
CS 380C: 
Advanced Topics in Compilers 



Administration 

• Instructor: Keshav Pingali 
– Professor (CS, ICES) 
– ACES 4.126A 
– pingali@cs.utexas.edu 

• TA: Oswaldo Olivo 
– Graduate student (CS) 
– olivo@cs.utexas.edu 

 



Meeting times 

• Lecture:  
– TTh 9:30-11:00AM, RLM 6.126 

• Office hours: 
– Keshav Pingali: Tuesday 11-12 AM, ACES 4.126 



Prerequisites 

• Compilers and architecture 
– Some background in compilers (front-end stuff) 
– Basic computer architecture 

• Software and math maturity 
– Able to implement large programs in C/C++ 
– Comfortable with abstractions like graph theory 

• Ability to read research papers and understand 
content 



Course material 

• Website for course 
– http://www.cs.utexas.edu/users/pingali/CS380C/2013/index.html 

• All lecture notes, announcements, papers, 
assignments, etc. will be posted there 

• No assigned book for the course 
– but we will put papers and other material on the 

website as appropriate 

http://www.cs.utexas.edu/users/pingali/CS380C/2013/index.html


Coursework 

• 4-5 programming assignments and problem sets 
– Work in pairs  

• Term project 
– Substantial implementation project 
– Based on our ideas or yours in the area of compilers 
– Work in pairs 

• Paper presentations 
– Towards the end of the semester 



What do compilers do? 
• Conventional view of compilers 

– Program that analyzes and translates a high-level language program 
automatically into low-level machine code that can be executed by the 
hardware 

– May do simple (scalar) optimizations to reduce the number of operations 
– Ignore data structures for the most part 

• Modern view of compilers 
– Program for translation, transformation and verification of high-level 

language programs 
– Reordering (restructuring) the computations is as important if not more 

important than reducing the amount of computation 
– Optimization of data structure computations is critical 
– Program analysis techniques can be useful for other applications such as  

• debugging,  
• verifying the correctness of a program against a specification,  
• detecting malware, …. 

 
 

 



• Bridge the “semantic gap” 
– Programmers prefer to write programs at a high level of abstraction 
– Modern architectures are very complex, so to get good 

performance, we have to worry about a lot of low-level details 
– Compilers let programmers write high-level programs and still get 

good performance on complex machine architectures 
• Application portability 

– When a new ISA or architecture comes out, you only need to 
reimplement the compiler on that machine 

– Application programs should run without (substantial) 
modification 

– Saves a huge amount of programming effort 
 

Why do we need translators? 



Complexity of modern architectures: 
AMD Barcelona Quad-core Processor 



Discussion 
• To get good performance on modern processors, program 

must exploit 
– coarse-grain (multicore) parallelism 
– memory hierarchy (L1,L2,L3,..) 
– instruction-level parallelism (ILP) 
– registers 
– …. 

• Key questions: 
– How important is it to exploit these hardware features?  

• If you have n cores and you run on only one, you get at most 1/n of 
peak performance, so this is obvious 

• How about other hardware features? 
– If it is important, how hard is it to do this by hand? 

• Let us look at memory hierarchies to get a feel for this 
– Typical latencies 

• L1 cache: ~ 1 cycle 
• L2 cache: ~ 10 cycles 
• Memory: ~ 500-1000 cycles 



Software problem 

• Caches are useful only if programs have                  
locality of reference 
– temporal locality: program references to given memory 

address are clustered together in time 
– spatial locality: program references clustered in address 

space are clustered in time 
• Problem: 

– Programs obtained by expressing most algorithms in 
the straight-forward way do not have much locality of 
reference 

– Worrying about locality when coding algorithms 
complicates the software process enormously. 



Example: matrix multiplication 

• Great algorithmic data reuse: each array element is touched 
O(N) times! 

• All six loop permutations are computationally equivalent 
(even modulo round-off error). 

• However, execution times of the six versions can be very 
different if machine has a cache. 

DO I = 1, N    //assume arrays stored in row-major order 
   DO J = 1, N 
      DO K = 1, N 
        C(I,J) = C(I,J) + A(I,K)*B(K,J) 



IJK version (large cache) 

DO I = 1, N 
   DO J = 1, N 
      DO K = 1, N 
        C(I,J) = C(I,J) + A(I,K)*B(K,J) 

 
• Large cache scenario: 

– Matrices are small enough to fit into cache 
– Only cold misses, no capacity misses 
– Miss ratio:    

• Data size = 3 N2  

• Each miss brings in b floating-point numbers 
• Miss ratio = 3 N2 /b*4N3 = 0.75/bN = 0.019 (b = 4,N=10) 
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IJK version (small cache) 

DO I = 1, N 
   DO J = 1, N 
      DO K = 1, N 
        C(I,J) = C(I,J) + A(I,K)*B(K,J) 

 • Small cache scenario: 
– Matrices are large compared to cache/row-major storage 
– Cold and capacity misses  
– Miss ratio:    

• C:  N2/b misses (good temporal locality) 
• A: N3 /b misses (good spatial locality) 
• B:  N3 misses (poor temporal and spatial locality) 
• Miss ratio  0.25 (b+1)/b = 0.3125 (for b = 4) 
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MMM Experiments 
• Simulated L1 Cache Miss Ratio for Intel Pentium III 

– MMM with N = 1…1300 
– 16KB 32B/Block 4-way 8-byte elements 

 
 



Quantifying performance differences 

DO I = 1, N    //assume arrays stored in row-major order 
   DO J = 1, N 
      DO K = 1, N 
        C(I,J) = C(I,J) + A(I,K)*B(K,J) 

 • Typical cache parameters: 
– L2 cache hit: 10 cycles, cache miss 70 cycles 

• Time to execute IKJ version: 
    2N3 +  70*0.13*4N3 + 10*0.87*4N3   = 73.2 N3 

• Time to execute JKI version: 
    2N3 +  70*0.5*4N3 + 10*0.5*4N3   =  162 N3 

• Speed-up = 2.2 
• Key transformation: loop permutation 

 
 



Even better….. 
• Break MMM into a bunch of smaller MMMs so that large cache model is true 

for each small MMM 
       large cache model is valid for entire computation 
       miss ratio will be 0.75/bt for entire computation where t is  



Loop tiling/blocking 

• Break big MMM into sequence of smaller MMMs where 
each smaller MMM multiplies sub-matrices of size txt. 

• Parameter t (tile size) must be chosen carefully 
– as large as possible 
– working set of small matrix multiplication must fit in cache 
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Speed-up from tiling/blocking 

• Miss ratio for block computation 
    = miss ratio for large cache model 
    = 0.75/bt 
    = 0.001 (b = 4, t = 200)  
• Time to execute tiled version = 

 2N3 + 70*0.001*4N3 + 10*0.999*4N3 = 42.3N3 

• Speed-up over JKI version = 4 
 



Observations 
• Locality optimized code is more complex than high-level algorithm. 
• Locality optimization changed the order in which operations were 

done, not the number of operations 
• “Fine-grain” view of data structures (arrays) is critical 
• Loop orders and tile size must be chosen carefully 

– cache size is key parameter 
– associativity matters 

• Actual code is even more complex: must optimize for processor 
resources 
– registers: register tiling 
– pipeline: loop unrolling 
– Optimized MMM code can be ~1000’s of  lines of C code 

• Wouldn’t it be nice to have all this be done automatically by a 
compiler? 
– Actually, it is done automatically nowadays… 

 



Performance of MMM code produced by  
Intel’s Itanium compiler (-O3) 

Goto BLAS obtains close to 99% of peak, so compiler is pretty good! 

GFLOPS relative to -O2; bigger is better
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Discussion 
• Exploiting parallelism, memory hierarchies etc. is very 

important 
• If program uses only one core out of n cores in processors, 

you get at most 1/n of peak performance 
• Memory hierarchy optimizations are very important 

–  can improve performance by factor of 10 or more 
• Key points: 

– need to focus on data structure manipulation 
– reorganization of computations and data structure layout are key 
– few opportunities usually to reduce the number of computations 

 



Organization of modern compiler 

Our focus 



Front-end 

• Goal: convert linear representation of program 
to hierarchical representation 
– Input: text file 
– Output: abstract syntax tree + symbol table 

• Key modules: 
– Lexical analyzer: converts sequence of characters 

in text file into sequence of tokens 
– Parser: converts sequence of tokens into abstract 

syntax tree + symbol table 
– Semantic checker: (eg) perform type checking 



High-level optimizer 

• Goal: perform high-level analysis and 
optimization of program 

• Input: AST + symbol table from front-end 
• Output: Low-level program representation 

such as 3-address code 
• Tasks: 

– Procedure/method inlining 
– Array/pointer dependence analysis 
– Loop transformations: unrolling, permutation, 

tiling, jamming,…. 



Low-level optimizer 

• Goal: perform scalar optimizations on low-level 
representation of program 

• Input: low-level representation of program such as 
3-address code 

• Output: optimized low-level representation + 
additional information such as def-use chains 

• Tasks: 
– Dataflow analysis: live variables, reaching definitions, 

… 
– Scalar optimizations: constant propagation, partial 

redundancy elimination, strength reduction, …. 



Code generator 

• Goal: produce assembly/machine code from 
optimized low-level representation of program 

• Input: optimized low-level representation of 
program from low-level optimizer 

• Output: assembly/machine code for real or 
virtual machine 

• Tasks: 
– Register allocation 
– Instruction selection 
 



Discussion (I) 

• Traditionally, all phases of compilation were completed 
before program was executed 

• New twist: virtual machines 
– Offline compiler: 

• Generates code for virtual machine like JVM 
– Just-in-time compiler:  

• Generates code for real machine from VM code while program is 
executing 

• Advantages: 
– Portability 
– JIT compiler can perform optimizations for particular input 

 



Discussion (II) 

• On current processors, accessing memory to fetch 
operands for a computation takes much longer than 
performing the computation 
 performance of most programs is limited by memory 

latency rather than by speed of computation (memory wall 
problem) 

 reducing memory traffic (locality) is more important than 
optimizing scalar computations 

• Another problem: power  
– takes much more power to move data than to perform an 

arithmetic operation 
– exploiting locality is critical for power management as well 
 

 
 
 



Course content (scalar stuff) 
• Introduction  

– compiler structure, architecture and compilation, sources of improvement  
• Control flow analysis  

– basic blocks & loops, dominators, postdominators, control dependence  
• Data flow analysis  

– lattice theory, iterative frameworks, reaching definitions, liveness  
• Static-single assignment  

– static-single assignment, constant propagation.  
• Global optimizations  

– loop invariant code motion, common subexpression elimination, strength reduction.  
• Register allocation  

– coloring, allocation, live range splitting.  
• Instruction scheduling  

– pipelined and VLIW architectures, list scheduling.  
 



Course content (data structure stuff) 

• Array dependence analysis  
– integer linear programming, dependence abstractions.  

• Loop transformations  
– linear loop transformations, loop fusion/fission, enhancing 

parallelism and locality 
• Self-optimizing programs  

– empirical search, ATLAS, FFTW 
• Analysis of pointer-based programs 

– points-to and shape analysis 
• Parallelizing graph programs  

– amorphous data parallelism, exploiting amorphous data-parallelism 
• Program verification 

– Floyd-Hoare style proofs, model checking, theorem provers 
 
 



Lecture schedule 

• See 
– http://www.cs.utexas.edu/users/pingali/CS380C/2013/index.html 

• Some lectures will be given by guest 
lecturers from my group and from industry 

http://www.cs.utexas.edu/users/pingali/CS380C/2013/index.html
http://www.cs.utexas.edu/users/pingali/CS380C/2010/index.html
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