CS 380C.:
Advanced Topics in Compilers

Administration

 [nstructor: Keshav Pingali
— Professor (CS, ICES)
— ACES 4.126A
— pingali@cs.utexas.edu
 TA: Oswaldo Olivo
— Graduate student (CS)
— olivo@cs.utexas.edu

Meeting times

e Lecture:
— TTh 9:30-11:00AM, RLM 6.126

 Office hours:
— Keshav Pingali: Tuesday 11-12 AM, ACES 4.126

Prerequisites

e Compilers and architecture
— Some background in compilers (front-end stuff)
— Basic computer architecture
o Software and math maturity
— Able to implement large programs in C/C++
— Comfortable with abstractions like graph theory

 Ability to read research papers and understand
content

Course material

e \Website for course

 All lecture notes, announcements, papers,
assignments, etc. will be posted there

* No assigned book for the course

— but we will put papers and other material on the
website as appropriate

http://www.cs.utexas.edu/users/pingali/CS380C/2013/index.html

Coursework

o 4-5 programming assignments and problem sets
— Work In pairs

e Term project
— Substantial implementation project
— Based on our ideas or yours in the area of compilers
— Work In pairs

o Paper presentations
— Towards the end of the semester

What do compilers do?

« Conventional view of compilers

— Program that analyzes and translates a high-level language program
automatically into low-level machine code that can be executed by the
hardware

— May do simple (scalar) optimizations to reduce the number of operations
— lgnore data structures for the most part
* Modern view of compilers

— Program for translation, transformation and verification of high-level
language programs

— Reordering (restructuring) the computations is as important if not more
Important than reducing the amount of computation

— Optimization of data structure computations is critical

— Program analysis techniques can be useful for other applications such as
» debugging,
« verifying the correctness of a program against a specification,
 detecting malwatre,

Why do we need translators?

* Bridge the “semantic gap”
— Programmers prefer to write programs at a high level of abstraction

— Modern architectures are very complex, so to get good
performance, we have to worry about a lot of low-level details

— Compilers let programmers write high-level programs and still get
good performance on complex machine architectures
» Application portability
— When a new ISA or architecture comes out, you only need to
reimplement the compiler on that machine

— Application programs should run without (substantial)
modification

— Saves a huge amount of programming effort

Complexity of modern architectures:
AMD Barcelona Quad-core Processor

Branch
L1 oA Prediction
Icache -
64KB Scan/Align
: Fastpath [Microcode Enﬂine
5 i ! } }
DR 2 a : “E;;“-—_.__ l l 1
L1 Instruction Control Unit (72 entries)|
Dcache I]
64KB < T 11 T 1] >
T |Int Decode & Rename| |FP Decode & Rename|
} ! | P 44
44-entry Res | | Res Res |36-¢=.-ntr'g'r FP scheduler
Load/ | ! ! ! | |
<— AGU =] AGuU | AGu| [FapD| |[FMuL| FMmIS(
Store Lt ALU — ALU 2|
Queue | jouy

Discussion

To get good performance on modern processors, program
must exploit

— coarse-grain (multicore) parallelism

— memory hierarchy (L1,L2,L3,..)

— Instruction-level parallelism (ILP)

— registers

Key questions:
— How important is it to exploit these hardware features?

 If you have n cores and you run on only one, you get at most 1/n of
peak performance, so this is obvious

» How about other hardware features?
— If it is important, how hard is it to do this by hand?

Let us look at memory hierarchies to get a feel for this

— Typical latencies
e L1 cache: ~1cycle
» L2 cache: ~ 10 cycles
e Memory: ~ 500-1000 cycles

Software problem

e Caches are useful only if programs have
locality of reference

— temporal locality: program references to given memory
address are clustered together in time

— spatial locality: program references clustered in address
space are clustered in time

 Problem:

— Programs obtained by expressing most algorithms in
the straight-forward way do not have much locality of
reference

— Worrying about locality when coding algorithms
complicates the software process enormously.

Example: matrix multiplication

DO I1=1,N //assume arrays stored in row-major order
DOJ=1,N
DOK=1,N
C(1,9) = C(1,J) + A(l,LK)*B(K,J)

« Great algorithmic data reuse: each array element is touched
O(N) times!

o All six loop permutations are computationally equivalent
(even modulo round-off error).

e However, execution times of the six versions can be very
different if machine has a cache.

|JK version (large cache)

B
DOI1=1 N R 1
DOJ=1 N
DOK=1 N = | = |
C(1.J) = C(1J) + A(LKY*B(K.J)

e Large cache scenario:
— Matrices are small enough to fit into cache
— Only cold misses, no capacity misses

— Miss ratio:
e Data size = 3 N?
« Each miss brings in b floating-point numbers
e Miss ratio = 3 N?2/b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)

|JK version (small cache)

B
DOI1=1 N R 1
DOJ=1 N
DOK=1 N = | = |
C(1.J) = C(1J) + A(LKY*B(K.J)

e Small cache scenario:
— Matrices are large compared to cache/row-major storage
— Cold and capacity misses
— Miss ratio:
e C: N?b misses (good temporal locality)
* A: N3/b misses (good spatial locality)

« B: N2misses (poor temporal and spatial locality)
« Miss ratio = 0.25 (b+1)/b = 0.3125 (for b = 4)

MMM EXxperiments

e Simulated L1 Cache Miss Ratio for Intel Pentium 11
— MMM with N =1...1300
— 16KB 32B/Block 4-way 8-byte elements

Awerage of Miss#l

055
0.5
045 | | I
0.4
' Form
0.35 T -
—ijk
0.3 | I}‘lll —lkJ
| \ Jik
T iki
0.25 R AR AR ! -
‘]||II | |H — kij
0.2 g T — ki
' | fi M | — (blank)
I
0.15 | "'l |
| |I |1 H ,-’-—i._’“________.—-—-v—
01 ! ‘l o o
I |
0.05
]

mmm
Mmow T 4 o® T o4 om & oWoin o= T T R 2 9 B = 3T £ = & 0F R OB o2 T ok o® T o oMomom M om O F M o= F o4 2 & R &
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Quantifying performance differences

DO I1=1,N //assume arrays stored in row-major order
DOJ=1,N
DOK=1,N
C(1,J) = C(1,J) + A(1,K)*B(K,J)

o Typical cache parameters:
— L2 cache hit: 10 cycles, cache miss 70 cycles

o Time to execute IKJ version:
2N3 + 70%0.13*4N3 + 10*0.87*4N3 =73.2 N3
e Time to execute JKI version:
2N3 + 70*0.5*4N3 + 10*0.5*4N3 = 162 N3
o Speed-up =2.2
o Key transformation: loop permutation

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Even better.....

Break MMM into a bunch of smaller MMMs so that large cache model is true
for each small MMM

=>» large cache model is valid for entire computation

=>» miss ratio will be 0.75/bt for entire computation where t is
pd

Farm

—ijk
—ikj

Jik

jki
— kij
— kji
—— (blank)

memememe

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
mm

Loop tiling/blocking

Jt B
DO It=1,N,t 7
DO Jt=1,N,t .
DO Kt=1,N,t A -

DO | = It,It+t-1
DO J = Jt,Jt+t-1 It l " '
DO K = Kt,Kt+t-1 T t.

e ey | VERE

K C

Kt

Break big MMM into sequence of smaller MMMSs where
each smaller MMM multiplies sub-matrices of size txt.
o Parameter t (tile size) must be chosen carefully

— as large as possible
— working set of small matrix multiplication must fit in cache

Speed-up from tiling/blocking

o Miss ratio for block computation
= miss ratio for large cache model
= 0.75/bt
=0.001 (b =4, t=200)
e Time to execute tiled version =
2N3 + 70*0.001*4N3+ 10*0.999*4N°® = 42.3N?
o Speed-up over JKI version =4

Observations

Locality optimized code is more complex than high-level algorithm.
Locality optimization changed the order in which operations were
done, not the number of operations

“Fine-grain” view of data structures (arrays) is critical

Loop orders and tile size must be chosen carefully

— cache size is key parameter

— associativity matters
Actual code is even more complex: must optimize for processor
resources

— registers: register tiling

— pipeline: loop unrolling

— Optimized MMM code can be ~1000’s of lines of C code
Wouldn’t it be nice to have all this be done automatically by a
compiler?

— Actually, it is done automatically nowadays...

Performance of MMM code produced by
Intel’s Itanium compiler (-O3)

GFLOPS relative to -O2; bigger is better
92% of Peak
30 Performance
8 25
g 20
=
T 15
(7]
©
T~ 10
S
8 5
O — | 1 [1
N g% 38 o ™
© © & fzﬁ\& \3@Q //'O o'o
Q\Q &(\’(\ (\\O\ (\Q QO
X \Q@ x\) \0(\}5
X XQ

Goto BLAS obtains close to 99% of peak, so compiler is pretty good!

Discussion

Exploiting parallelism, memory hierarchies etc. is very
Important

If program uses only one core out of n cores in processors,
you get at most 1/n of peak performance
Memory hierarchy optimizations are very important
— can improve performance by factor of 10 or more
Key points:
— need to focus on data structure manipulation

— reorganization of computations and data structure layout are key
— few opportunities usually to reduce the number of computations

’ ! \

Organization of modern compiler

l Source program

Front—end

,Our focus
High—level Optimizer

(3—address code.....)

R

Low—level representatior

Low—level Optimizer

resentation

| Augmented low—level re

Code generator

S ~ PR

~

\ 4
N 7
B R 7‘V- Assembly-or-maehine code

Front-end

 Goal: convert linear representation of program
to hierarchical representation

— Input: text file
— Output: abstract syntax tree + symbol table

o Key modules:

— Lexical analyzer: converts sequence of characters
In text file into sequence of tokens

— Parser: converts sequence of tokens into abstract
syntax tree + symbol table

— Semantic checker: (eg) perform type checking

High-level optimizer

Goal: perform high-level analysis and
optimization of program
Input: AST + symbol table from front-end

Output: Low-level program representation
such as 3-address code

Tasks:
— Procedure/method inlining

— Array/pointer dependence analysis

— Loop transformations: unrolling, permutation,
tiling, jamming,....

Low-level optimizer

Goal: perform scalar optimizations on low-level
representation of program

Input: low-level representation of program such as
3-address code

Output: optimized low-level representation +
additional information such as def-use chains

Tasks:
— Dataflow analysis: live variables, reaching definitions,

— Scalar optimizations: constant propagation, partial
redundancy elimination, strength reduction,

Code generator

Goal: produce assembly/machine code from
optimized low-level representation of program

Input: optimized low-level representation of
program from low-level optimizer

Output: assembly/machine code for real or
virtual machine

Tasks:

— Register allocation
— Instruction selection

Discussion (1)

« Traditionally, all phases of compilation were completed
before program was executed

 New twist: virtual machines
— Offline compiler:
» Generates code for virtual machine like JVM
— Just-in-time compiler:

* Generates code for real machine from VM code while program is
executing

e Advantages:
— Portability

— JIT compiler can perform optimizations for particular input

Discussion (11)

 On current processors, accessing memory to fetch
operands for a computation takes much longer than
performing the computation

=» performance of most programs is limited by memory
latency rather than by speed of computation (memory wall
problem)

=> reducing memory traffic (locality) is more important than
optimizing scalar computations
e Another problem: power

— takes much more power to move data than to perform an
arithmetic operation

— exploiting locality is critical for power management as well

Course content (scalar stuff)

Introduction

— compiler structure, architecture and compilation, sources of improvement
Control flow analysis

— basic blocks & loops, dominators, postdominators, control dependence
Data flow analysis

— lattice theory, iterative frameworks, reaching definitions, liveness
Static-single assignment

— static-single assignment, constant propagation.
Global optimizations

— loop invariant code motion, common subexpression elimination, strength reduction.
Register allocation

— coloring, allocation, live range splitting.
Instruction scheduling

— pipelined and VLIW architectures, list scheduling.

Course content (data structure stuff)

Array dependence analysis
— Integer linear programming, dependence abstractions.
Loop transformations

— linear loop transformations, loop fusion/fission, enhancing
parallelism and locality

Self-optimizing programs
— empirical search, ATLAS, FFTW
Analysis of pointer-based programs
— points-to and shape analysis
Parallelizing graph programs
— amorphous data parallelism, exploiting amorphous data-parallelism

Program verification
— Floyd-Hoare style proofs, model checking, theorem provers

|_ecture schedule

e See

o Some lectures will be given by guest
lecturers from my group and from industry

http://www.cs.utexas.edu/users/pingali/CS380C/2013/index.html
http://www.cs.utexas.edu/users/pingali/CS380C/2010/index.html

	CS 380C:�Advanced Topics in Compilers
	Administration
	Meeting times
	Prerequisites
	Course material
	Coursework
	What do compilers do?
	Why do we need translators?
	Complexity of modern architectures:�AMD Barcelona Quad-core Processor
	Discussion
	Software problem
	Example: matrix multiplication
	IJK version (large cache)
	IJK version (small cache)
	MMM Experiments
	Quantifying performance differences
	Even better…..
	Loop tiling/blocking
	Speed-up from tiling/blocking
	Observations
	Performance of MMM code produced by �Intel’s Itanium compiler (-O3)
	Discussion
	Organization of modern compiler
	Front-end
	High-level optimizer
	Low-level optimizer
	Code generator
	Discussion (I)
	Discussion (II)
	Course content (scalar stuff)
	Course content (data structure stuff)
	Lecture schedule

