
CS 380C:
Advanced Topics in Compilers

Administration

• Instructor: Keshav Pingali
– Professor (CS, ICES)
– ACES 4.126A
– pingali@cs.utexas.edu

• TA: Oswaldo Olivo
– Graduate student (CS)
– olivo@cs.utexas.edu

Meeting times

• Lecture:
– TTh 9:30-11:00AM, RLM 6.126

• Office hours:
– Keshav Pingali: Tuesday 11-12 AM, ACES 4.126

Prerequisites

• Compilers and architecture
– Some background in compilers (front-end stuff)
– Basic computer architecture

• Software and math maturity
– Able to implement large programs in C/C++
– Comfortable with abstractions like graph theory

• Ability to read research papers and understand
content

Course material

• Website for course
– http://www.cs.utexas.edu/users/pingali/CS380C/2013/index.html

• All lecture notes, announcements, papers,
assignments, etc. will be posted there

• No assigned book for the course
– but we will put papers and other material on the

website as appropriate

http://www.cs.utexas.edu/users/pingali/CS380C/2013/index.html

Coursework

• 4-5 programming assignments and problem sets
– Work in pairs

• Term project
– Substantial implementation project
– Based on our ideas or yours in the area of compilers
– Work in pairs

• Paper presentations
– Towards the end of the semester

What do compilers do?
• Conventional view of compilers

– Program that analyzes and translates a high-level language program
automatically into low-level machine code that can be executed by the
hardware

– May do simple (scalar) optimizations to reduce the number of operations
– Ignore data structures for the most part

• Modern view of compilers
– Program for translation, transformation and verification of high-level

language programs
– Reordering (restructuring) the computations is as important if not more

important than reducing the amount of computation
– Optimization of data structure computations is critical
– Program analysis techniques can be useful for other applications such as

• debugging,
• verifying the correctness of a program against a specification,
• detecting malware, ….

• Bridge the “semantic gap”
– Programmers prefer to write programs at a high level of abstraction
– Modern architectures are very complex, so to get good

performance, we have to worry about a lot of low-level details
– Compilers let programmers write high-level programs and still get

good performance on complex machine architectures
• Application portability

– When a new ISA or architecture comes out, you only need to
reimplement the compiler on that machine

– Application programs should run without (substantial)
modification

– Saves a huge amount of programming effort

Why do we need translators?

Complexity of modern architectures:
AMD Barcelona Quad-core Processor

Discussion
• To get good performance on modern processors, program

must exploit
– coarse-grain (multicore) parallelism
– memory hierarchy (L1,L2,L3,..)
– instruction-level parallelism (ILP)
– registers
– ….

• Key questions:
– How important is it to exploit these hardware features?

• If you have n cores and you run on only one, you get at most 1/n of
peak performance, so this is obvious

• How about other hardware features?
– If it is important, how hard is it to do this by hand?

• Let us look at memory hierarchies to get a feel for this
– Typical latencies

• L1 cache: ~ 1 cycle
• L2 cache: ~ 10 cycles
• Memory: ~ 500-1000 cycles

Software problem

• Caches are useful only if programs have
locality of reference
– temporal locality: program references to given memory

address are clustered together in time
– spatial locality: program references clustered in address

space are clustered in time
• Problem:

– Programs obtained by expressing most algorithms in
the straight-forward way do not have much locality of
reference

– Worrying about locality when coding algorithms
complicates the software process enormously.

Example: matrix multiplication

• Great algorithmic data reuse: each array element is touched
O(N) times!

• All six loop permutations are computationally equivalent
(even modulo round-off error).

• However, execution times of the six versions can be very
different if machine has a cache.

DO I = 1, N //assume arrays stored in row-major order
 DO J = 1, N
 DO K = 1, N
 C(I,J) = C(I,J) + A(I,K)*B(K,J)

IJK version (large cache)

DO I = 1, N
 DO J = 1, N
 DO K = 1, N
 C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Large cache scenario:

– Matrices are small enough to fit into cache
– Only cold misses, no capacity misses
– Miss ratio:

• Data size = 3 N2

• Each miss brings in b floating-point numbers
• Miss ratio = 3 N2 /b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)

C

B
A

K

K

IJK version (small cache)

DO I = 1, N
 DO J = 1, N
 DO K = 1, N
 C(I,J) = C(I,J) + A(I,K)*B(K,J)

 • Small cache scenario:
– Matrices are large compared to cache/row-major storage
– Cold and capacity misses
– Miss ratio:

• C: N2/b misses (good temporal locality)
• A: N3 /b misses (good spatial locality)
• B: N3 misses (poor temporal and spatial locality)
• Miss ratio 0.25 (b+1)/b = 0.3125 (for b = 4)

C

B
A

K

K

MMM Experiments
• Simulated L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300
– 16KB 32B/Block 4-way 8-byte elements

Quantifying performance differences

DO I = 1, N //assume arrays stored in row-major order
 DO J = 1, N
 DO K = 1, N
 C(I,J) = C(I,J) + A(I,K)*B(K,J)

 • Typical cache parameters:
– L2 cache hit: 10 cycles, cache miss 70 cycles

• Time to execute IKJ version:
 2N3 + 70*0.13*4N3 + 10*0.87*4N3 = 73.2 N3

• Time to execute JKI version:
 2N3 + 70*0.5*4N3 + 10*0.5*4N3 = 162 N3

• Speed-up = 2.2
• Key transformation: loop permutation

Even better…..
• Break MMM into a bunch of smaller MMMs so that large cache model is true

for each small MMM
 large cache model is valid for entire computation
 miss ratio will be 0.75/bt for entire computation where t is

Loop tiling/blocking

• Break big MMM into sequence of smaller MMMs where
each smaller MMM multiplies sub-matrices of size txt.

• Parameter t (tile size) must be chosen carefully
– as large as possible
– working set of small matrix multiplication must fit in cache

A

B

C

It

Kt

Jt

I

K

J DO It = 1,N, t
 DO Jt = 1,N,t
 DO Kt = 1,N,t
 DO I = It,It+t-1
 DO J = Jt,Jt+t-1
 DO K = Kt,Kt+t-1
 C(I,J) = C(I,J)+A(I,K)*B(K,J)

t
t

t
t

Speed-up from tiling/blocking

• Miss ratio for block computation
 = miss ratio for large cache model
 = 0.75/bt
 = 0.001 (b = 4, t = 200)
• Time to execute tiled version =

 2N3 + 70*0.001*4N3 + 10*0.999*4N3 = 42.3N3

• Speed-up over JKI version = 4

Observations
• Locality optimized code is more complex than high-level algorithm.
• Locality optimization changed the order in which operations were

done, not the number of operations
• “Fine-grain” view of data structures (arrays) is critical
• Loop orders and tile size must be chosen carefully

– cache size is key parameter
– associativity matters

• Actual code is even more complex: must optimize for processor
resources
– registers: register tiling
– pipeline: loop unrolling
– Optimized MMM code can be ~1000’s of lines of C code

• Wouldn’t it be nice to have all this be done automatically by a
compiler?
– Actually, it is done automatically nowadays…

Performance of MMM code produced by
Intel’s Itanium compiler (-O3)

Goto BLAS obtains close to 99% of peak, so compiler is pretty good!

GFLOPS relative to -O2; bigger is better

0

5

10

15

20

25

30

-O
1

-O
2

+ p
ref

etc
h

+ i
nte

rch
an

ge

+ u
nro

ll-j
am

+ b
loc

kin
g =

 -O
3

gc
c -

O4

fa
ct

or
 fa

st
er

 th
an

 -O
2

92% of Peak
Performance

Discussion
• Exploiting parallelism, memory hierarchies etc. is very

important
• If program uses only one core out of n cores in processors,

you get at most 1/n of peak performance
• Memory hierarchy optimizations are very important

– can improve performance by factor of 10 or more
• Key points:

– need to focus on data structure manipulation
– reorganization of computations and data structure layout are key
– few opportunities usually to reduce the number of computations

Organization of modern compiler

Our focus

Front-end

• Goal: convert linear representation of program
to hierarchical representation
– Input: text file
– Output: abstract syntax tree + symbol table

• Key modules:
– Lexical analyzer: converts sequence of characters

in text file into sequence of tokens
– Parser: converts sequence of tokens into abstract

syntax tree + symbol table
– Semantic checker: (eg) perform type checking

High-level optimizer

• Goal: perform high-level analysis and
optimization of program

• Input: AST + symbol table from front-end
• Output: Low-level program representation

such as 3-address code
• Tasks:

– Procedure/method inlining
– Array/pointer dependence analysis
– Loop transformations: unrolling, permutation,

tiling, jamming,….

Low-level optimizer

• Goal: perform scalar optimizations on low-level
representation of program

• Input: low-level representation of program such as
3-address code

• Output: optimized low-level representation +
additional information such as def-use chains

• Tasks:
– Dataflow analysis: live variables, reaching definitions,

…
– Scalar optimizations: constant propagation, partial

redundancy elimination, strength reduction, ….

Code generator

• Goal: produce assembly/machine code from
optimized low-level representation of program

• Input: optimized low-level representation of
program from low-level optimizer

• Output: assembly/machine code for real or
virtual machine

• Tasks:
– Register allocation
– Instruction selection

Discussion (I)

• Traditionally, all phases of compilation were completed
before program was executed

• New twist: virtual machines
– Offline compiler:

• Generates code for virtual machine like JVM
– Just-in-time compiler:

• Generates code for real machine from VM code while program is
executing

• Advantages:
– Portability
– JIT compiler can perform optimizations for particular input

Discussion (II)

• On current processors, accessing memory to fetch
operands for a computation takes much longer than
performing the computation
 performance of most programs is limited by memory

latency rather than by speed of computation (memory wall
problem)

 reducing memory traffic (locality) is more important than
optimizing scalar computations

• Another problem: power
– takes much more power to move data than to perform an

arithmetic operation
– exploiting locality is critical for power management as well

Course content (scalar stuff)
• Introduction

– compiler structure, architecture and compilation, sources of improvement
• Control flow analysis

– basic blocks & loops, dominators, postdominators, control dependence
• Data flow analysis

– lattice theory, iterative frameworks, reaching definitions, liveness
• Static-single assignment

– static-single assignment, constant propagation.
• Global optimizations

– loop invariant code motion, common subexpression elimination, strength reduction.
• Register allocation

– coloring, allocation, live range splitting.
• Instruction scheduling

– pipelined and VLIW architectures, list scheduling.

Course content (data structure stuff)

• Array dependence analysis
– integer linear programming, dependence abstractions.

• Loop transformations
– linear loop transformations, loop fusion/fission, enhancing

parallelism and locality
• Self-optimizing programs

– empirical search, ATLAS, FFTW
• Analysis of pointer-based programs

– points-to and shape analysis
• Parallelizing graph programs

– amorphous data parallelism, exploiting amorphous data-parallelism
• Program verification

– Floyd-Hoare style proofs, model checking, theorem provers

Lecture schedule

• See
– http://www.cs.utexas.edu/users/pingali/CS380C/2013/index.html

• Some lectures will be given by guest
lecturers from my group and from industry

http://www.cs.utexas.edu/users/pingali/CS380C/2013/index.html
http://www.cs.utexas.edu/users/pingali/CS380C/2010/index.html

	CS 380C:�Advanced Topics in Compilers
	Administration
	Meeting times
	Prerequisites
	Course material
	Coursework
	What do compilers do?
	Why do we need translators?
	Complexity of modern architectures:�AMD Barcelona Quad-core Processor
	Discussion
	Software problem
	Example: matrix multiplication
	IJK version (large cache)
	IJK version (small cache)
	MMM Experiments
	Quantifying performance differences
	Even better…..
	Loop tiling/blocking
	Speed-up from tiling/blocking
	Observations
	Performance of MMM code produced by �Intel’s Itanium compiler (-O3)
	Discussion
	Organization of modern compiler
	Front-end
	High-level optimizer
	Low-level optimizer
	Code generator
	Discussion (I)
	Discussion (II)
	Course content (scalar stuff)
	Course content (data structure stuff)
	Lecture schedule

