m@OQ@@Q@Q@Q pue suorjetaJosue.d],

4 N

Recall:

e Polyhedral algebra tools for

o determining emptiness of convex polyhedra

e enumerating integers in such a polyhedron.
o Central ideas:

e reduction of matrices to echelon form by unimodular
column operations,

e Fourier-Motzkin elimination

Let us use these tools to determine (i) legality of permutation and

(ii) generation of transformed code.

N /

Loop permutation can be modeled as a linear transformation on iteration space:

o v
o 06 06 ©
o 06 o
o0
[)
I U
l
DO 1= I,N Loul v DOU=1,N
DOJ=IN DOV =1,U
XLH=5 XV, U)=5

Permutation of loops in n-loop nest: nxn permutation matrix P

PI =U

Questions:
(1) How do we generate new loop bounds?
(2) How do we modify the loop body?
(3) How do we know when loop interchange is legal?

aomm Generation for Transformed Loop Nest /
Two problems: (1) Loop bounds (2) Change of variables in body
(1) New bounds:

Original bounds: A x I < b where A is in echelon form

b
Transformation: U =1 x 1

Note: for loop permutation, 1" is a permutation matrix

=> inverse is integer matrix
So bounds on U can be written as A« T~ U < b

Perform Fourier-Motzkin elimination on this system of

inequalities to obtain bounds on U

(2) Change of variables:
I=T"'U

/W@@E@@ old variables by new using this formula \

5)

Example:
J Vv
® 6 0606 0 00O o
o © 6 06 0 O o O
e 6 06 0 O ® 06 0
e 6 06 O e 6 06 O
o 06 o ® 6 6 0 O
[I] o © 6 6 0 ©
o O 6 6 06 0 0 O
I §]
DO I=1,N SR AT A DOU=1,N
DOJ=1IN DOV =1,U Fourier-Motzkin
XLH=5 XV,U)=5 elimination
10| ﬁ@] 1 o | ﬁo Q ﬁg 1]
1 oolUd TN 1 o] L1 od LV TN
-1 0 1 -1 0
0 1 N 0 1] N

1 0| T g ﬁ@]
1 o] L1 0 Vi 7| N

1 -1 0

L 0 1 | N_|
0 -1 U < | -1
0 1 Vi 7| N

-1 1 0

1 9] N

Projecting out V from system gives
1= U = N
Bounds for V are

1 =V = min(UN)

These are loop bounds given by FM elimination.
With a little extra work, we can simplify the upper bound of V to U.

4 N

Key points:

e Loop bounds determination in transformed code is mechanical.
e Polyhedral algebra technology can handle very general bounds
with max’s in lower bounds and min’s in upper bounds.

e No need for pattern matching etc for triangular bounds and the
like.

Q hen is permutation legal?

Position so far: if there is a dependence between iterations, then
permutation is illegal.

DO I =1, 100
DO J =1, 100
X(21,3) = X(2I-1,J-1)...

Is there a flow dependence between different iterations?

1 < Tw,Ir,Jw,Jr <100
(Jw, Jw) < (Ir,Jr)
2w = 2Ir —1
Jw = Jr—1

ILP decision problem: is there an integer in union of two convex

polyhedra?

@o => permutation is legal.

/

simplistic.
Example:

DOI =1, 100
DO J =1, 100
X(1,J) = ..

X(I-1,J-1)...

1

(Tw, Jw)
Tw

Jw

VA

\wmwgcgﬁob is legal only if dependence does not exist:

Only dependence is flow dependence:

Tw, Jw, Ir, Jr <100

(Ir, Jr)
Ir—1
Jr —1

/Um@mﬁ&mﬁom exists but loop interchange is legal!

too

ILP problem has solution: for example, (lw =1,Jw =1,Ir =2, Jr = 2)

/

10

4 N

Point: Existence of dependence is a very “coarse” criterion to

determine if interchange is legal.

Additional information about dependence may let us conclude that

a transformation is legal.

To get a handle on all this, let is first define dependence precisely.

N /

11

\Oobmaﬁ. single loop case first:

DO I =1, 100
X(2I+1) =X(D)...

Flow dependences between iteratioms:
Iteration 1 writes to X(3) which is read by iteration 3.

Iteration 2 writes to X(5) which is read by iteration 5.

Iteration 49 writes to X(99) which is read by iteration 99.

If we ignore the array locations and just think about dependence

between iterations, we can draw this geometrically as follows:

o @ L ® ® .VH

o 1 2 3 4 5 6 7 8 9 10

Dependence arrows always go forward in iteration space. (eg. there

/om:sod be a dependence from iteration 5 to iteration 2)

12

-

Intuitively, dependence arrows tell us constraints on

transformations.

® ® ® ® ® ® VH

0 1 2 3 4 5 6 7 8 9 10

OK!

Transformed program does iteration 3 before iteration 1. Illegal!

-

Suppose a transformed program does iteration 2 before iteration 1.

/

13

-

Formal view of a dependence: relation between points in the

iteration space.

DO I =1, 100
X(2I+1) =X(D)...

Flow dependence = {({w, 2w + 1)|1 < Tw < 49}

(Note: this is a convex set)

In the spirit of dependence, we will often write this as follows:

Flow dependence = {({w — 2lw + 1)|1 < Tw < 49}

-

14

-

2D loop nest

DO 10 I = 1,100
DO 10 J = 1,100
10 X(I,J) = X(I-1,J+1) + 1

Dependence: relation of the form (11, J1) — ({2, J2).

Picture in iteration space:

SRR NN
/ source target

AN

(I1,J1) (12,02)
1 2 3 4 5

—_— N W K W

15

-

Legal and illegal dependence arrows:

J

—= legal dependence arrows

---=illegal dependence arrows

If (A — B) is a dependence arrow, then A must be

lexicographically less than or equal to B.

-

16

4 N

Dependence relation can be computed using ILP calculator

DO 10 I = 1,100
DO 10 J = 1,100
10 X(I,J) = X(I-1,J+1) + 1

Flow dependence constraints: (I, J) — (I, J;)
o 1 < Jw,Ir, Jw,Jr <100
o (ly,Jw) < (Ir,Jr)
o [,=1,—1
o J,=J-+1

Use ILP calculator to determine the following relation:

D = {(Iw, Jw) — (Iw+ 1, Jw — D)|(1 < Tw < 99) A (2 < Jw < 100)}

N /

17

Qém have the full dependence relation, can we determine when /

permutation is legal?

Let us look at geometric picture to understand when permutation
is legal.
.\\.\\.\\

e

/
/

W/« L dd

1 2 3 4 5 12345

— N W R~ N~

%
v

DOI=1N DOI=1,N
DOJT=1N DOJ=1N
X(L)) = X(I-1,J+1)...... X(L)) = X(-1,J-1)......

Permutation is illegal Permutation is legal

Intuitively, if an iteration is dependent on an iteration in its "upper

left hand corner”, permutation is illegal. How do we express this

/?HE@E\N \

18

4 N

Legality of permutation can be framed as an ILP problem.

DO 10 I = 1,100
DO 10 J = 1,100
10 X(I,J) = X(I-1,J+1) + 1

Permutation is illegal if there exist iterations ([1, J1), (I2, J2) in source

program such that

o ((I1,J1) — (I2,J2)) € D (dependent iterations)
o (J2,12) < (J1,11) (iterations done in wrong order in transformed

program)

This can obviously be phrased as an ILP problem and solved.
OS@ solution: ANT NNHV = AHQ Mvu ANM“ FNMV = AMU Hv

Interchange is illegal.

N /

19

g@b@w& picture:

Permutation is co-ordinate transformation: U = P x I where P is

permutation matrix.

Conditions for legality of transformation:

iterations [, and I, such that

(L —1,)eD
P(l,) < P(1,)

First condition: dependent iterations
Second condition: iterations are done in wrong order in

transtormed program.

Legality of permutation can be determined by solving a bunch of

/HH% problems.

/

a

For each dependence D in loop nest, check that there do not exist

/

20

-

Problems with using full dependence sets:

e Expensive (time/space) to compute full relations

e Need to solve ILP problems again to determine legality of
permutation

e Symbolic loop bounds (’N’) require parameterized sets ("N’ is

unbound variable in definition of dependence set)
Dependence abstractions: summary of dependence set D

e less information than full set of tuples in D
e more information than non-emptiness of D
e intuitively, “as much as is needed for transformations of

interest”

-

21

- N

Distance/direction: Summarize dependence relation

Look at dependence relation from earlier slides:

((1,2) — (2,1),(1,3) — (2,2), .(2,2) — (3,1)...}

J

m / //WH

4 / source target
3

2

1

(I11,J1) (12,02)
W/

1 2 3 4 5

Difference between dependent iterations = (1, —1). That is,
(L, Jw) — (I, J) € dependence relation, implies
I, —1,=1
Jr — Jy = —1
We will say that the distance vectoris (1,—1).

Note: From distance vector, we can easily recover the full relation.

In this case, distance vector is an ezxact summary of relation.

N /

22

4 N

Set of dependent iterations usually is represented by many distance
vectors.

DO I =1, 100
X(2I+1) =X(D)...

Flow dependence = {(/w — 21w + 1)|1 < Tw < 49}

Distance vectors: {(2), (3), (4), , (50)}

Distance vectors can obviously never be negative (if (-1) was a distance
vector for some dependence, there is an iteration /; that depends on

iteration I; 4+ 1 which is impossible.)

N /

23

4 N

Distance vectors are an approximation of a dependence:

(intuitively, we know the arrows but we do not know their sources.)
Example: D = {(Iw,2lw + 1)|1 < Tw < 49}
Distance vectors: {(2), (3), (4), , (50)}

NUH = A__HA.NTva:H m NH M %wv A Amo |_|.NHV W .Nw W AMNH + va 1S a
(convex) superset of D that has the same distance vectors.

Both dependences have same set of distance vectors

24

\Oogﬁcﬁsm distance vectors for a dependence

DO I =1, 100
X(2I+1) =X(D)...

Flow dependence:

1

VAN

Tw < It < 100
2lw+1 = Ir
Flow dependence = {({w, 2w + 1)|1 < Tw < 49}

Computing distance vectors without computing dependence set:

Introduce a new variable A = Ir — Jw and project onto A

1 < JTw<Ir <100
2[w+1 = Ir
A = Ir—Tw

/mo_sios” A ={d]2 <d <50}

25

-

Example:2D loop nest

DO 10 T = 1,100
DO 10 J = 1,100
10 X(I,J) = X(I-1,J+1) + 1

Flow dependence constraints: (I, Ju) — (Ir, Jr)
Distance vector: (A1, Aqz) = (I, — Ly, Jr — Ju)

o 1 < Jw,Ir, Jw,Jr <100

o (Iy,Jw)=<(Ir,Jy)

o [,=1,—1

o J,=J,+1

o (A1, A)=(I—1yw,Jr — Ju)

MOMdeOSH ADT Dwv = AH“ |HV

-

26

4 N

General approach to computing distance vectors:

Set of distance vectors generated from a dependence is itself a

polyhedral set.
Computing distance vectors without computing dependence set:

To the linear system representing the existence of the dependence,
add new variables corresponding to the entries in the distance

vector and project onto these variables.

N /

27

4 N

Reality check:
In general, dependence is some complicated convex set.

In general, distance vectors of a dependence are also some

complicated convex set!

What is the point of “summarizing” one complicated set by

another equally complicated set?!!

Answer: We use distance vector summary of a dependence only
when dependence can be summarized by a single distance vector

(called a uniform dependence).

How do we summarize dependence when we do not have a uniform

dependence? Answer: use direction vectors.

N /

28

Q:.moﬁos vectors Example:
DO 10 I = 1,100
10 X(2I+1) = X(I) + 1

Flow dependence equation: 21, +1 = I,.
Dependence relation: {(1 — 3),(2 —5),(3 —7),...} (1).

No fixed distance between dependent iterations!

Here, direction = (+).

Intuition: (4) direction = some distances in range [1, c0)

In general, direction = (4) or (0) or (-).
Also written by some authors as (<), (=), or (>).

Dairection vectors are not exact.

get bigger relation than (1):

Kﬁ —2),(1—=3),...,(1 —100),(2 — 3),(2 — 4),...}

But all distances are +ve, so use direction vector instead.

(eg):if we try to recover dependence relation from direction (+), we

/

37

\U?moﬂosm for Nested Loops

Assume loop nest is (I,J).

If (I1,J1) — (2, J2) € dependence relation, then
Distance = (Is — I, Jo — J1)
Direction = (sign(Is — I1), sign(Jo — J1))

: : . . Legal direction vectors:
(+:1) (0,1
An_nu:v AOuOv
(+,0)

The following direction vectors cannot exist:

Aounv Anwu_lv

//\@:Q dependence vectors are lexicographically positive.

38

Amoﬁ. to compute Directions: Use IP engine /

DO 10 I =1, 100
X(£(I)) =
10 = ...X(g(I)).

Focus on flow dependences:

\JANSV — QANL

1 <1, <100

1 <1I,.<100
First, use inequalities shown above to test if dependence exists in
any direction (called (*) direction).

If IP engine says there are no solutions, no dependence.
Otherwise, determine the direction(s) of dependence.

Test for direction (+): add inequality I, < I,
Test for direction (0): add inequality I, = I,

/ In a single loop, direction (—) cannot occur. \

39

hogwcﬂsm Directions: Nested Loops /

Same idea as single loop: hierarchical testing

*,™)

(+,%) (0, %) illegal

SN/

+.,H +,0 (- (0,4 (0,0

directions

Figure 1: Hierarchical Testing for Nested Loop

Key ideas:

(1) Refine direction vectors top down.
(eg),no dependence in (x,*) direction

= no need to do more tests.

/va Do not test for impossible directions like (—, *). \

40

4 N

It 1s also possible to compute direction vectors by projecting on the

variables in the A, the iteration difference vector.
Similar to what we did for distance vectors.

Left as an exercise for you.

N /

41

-

Big hairy example: Compute dependences for following program:

DO I = 1,N
DO J = 1,N
X(I,J) = ...X(I,D)...
J Lo+ 4 +
—= anti-dependence
T+ o+ 4 +
— flow dependence
T+ s o+ o+
0
@
+ o+ + o+
1 N - anti flow

42

ngw system for anti-dependence:
I, =1,
Jo =1,
1< Iy, 1, Jy,Jr <N
(I, Jr) = (Lo Jw)
Al = (I, — 1)
A2 = (J, — Jp)
Projecting onto Al and A2, we get
Al =0
0<A2LS (N -1)
So directions for anti-dependence are

0 and O

/o +

43

-

-

Similarly, you can compute direction for flow dependence

0
|_|

and also show that no output dependence exists.

44

4 N

Dependence matrix for a loop nest

Matrix containing all dependence distance/direction vectors for all

dependences of loop nest.

In our example, the dependence matrix is

0 O
o +

N /

45

Dependence direction/distance are adequate for testing legality of

permutation.

46

0 NI[I|_|U
DOJ=1IN Lol Ty DOV =1U

I1 12
— T I1 T 12
J1 2 j1 n
Dependence distance = 2-1 Distance between iterations =
12 -J1
12 -11 J2-J1
T 2y T I1 - T —
AW 71 12 -J1 12-11

Check for legality: interchange positions in distance/direction vector & check for lex +ve

If transformation P is legal and original dependence matrix is D, new dependence matrix is T*D.

47

-

Correctness of general permutation
Transformation matrix: T

Dependence matrix: D

Matrix in which each column is a distance/direction vector
Legality: T.D > 0

Dependence matrix of transformed program: T.D

-

48

-

Examples:

DO I = 1,N
DO J = 1,N
X(I,J) = X(I-1,J-1).

Distance vector = (1,1) => permutation is legal

Dependence vector of transformed program = (1,1)

DOI = 1,N
DO J = 1,N
X(I,J) = X(I-1,J+1)....

Distance vector = (1,-1) => permutation is not legal

-

49

4 N

Remarks on dependence abstractions

A good dependence abstraction for a transformation should have

the following properties.

e Fasy to compute
e Easy to test for legality.
e FEasy to determine dependence abstractions for transformed

program.

Direction vectors are a good dependence abstraction for

permutation.

N /

50

-

Engineering a dependence analyzer
In principle, we can use IP engine to compute all directions.
Reality: most subscripts and loop bounds are simple!

Engineering a dependence analyzer:

First check for simple cases.

Call IP engine for more complex cases.

o1

4 N

Conclusions

Traditional position: exact dependence testing (using IP engine) is
too expensive

Recent experience:

(1) exact dependence testing is OK provided we first check for easy
cases (ZIV,strong SIV, weak SIV)

(ii) IP engine is called for 3-4% of tests for direction vectors

(iii)) Cost of exact dependence testing: 3-5% of compile time

N /

63

