Lazy Code Motion

COMP 512
Rice University
Houston, Texas

Spring 2009

“Lazy Code Motion,” J. Knoop, O. Ruthing, & B. Steffen, in PLDI 92
“A Variation of Knoop, Ruthing, and Steffen’s Lazy Code Motion,”
K. Drechsler & M. Stadel, SIGPLAN Notices, 28(5), May 1993
Treatment in Chapter 10 of Engineering a Compiler …

Redundant Expression

An expression is redundant at point p if, on every path to p
1. It is evaluated before reaching p, and
2. None of its constituent values is redefined before p

Example

\[
\begin{align*}
a &\leftarrow b + c \\
a &\leftarrow b + c \\
a &\leftarrow b + c
\end{align*}
\]

Some occurrences of \(b + c\) are redundant

\[
\begin{align*}
a &\leftarrow b + c \\
\end{align*}
\]

\[
\begin{align*}
b &\leftarrow b + 1 \\
a &\leftarrow b + c
\end{align*}
\]
Partially Redundant Expression

An expression is partially redundant at \(p \) if it is redundant along some, but not all, paths reaching \(p \)

Example

\[
\begin{align*}
 &\quad \quad b \leftarrow b + 1 \\
 &\quad \quad a \leftarrow b + c \\
 &\quad \quad a \leftarrow b + c \\
\end{align*}
\]

Inserting a copy of “\(a \leftarrow b + c \)” after the definition of \(b \) can make it redundant

Loop Invariant Expression

Another example

\[
\begin{align*}
 &\quad \quad x \leftarrow y \ast z \\
 &\quad \quad a \leftarrow b \ast c \\
\end{align*}
\]

Loop invariant expressions are partially redundant

- Partial redundancy elimination performs code motion
- Major part of the work is figuring out where to insert operations
Lazy Code Motion

The concept

- Solve data-flow problems that show opportunities & limits
- Compute INSERT & DELETE sets from solutions
- Linear pass over the code to rewrite it (using INSERT & DELETE)

The history

- Partial redundancy elimination (Morel & Renvoise, CACM, 1979)
- Improvements by Drechsler & Stadel, Joshi & Dhamdhere, Chow, Knoop, Rthing & Steffen, Dhamdhere, Sorkin, …
- All versions of PRE optimize placement
 > Guarantee that no path is lengthened
- LCM was invented by Knoop et al. in PLDI, 1992
- We will look at a variation by Drechsler & Stadel
 > SIGPLAN Notices 28(5), May 1993

Lazy Code Motion

The intuitions

- Compute available expressions
- Compute anticipable expressions
- From AVAIL & Ant, we can compute an earliest placement for each expression
- Push expressions down the CFG until it changes behavior

Assumptions

- Uses a lexical notion of identity (not value identity)
- ILOC-style code with unlimited name space
- Consistent, disciplined use of names
 > Identical expressions define the same name
 > No other expression defines that name

LCM operates on expressions
It moves expression evaluations, not assignments
Avoids copies
Result serves as proxy
Lazy Code Motion

The Name Space

- \(r_i + r_j \rightarrow r_k \), always, with both \(i < k \) and \(j < k \) (hash to find \(k \))
- We can refer to \(r_i + r_j \) by \(r_k \) (bit-vector sets)
- Variables must be set by copies
 - No consistent definition for a variable
 - Break the rule for this case, but require \(r_{\text{source}} < r_{\text{destination}} \)
 - To achieve this, assign register names to variables first

Without this name space

- LCM must insert copies to preserve redundant values
- LCM must compute its own map of expressions to unique ids

Digression in Chapter 5 of EAC: “The impact of naming”

Lazy Code Motion

Local Predicates

- \(\text{DEExpr}(b) \) contains expressions defined in \(b \) that survive to the end of \(b \) (downward exposed expressions)
 \[e \in \text{DEExpr}(b) \Rightarrow \text{evaluating } e \text{ at the end of } b \text{ produces the same value for } e \]
- \(\text{UEExpr}(b) \) contains expressions defined in \(b \) that have upward exposed arguments (both args) (upward exposed expressions)
 \[e \in \text{UEExpr}(b) \Rightarrow \text{evaluating } e \text{ at the start of } b \text{ produces the same value for } e \]
- \(\text{ExprKill}(b) \) contains those expressions that have one or more arguments defined (killed) in \(b \) (killed expressions)
 \[e \notin \text{ExprKill}(b) \Rightarrow \text{evaluating } e \text{ produces the same result at the start and end of } b \]

We have seen all three of these previously.
Lazy Code Motion

Availability

\[\text{AVAILIN}(n) = \bigcap_{m \in \text{preds}(n)} \text{AVAILOUT}(m), \quad n \neq n_0 \]

\[\text{AVAILOUT}(m) = \text{DEEXPR}(m) \cup (\text{AVAILIN}(m) \cap \overline{\text{EXPRKILL}(m)}) \]

Initialize \text{AVAILIN}(n) \text{ to the set of all names, except at } n_0

Set \text{AVAILIN}(n_0) \text{ to } \emptyset

Interpreting \text{AVAIL}

- \(e \in \text{AVAILOUT}(b) \iff \text{evaluating } e \text{ at end of } b \text{ produces the same value for } e. \text{ AVAILOUT tells the compiler how far forward } e \text{ can move }

- This differs from the way we call \text{AVAIL} in global redundancy elimination; the equations, however, are unchanged.

Lazy Code Motion

Anticipability

\[\text{ANTOUT}(n) = \bigcap_{m \in \text{succs}(n)} \text{ANTIN}(m), \quad n \text{ not an exit block} \]

\[\text{ANTIN}(m) = \text{UEEXPR}(m) \cup (\text{ANTOUT}(m) \cap \overline{\text{EXPRKILL}(m)}) \]

Initialize \text{ANTOUT}(n) \text{ to the set of all names, except at exit blocks}

Set \text{ANTOUT}(n) \text{ to } \emptyset, \text{ for each exit block } n

Interpreting \text{ANTOUT}

- \(e \in \text{ANTIN}(b) \iff \text{evaluating } e \text{ at start of } b \text{ produces the same value for } e. \text{ ANTIN tells the compiler how far backward } e \text{ can move }

- This view shows that anticipability is, in some sense, the inverse of availability (and explains the new interpretation of \text{AVAIL})
Lazy Code Motion

The intuitions

Available expressions

- $e \in \text{AVAILOUT}(b) \Rightarrow$ evaluating e at exit of b gives same result
- $e \in \text{AVAILIN}(b) \Rightarrow e$ is available from every predecessor of b
 \Rightarrow an evaluation at entry of b is redundant

Anticipable expressions

- $e \in \text{ANTIN}(b) \Rightarrow$ evaluating e at entry of b gives same result
- $e \in \text{ANTOUT}(b) \Rightarrow e$ is anticipable from every successor of b
 \Rightarrow evaluation at exit of b would a later evaluation redundant,
 on every path, so exit of b is a profitable place to insert e

Lazy Code Motion

Earliest placement on an edge

$\text{EARLIEST}(i,j) = \text{ANTIN}(j) \cap \text{AVAILOUT}(i) \cap (\text{EXPRKILL}(i) \cup \text{ANTOUT}(i))$

$\text{EARLIEST}(n_0,j) = \text{ANTIN}(j) \cap \text{AVAILOUT}(n_0)$

\Rightarrow insert e on the edge

Earliest is a predicate

- Computed for edges rather than nodes (placement)
- If $e \in \text{EARLIEST}(i,j)$
 - It can move to head of j, $\text{ANTIN}(j)$
 - It is not available at the end of i and $\text{EXPRKILL}(i)$
 - either it cannot move to the head of i or another edge leaving i prevents its placement in i $\text{ANTOUT}(i)$
Lazy Code Motion

Later (than earliest) placement

\[\text{LATERIN}(j) = \bigcap_{i \in \text{pred}(j)} \text{LATER}(i,j), \quad j \neq n_0 \]

\[\text{LATER}(i,j) = \text{EARLIEST}(i,j) \cup (\text{LATERIN}(i) \cap \text{UEEXPR}(i)) \]

Initialize \(\text{LATERIN}(n_0) \) to \(\emptyset \)

\(x \in \text{LATERIN}(k) \iff \) every path that reaches \(k \) has \(x \in \text{EARLIEST}(i,j) \) for some edge \((i,j)\) leading to \(x \), and the path from the entry of \(j \) to \(k \) is \(x \)-clear & does not evaluate \(x \)

\(\Rightarrow \) the compiler can move \(x \) through \(k \) without losing any benefit

\(x \in \text{LATER}(i,j) \iff (i,j) \) is its earliest placement, or it can be moved forward from \(i \) (\text{LATER}(i)) and placement at entry to \(i \) does not anticipate a use in \(i \) (moving it across the edge exposes that use)

Lazy Code Motion

Rewriting the code

\[\text{INSERT}(i,j) = \text{LATER}(i,j) \cap \text{LATERIN}(j) \]

\[\text{DELETE}(k) = \text{UEEXPR}(k) \cap \text{LATERIN}(k), \quad k \neq n_0 \]

\(\text{INSERT} \) & \(\text{DELETE} \) are predicates

Compiler uses them to guide the rewrite step

- \(x \in \text{INSERT}(i,j) \Rightarrow \) insert \(x \) at start of \(j \), end of \(i \), or new block
- \(x \in \text{DELETE}(k) \Rightarrow \) delete first evaluation of \(x \) in \(k \)

If local redundancy elimination has already been performed, only one copy of \(x \) exists. Otherwise, remove all upward exposed copies of \(x \)
Lazy Code Motion

Edge placement

- \(x \in \text{INSERT}(i,j) \)

Three cases

- \(|\text{succs}(i)| = 1 \Rightarrow \text{insert at end of } i\)
- \(|\text{succs}(i)| > 1, \text{ but } |\text{preds}(j)| = 1 \Rightarrow \text{insert at start of } j\)
- \(|\text{succs}(i)| > 1, \text{ and } |\text{preds}(j)| > 1 \Rightarrow \text{create new block in } <i,j> \text{ for } x\)

Lazy Code Motion

Example

\[B_1: \]
- \(r_1 \leftarrow 1 \)
- \(r_2 \leftarrow r_0 + @m \)
 if \(r_1 < r_2 \rightarrow B_2,B_3 \)

\[B_2: \]
- \(r_20 \leftarrow r_{17} * r_{18} \)
- \(r_4 \leftarrow r_1 + 1 \)
- \(r_1 \leftarrow r_4 \)
 if \(r_1 < r_2 \rightarrow B_2,B_3 \)

\[B_3: \]

| Critical edge rule will create landing pad when needed, as on edge \((B_1,B_2)\) |

Example is too small to show off Later

Insert(1,2) = \{ r_{20} \}
Delete(2) = \{ r_{20} \}