Dominators, control-dependence and SSA form

Organization

- Dominator relation of CFGs
 - postdominator relation
- Dominator tree
- Computing dominator relation and tree
 - Dataflow algorithm
 - Lengauer and Tarjan algorithm
- Control-dependence relation
- SSA form

Control-flow graphs

- CFG is a DAG
- Unique node **START** from which all nodes in CFG are reachable
- Unique node **END** reachable from all nodes
- Dummy edge to simplify discussion

Dominators

- In a CFG G, node a is said to dominate node b if every path from **START** to b contains a.
- Dominance relation: relation on nodes
 - We will write a dom b if a dominates b
Computing dominance relation

• Dataflow problem:

- Domain: powerset of nodes in CFG
- Confluence operation: set intersection
- Find greatest solution

Work through example on previous slide to check this.
Question: what do you get if you compute least solution?

Properties of dominance

• Dominance is
 – reflexive: a dom a
 – anti-symmetric: a dom b and b dom a → a = b
 – transitive: a dom b and b dom c → a dom c
 – tree-structured:
 - a dom c and b dom c → a dom b or b dom a
 - intuitively, this means dominators of a node are themselves ordered by dominance

Example of proof

• Let us prove that dominance is transitive.
 – Given: a dom b and b dom c
 – Consider any path P: START →+ c
 – Since b dom c, P must contain b.
 – Consider prefix of P = Q: START →+ b
 – Q must contain a because a dom b.
 – Therefore P contains a.
Dominator tree example

Check: verify that from dominator tree, you can generate full relation

Computing dominator tree

• Inefficient way:
 – Solve dataflow equations to compute full dominance relation
 – Build tree top-down
 • Root is START
 • For every other node
 – Remove START from its dominator set
 – If node is then dominated only by itself, add node as child of START in dominator tree
 • Keep repeating this process in the obvious way

Building dominator tree directly

• Algorithm of Lengauer and Tarjan
 – Based on depth-first search of graph
 – \(O(E \cdot \alpha(E)) \) where \(E \) is number of edges in CFG
 – Essentially linear time
• Linear time algorithm due to Buchsbaum et al
 – Much more complex and probably not efficient to implement except for very large graphs

Immediate dominators

• Parent of node \(b \) in tree, if it exists, is called the immediate dominator of \(b \)
 – written as \(\text{idom}(b) \)
 – \(\text{idom} \) not defined for \(\text{START} \)
• Intuitively, all dominators of \(b \) other than \(b \) itself dominate \(\text{idom}(b) \)
 – In our example, \(\text{idom}(c) = a \)
Useful lemma

- Lemma: Given CFG G and edge $a \rightarrow b$, $\text{idom}(b)$ dominates a.
- Proof: Otherwise, there is a path P: $\text{START} \rightarrow+ a$ that does not contain $\text{idom}(b)$. Concatenating edge $a \rightarrow b$ to path P, we get a path from START to b that does not contain $\text{idom}(b)$ which is a contradiction.

Postdominators

- Given a CFG G, node b is said to postdominate node a if every path from a to END contains b.
 - We write $b \text{ pdom} a$ to say that b postdominates a.
- Postdominance is dominance in reverse CFG obtained by reversing direction of all edges and interchanging roles of START and END.
- Caveat: $a \text{ dom} b$ does not necessarily imply $b \text{ pdom} a$.
 - See example: $a \text{ dom} b$ but b does not $\text{ pdom} a$.

Obvious properties

- Postdominance is a tree-structured relation.
- Postdominator relation can be built using a backward dataflow analysis.
- Postdominator tree can be built using Lengauer and Tarjan algorithm on reverse CFG.
- Immediate postdominator: ipdom.
- Lemma: if $a \rightarrow b$ is an edge in CFG G, then $\text{ipdom}(a)$ postdominates b.

Control dependence

- Intuitive idea:
 - node w is control-dependent on a node u if node u determines whether w is executed.
- Example:

 ![Control dependence diagram](image)

 We would say $S1$ and $S2$ are control-dependent on e.

Examples (contd.)

We would say node S1 is control-dependent on e. It is also intuitive to say node e is control-dependent on itself:
- execution of node e determines whether or not e is executed again.

Example (contd.)

- S1 and S3 are control-dependent on f
- Are they control-dependent on e?
- Decision at e does not fully determine if S1 (or S3 is executed) since there is a later test that determines this
- So we will NOT say that S1 and S3 are control-dependent on e
 - Intuition: control-dependence is about "last" decision point
- However, f is control-dependent on e, and S1 and S3 are transitively (iteratively) control-dependent on e

Example (contd.)

- Can a node be control-dependent on more than one node?
 - yes, see example
 - nested repeat-until loops
 - n is control-dependent on t1 and t2 (why?)
- In general, control-dependence relation can be quadratic in size of program

Formal definition of control dependence

- Formalizing these intuitions is quite tricky
- Starting around 1980, lots of proposed definitions
- Commonly accepted definition due to Ferrane, Ottenstein, Warren (1987)
- Uses idea of postdominance
- We will use a slightly modified definition due to Bilardi and Pingali which is easier to think about and work with
Control dependence definition

- First cut: given a CFG G, a node w is control-dependent on an edge (u→v) if
 - w postdominates v
 - ... w does not postdominate u
- Intuitively,
 - first condition: if control flows from u to v it is guaranteed that w will be executed
 - second condition: but from u we can reach END without encountering w
 - so there is a decision being made at u that determines whether w is executed

Small caveat: what if w = u in previous definition?
- See picture: is u control-dependent on edge u→v?
- Intuition says yes, but definition on previous slides says "u should not postdominate u" and our definition of postdominance is reflexive
- Fix: given a CFG G, a node w is control-dependent on an edge (u→v) if
 - w postdominates v
 - if w is not u, w does not postdominate u

Strict postdominance

- A node w is said to strictly postdominate a node u if
 - w ≠ u
 - w postdominates u
- That is, strict postdominance is the irreflexive version of the dominance relation
- Control dependence: given a CFG G, a node w is control-dependent on an edge (u→v) if
 - w postdominates v
 - w does not strictly postdominate u

Example

```
START  f  c  d  e  a  b  x  x  x  x
START→a
f→b
x  x  x  x

START  f  c  d  e  a  b  x  x  x  x
START→a
f→b
x  x  x  x
```
Computing control-dependence relation

- Nodes control dependent on edge \((u \rightarrow v)\) are nodes on path up the postdominator tree from \(v\) to \(ipdom(u)\), excluding \(ipdom(u)\)
 - We will write this as \([v, ipdom(u))\)
 - half-open interval in tree

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>START→a</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>f→b</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>c→d</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>c→e</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>a→b</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Computing control-dependence relation

- Compute the postdominator tree
- Overlay each edge \(u \rightarrow v\) on \(pdom\) tree and determine nodes in interval \([v, ipdom(u))\)
- Time and space complexity is \(O(EV)\).
- Faster solution: in practice, we do not want the full relation, we only make queries
 - \(cde(e)\): what are the nodes control-dependent on an edge \(e\)?
 - \(cde(w)\): what are the edges that \(w\) is control-dependent on?
 - \(cdequiv(w)\): what nodes have the same control-dependences as node \(w\)?
- It is possible to implement a simple data structure that takes \(O(E)\) time and space to build, and that answers these queries in time proportional to output of query (optimal) (Pingali and Bilardi 1997).

SSA form

- Static single assignment form
 - Intermediate representation of program in which every use of a variable is reached by exactly one definition
 - Most programs do not satisfy this condition
 - (eg) see program on next slide: use of \(Z\) in node \(F\) is reached by definitions in nodes \(A\) and \(C\)
 - Requires inserting dummy assignments called \(\Phi\)-functions at merge points in the CFG to "merge" multiple definitions
 - Simple algorithm: insert \(\Phi\)-functions for all variables at all merge points in the CFG and rename each real and dummy assignment of a variable uniquely
 - (eg) see transformed example on next slide

SSA example
Minimal SSA form

- In previous example, dummy assignment Z3 is not really needed since there is no actual assignment to Z in nodes D and G of the original program.
- Minimal SSA form
 - SSA form of program that does not contain such “unnecessary” dummy assignments
 - See example on next slide
- Question: how do we construct minimal SSA form directly?

Minimal-SSA form Example

Dominance frontier

- Dominance frontier of node w
 - Node u is in dominance frontier of node w if w dominates a CFG predecessor v of u, but does not strictly dominate u
- Dominance frontier = control dependence in reverse graph!

Iterated dominance frontier

- Irreflexive closure of dominance frontier relation
- Related notion: iterated control dependence in reverse graph
- Where to place Φ-functions for a variable Z
 - Let Assignments = {START} U {nodes with assignments to Z in original CFG}
 - Find set I = iterated dominance frontier of nodes in Assignments
 - Place Φ-functions in nodes of set I
- For example
 - Assignments = {START,A,C}
 - DF(Assignments) = {E}
 - DF(DF(Assignments)) = {B}
 - So I = {E,B}
 - This is where we place Φ-functions, which is correct
Why is SSA form useful?

• For many dataflow problems, SSA form enables sparse dataflow analysis that
 – yields the same precision as bit-vector CFG-based dataflow analysis
 – but is asymptotically faster since it permits the exploitation of sparsity
 – see lecture notes from Sept 6th
• SSA has two distinct features
 – factored def-use chains
 – renaming
 – you do not have to perform renaming to get advantage of SSA for many dataflow problems

Computing SSA form

• Cytron et al algorithm
 – compute DF relation (see slides on computing control-dependence relation)
 – find irreflexive transitive closure of DF relation for set of assignments for each variable
• Computing full DF relation
 – Cytron et al algorithm takes \(O(|V| + |DF|)\) time
 – \(|DF|\) can be quadratic in size of CFG
• Faster algorithms
 – \(O(|V| + |E|)\) time per variable: see Biliardi and Pingali

Dependences

• We have seen control-dependences.
• What other kind of dependences are there in programs?
 – Data dependences: dependences that arise from reads and writes to memory locations
• Think of these as constraints on reordering of statements

Data dependences

• Flow-dependence (read-after-write): \(S1 \rightarrow S2\)
 – Execution of \(S2\) may follow execution of \(S1\) in program order
 – \(S1\) may write to a memory location that may be read by \(S2\)
 – Example:

    ```
    x := 3
    ...
x
    ```

    ```
    flow-dependence
    ```

 while e do

    ```
    x := ...
    ```

    ```
    flow-dependence
    ```

    ```
    ....
    ```

 This is called a loop-carried dependence
Anti-dependences

- **Anti-dependence (write-after-read):** $S_1 \rightarrow S_2$
 - Execution of S_2 may follow execution of S_1 in program order
 - S_1 may read from a memory location that may be (over)written by S_2
 - Example:

    ```
    x := ... 
    ...x... 
    x := ...  \rightarrow \text{anti-dependence}
    ```

Output-dependence

- **Output-dependence (write-after-write):** $S_1 \rightarrow S_2$
 - Execution of S_2 may follow execution of S_1 in program order
 - S_1 and S_2 may both write to same memory location

Summary of dependences

- **Dependence**
 - **Data-dependence:** relation between nodes
 - Flow- or read-after-write (RAW)
 - Anti- or write-after-read (WAR)
 - Output- or write-after-write (WAW)
 - **Control-dependence:** relation between nodes and edges