 3*NB² <= L1Size



Largest NB for no capacity misses

MMM:

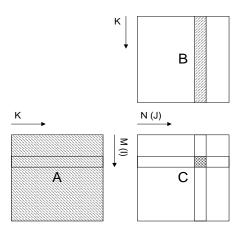
```
for (int j = 0; i < N; i++)
  for (int i = 0; j < N; j++)
    for (int k = 0; k < N; k++)
    c[i][j] += a[i][k] * b[k][j]</pre>
```

Cache model:

- Fully associative
- Line size 1 Word
- Optimal Replacement

Bottom line:

- One full matrix
- One row / column
- One element

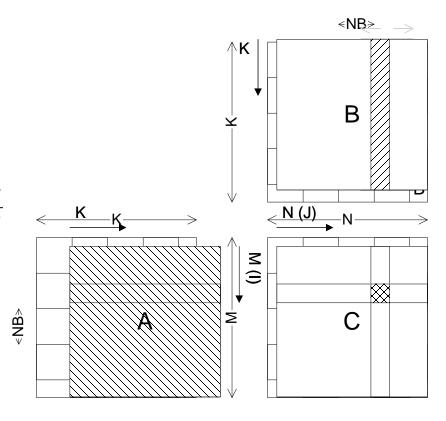


Summary: Modeling for Tile Size (NB)

- Models of increasing complexity
 - ¬ 3*NB² ≤ C
 - Whole work-set fits in L1
 - □ $NB^2 + NB + 1 \le C$
 - Fully Associative
 - Optimal Replacement
 - Line Size: 1 word

■ Line Size > 1 word

LRU Replacement



Summary of model

• Estimating FMA:

Use the machine parameter FMA

• Estimating L_s :

$$L_s = \left\lceil rac{L_* imes |ALU_{FP}| + 1}{2}
ight
ceil$$

• Estimating M_U and N_U :

$$M_U \times N_U + N_U + M_U + L_s \leq N_R$$

- M_U, N_U ← u.
- 2) Solve constraint for u.
- M_U ← max (u, 1).
- Solve constraint for N_U.
- N_U ← max (N_U, 1).
- 6) If $M_U < N_U$ then swap M_U and N_U .

Estimating N_B:

$$\left\lceil \frac{N_B^2}{B_1} \right\rceil + 3 \left\lceil \frac{N_B \times N_U}{B_1} \right\rceil + \left\lceil \frac{M_U}{B_1} \right\rceil \times N_U \leq \frac{C_1}{B_1}$$

Trim N_B , to make it a multiple of M_U , N_U , and 2.

• Estimating Ku:

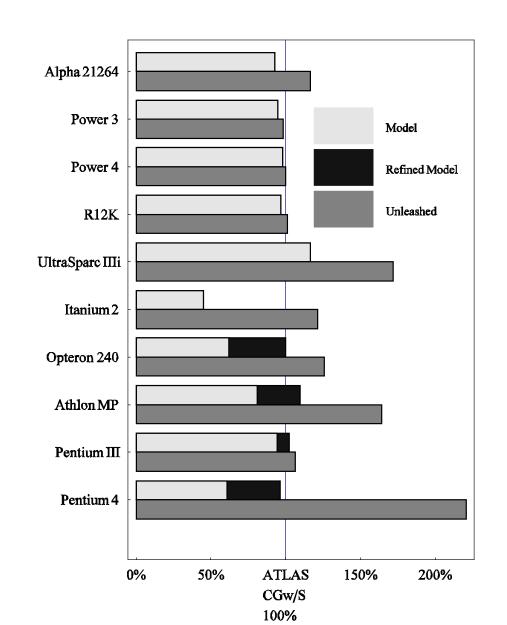
Choose K_U as the maximum value for which mini-MMM fits in the L1 instruction cache. Trim K_U to make it divide N_B evenly.

• Estimating F_F , I_F , and N_F :

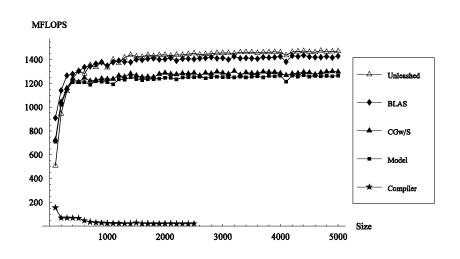
$$F_F = 0, I_F = 2, N_F = 2$$

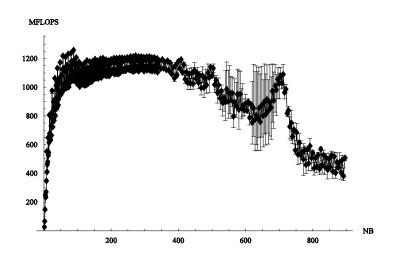
Experiments

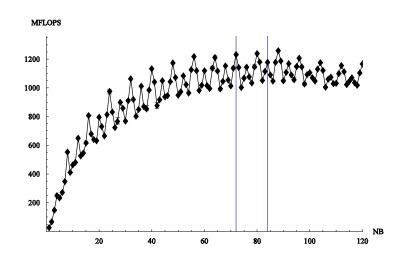
- Ten modern architectures
- Model did well on
 - RISC architectures
 - UltraSparc: did better
- Model did not do as well on
 - •Itanium
 - CISC architectures
- Substantial gap between ATLAS CGw/S and ATLAS Unleashed on some architectures

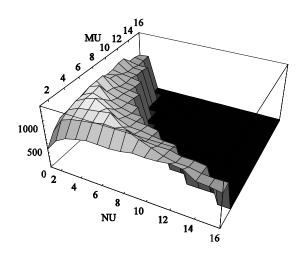


Some sensitivity graphs for Alpha 21264







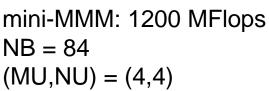


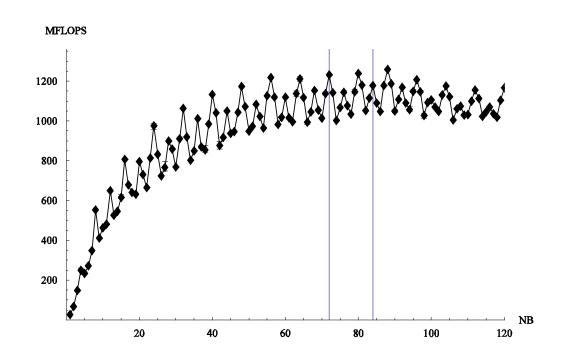
Eliminating performance gaps

- Think globally, search locally
- Gap between model-based optimization and empirical optimization can be eliminated by
 - Local search:
 - for small performance gaps
 - in neighborhood of model-predicted values
 - Model refinement:
 - for large performance gaps
 - must be done manually
 - (future) machine learning: learn new models automatically
- Model-based optimization and empirical optimization are not in conflict

Small performance gap: Alpha 21264

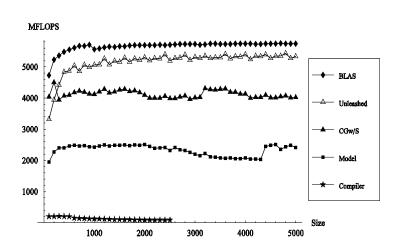
ATLAS CGw/S:
mini-MMM: 1300 MFlops
NB = 72
(MU,NU) = (4,4)
ATLAS Model
mini-MMM: 1200 MFlops





- Local search
 - Around model-predicted NB
 - •Hill-climbing not useful
 - •Search interval:[NB-lcm(MU,NU),NB+lcm(MU,NU)]
- Local search for MU,NU
 - Hill-climbing OK

Large performance gap: Itanium



MMM Performance

Performance of mini-MMM

ATLAS CGw/S: 4000 MFlops

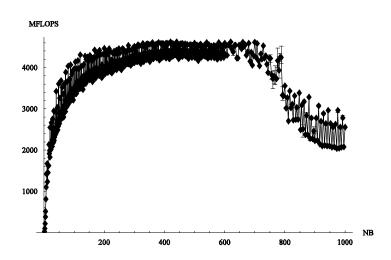
ATLAS Model: 1800 MFlops

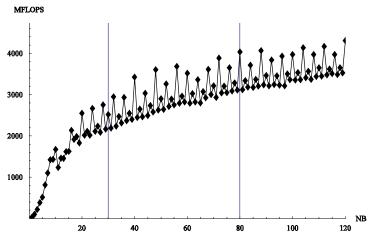
Problem with NB value

ATLAS Model: 30

ATLAS CGw/S: 80 (search space max)

Local search will not solve problem.





NB Sensitivity

Itanium diagnosis and solution

Memory hierarchy

L1 data cache: 16 KB

L2 cache: 256 KB

L3 cache: 3 MB

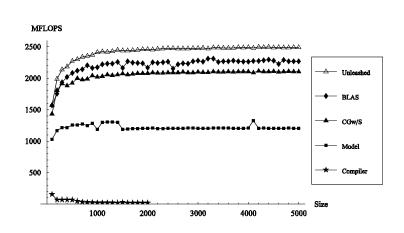
Diagnosis:

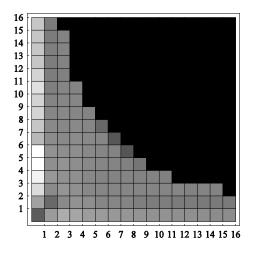
- Model tiles for L1 cache
- On Itanium, FP values not cached in L1 cache!
- □ Performance gap goes away if we model for L2 cache (NB = 105)
- Obtain even better performance if we model for L3 cache (NB = 360, 4.6 GFlops)

Problem:

- Tiling for L2 or L3 may be better than tiling for L1
- How do we determine which cache level to tile for??
- Our solution: model refinement + a little search
 - Determine tile sizes for all cache levels
 - Choose between them empirically

Large performance gap: Opteron





MMM Performance

Performance of mini-MMM

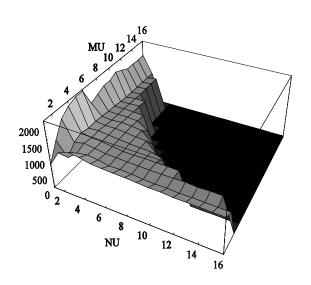
• ATLAS CGw/S: 2072 MFlops

ATLAS Model: 1282 MFlops

Key differences in parameter values:MU/NU

• ATLAS CGw/S: (6,1)

ATLAS Model: (2,1)



MU,NU Sensitivity

Opteron diagnosis and solution

- Opteron characteristics
 - Small number of logical registers
 - Out-of-order issue
 - Register renaming
- For such processors, it is better to
 - let hardware take care of scheduling dependent instructions,
 - use logical registers to implement a bigger register tile.
- x86 has 8 logical registers
 - \neg register tiles must be of the form (x,1) or (1,x)

Refined model

• Estimating FMA:

Use the machine parameter FMA

Estimating L_s:

$$L_s = \left\lceil rac{L_* imes |ALU_{FP}| + 1}{2}
ight
ceil$$

Estimating M_U and N_U:

$$M_U \times N_U + N_U + M_U + L_s \le N_R$$

- M_U, N_U ← u.
- 2) Solve constraint for u.
- M_U ← max (u, 1).
- Solve constraint for N_U.
- 5) $N_U \leftarrow \max(N_U, 1)$.
- 6) If $M_U < N_U$ then swap M_U and N_U .
- 7) Refined Model: If $N_U = 1$ then
 - $-M_U \leftarrow N_R 2$
 - N_U ← 1
 - FMA ← 1
- Estimating N_B:

$$\left\lceil \frac{N_B^2}{B_1} \right\rceil + 3 \left\lceil \frac{N_B \times N_U}{B_1} \right\rceil + \left\lceil \frac{M_U}{B_1} \right\rceil \times N_U \le \frac{C_1}{B_1}$$

Trim N_B , to make it a multiple of M_U , N_U , and 2.

• Estimating Ku:

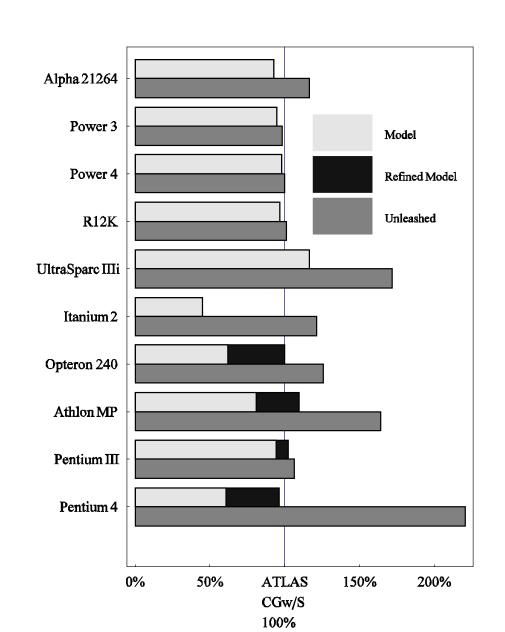
Choose K_U as the maximum value for which mini-MMM fits in the L1 instruction cache. Trim K_U to make it divide N_B evenly.

Estimating F_F, I_F, and N_F:

$$F_F = 0, I_F = 2, N_F = 2$$

Bottom line

- Refined model is not complex.
- Refined model by itself eliminates most performance gaps.
- Local search eliminates all performance gaps.



Future Directions

- Repeat study with FFTW/SPIRAL
 - Uses search to choose between algorithms
- Feed insights back into compilers
 - Build a linear algebra compiler for generating highperformance code for dense linear algebra codes
 - Start from high-level algorithmic descriptions
 - Use restructuring compiler technology
 - Part IBM PERCS Project
 - Generalize to other problem domains