
1

SaM I Am

What is SaM?

• SaM is a simple stack machine designed to
introduce you to compilers in 3-4 lectures

• SaM I: written by me around 2000
– modeled vaguely after JVM

• SaM II: complete reimplementation and major
extensions by Ivan Gyurdiev and David Levitan
(Cornell undergrads) around 2003

• Course home-page has
– SaM jar file
– SaM instruction set manual
– SaM source code

SaM Screen-shot Stack machine
• All data is stored in stack (or heap)

– no data registers although there might be control
registers

• Stack also contains addresses

• Stack pointer (SP) points to the first free location on stack

• In SaM, stack addresses start at 0 and go up

• Int/float values take one stack location

…...
4
5

SP

100
101
102

….

0

…...

.

.

.

.

.

2

Stack machine

• Stack machine is sometimes called a 0-
address machine
– arithmetic operations take operands from top of

stack and push result(s) on stack

…...
4
5

SP

…...
9

SP

100
101
102

….

100
101
102ADD

Program area in SaM

• Program area:
– contains SaM code
– one instruction per location

• Program Counter (PC):
– address of instruction to be executed
– initialized to 0 when SaM is booted up

• HALT:
– Initialized to false (0) when SaM is booted up
– Set to true (1) by the STOP command
– Program execution terminates when HALT is set to true (1)

Program area

PC

SaM
HALT

PUSHIMM 7

PUSHIMM 8

0

1
2 …….

……..

Program Execution

SaM
HALT

Command interpreter:
PC = 0;
while (HALT == 0) //STOP command sets HALT to 1

Execute command Program[PC]; //ADD etc increment PC

Program area

PUSHIMM 7

PUSHIMM 8

0

1
2 …….

……..

PC

Loader

• How do commands get into the Program
area of SaM?

• Loader: a program that can open an input
file of SaM commands, and read them into
the Program area.

3

Interpreter and Loader

Program area
……..

0 1 2 ……..

PC

HALT

P
U

S
H

IM
M

 2

A
D

D

P
U

S
H

IM
M

 3

Interpreter:

PC = 0;

while (HALT == 0)

Execute command Program[PC];

Loader (command-file):
Loc = 0;
Open command-file for input;
while (! EOF) {

Read a command from command-file;
Store command in Program[Loc];
Loc++;

}

P
U

S
H

IM
M

 2
P

U
S

H
IM

M
 3

A
D

D
…

…
..

File

Labels

• SaM assembly instructions in program file
can be given labels

foo: PUSHIMM 1

…….

JUMP foo

• SaM loader resolves labels and replaces
jump targets with addresses

Other SaM areas

• FBR: Frame Base Register (see later)
• Heap: for dynamic storage allocation (malloc and free)

SaM uses a version of Doug Lea’s allocator

Some SaM commands

4

Classification of SaM commands

• Arithmetic/logic commands:
– ADD,SUB,..

• Load/store commands:
– PUSHIMM,PUSHIND,STOREIND,…

• RegisterStack commands:
– PUSHFBR,POPFBR, LINK,PUSHSP,…

• Control commands:
– JUMP, JUMPC, JSR, JUMPIND,…

• ADD,SUB,…
• DUP: duplicate top of stack (TOS)
• ISPOS:

– Pop stack; let popped value be Vt
– If Vt is positive, push true (1);otherwise push false (0)

• ISNEG: same as above but tests for negative value
on top of stack

• ISNIL: same as above but tests for zero value on
top of stack

• CMP: pop two values Vt and Vb from stack;
– If (Vb < Vt) push 1
– If (Vb = Vt) push 0
– If (Vb > Vt) push -1

ALU commands

Pushing values on stack

• PUSHIMM c
– “push immediate”: value to be pushed is in the

instruction itself

– will push c on the stack

(eg) PUSHIMM 4

PUSHIMM -7

Example

SaM code to compute (2 + 3)

PUSHIMM 2

PUSHIMM 3

ADD

SaM code to compute (2 – 3) * (4 + 7)

PUSHIMM 2
PUSHIMM 3
SUB
PUSHIMM 4
PUSHIMM 7
ADD
TIMES

 Compare with postfix notion (reverse Polish)

5

Load/store commands

• SaM ALU commands operate with values on top
of stack.

• What if values we want to compute with are
somewhere inside the stack?

• Need to copy these values to top of stack, and
store them back inside stack when we are done.

• Specifying address of location: two ways
– address specified in command as some offset from FBR

(offset mode)
– address on top of stack (indirect mode)

• PUSHOFF n: push value contained in
location Stack[FBR+n]

• v = Stack[FBR + n]

• Push v on Stack

33

-9

SP 33

-9

SP

Stack[FBR –1] contains -9

FBR

-9

PUSHOFF -1

FBR

• STOREOFF n: Pop TOS and write value
into location Stack[FBR+n]

• TOS has a value v

• Pop it and write v into Stack[FBR + n].

-9

SP
333

SP

FBR

STOREOFF 2

FBR
333

Store 333 into Stack[FBR+2]

• PUSHIND:
– TOS has an address

– Pop that address, read contents of that address
and push contents on stack

52

52 -9

SP -9

52 -9

SP

.

.
.
.

TOS is 52
Contents of location 52 is -9

PUSHIND

6

• STOREIND:
– TOS has a value v; below it is address s

– Pop both and write v into Stack[s].

52

52 -9

SP
.
.

TOS is value 333.
Below it is address 52.
Contents of location 52 is -9

333

52 333

SP
.
.

Value 333 is written
into location 52

STOREIND

Using PUSHOFF/STOREOFF

• Consider simple language SL
– only one method called main
– only assignment statements

main(){
int x,y;
x = 5;
y = (x + 6);
return (x*y);

}

We need to assign stack locations for “x” and “y”
and read/write from/to these locations to/from TOS

Stack frame

• Sequence of stack locations for
holding local variables of
procedure
– “x” and “y”

• In addition, frame will have a
location for return value

• Code for procedure must leave
return value in return value slot

• Use offsets from FBR to
address “x” and “y”

• Where should FBR point to
– let’s make it point to “return

value” slot
– we’ll change this later

return value
x

y

frame for main

FBR

SaM code (attempt 1)
PUSHIMM 0 //allocate space for return value

PUSHIMM 0//allocate space for x

PUSHIMM 0//allocate space for y

//code for x = 5;

PUSHIMM 5

STOREOFF 1

//code for y = (x+6);

PUSHOFF 1

PUSHIMM 6

ADD

STOREOFF 2

//compute (x*y) and store in rv

PUSHOFF 1

PUSHOFF 2

TIMES

STOREOFF 0

ADDSP -2 //pop x and y

STOP

main:

ADDSP 3

return value
x

y

frame for main

FBR

7

Problem with SaM code

• How do we know FBR is pointing to the
base of the frame when we start execution?

• Need commands to save FBR, set it to base
of frame for execution, and restore FBR
when method execution is done.

• Where do we save FBR?
– Save it in a special location in the frame

saved FBR
return value

x
y

FBR

RegisterStack Commands

• Commands for moving contents of SP, FBR
to stack, and vice versa.

• Used mainly in invoking/returning from
methods

• Convenient to custom-craft some commands
to make method invocation/return easier to
implement.

– PUSHFBR: push contents of FBR on stack
• Stack[SP] = FBR;
• SP++;

– POPFBR: inverse of PUSHFBR
• SP--;
• FBR = Stack[SP];

– LINK : convenient for method invocation
• Similar to PUSHFBR but also updates FBR so it points to

location where FBR was saved
• Stack[SP] = FBR;
• FBR = SP;
• SP++;

FBR Stack commands

-1
34

88 89
89
88
87 -1

34

88

SP

FBR FBR

SP

saved FBR
return value

x
y

FBR

frame for main

PUSHIMM 0//space for rv

LINK//save and update FBR

ADDSP 2//space for x and y

//code for x = 5;

PUSHIMM 5

STOREOFF 1

//code for y = (x+6);

PUSHOFF 1

PUSHIMM 6

ADD

STOREOFF 2

//compute (x+y) and store in rv

PUSHOFF 1

PUSHOFF 2

TIMES

STOREOFF –1

ADDSP –2//pop locals

POPFBR//restore FBR

STOP

main:

8

SP  Stack commands

– PUSHSP: push value of SP on stack
• Stack[SP] = SP;
• SP++

– POPSP: inverse of POPSP
• SP--;
• SP = Stack[SP];

– ADDSP n: convenient for method invocation
• SP = SP + n
• For example, ADDSP –5 will subtract 5 from SP.
• ADDSP n can be implemented as follows:

– PUSHSP
– PUSHIMM n
– ADD
– POPSP

Control Commands
• So far, command execution is sequential

– execute command in Program[0]
– execute command in Program[1]
– …..

• For implementing conditionals and loops, we need
the ability to
– skip over some commands
– execute some commands repeatedly

• In SaM, this is done using
– JUMP: unconditional jump
– JUMPC: conditional jump

• JUMP/JUMPC: like GOTO in PASCAL

• JUMP t: //t is an integer
– Jump to command at Program[t] and execute

commands from there on.
– Implementation: PC  t

• JUMPC t:
– same as JUMP except that JUMP is taken only if the

topmost value on stack is true; otherwise, execution
continues with command after this one.

– note: in either case, stack is popped.
– Implementation:

• pop top of stack (Vt);
• if Vt is true, PC  t else PC++

Example

Program to find absolute value of TOS:
0: DUP
1: ISPOS
2: JUMPC 5
3: PUSHIMM –1
4: TIMES
5: STOP

-5

SP

-5

SP

-5

SP

-5

SP

-5

SP

5

SP-5 0 -1

PC PC PC PC PC PC0 1 2 3 4 5

If jump is not taken, sequence of PC values
is 0,1,2,5

9

Symbolic Labels
• It is tedious to figure out the numbers of commands that

are jump targets (such as STOP in example).
• SaM loader allows you to specify jump targets using a

symbolic label such as DONE in example above.
• When loading program, SaM figures out the addresses of

all jump targets and replaces symbolic names with those
addresses.

DUP

ISPOS

JUMPC 5

PUSHIMM –1

TIMES

STOP

DUP

ISPOS

JUMPC DONE

PUSHIMM –1

TIMES

DONE: STOP

Using JUMPC for conditionals

• Translating if e then B1 else B2

code for e
JUMPC newLabel1
code for B2
JUMP newLabel2

newLabel1:
code for B1

newLabel2:
……

PC  Stack Commands
• Obvious solution: something like

– PUSHPC: save PC on stack // not a SaM command
• Stack[SP] = PC;
• SP++;

• Better solution for method call/return:
– JSR xxx: save value of PC + 1 on stack and jump to xxx

• Stack[SP] = PC +1;
• SP++;
• PC = xxx

– JUMPIND: like “POPPC” (use for return from method call)
• SP--;
• PC = Stack[SP];

– JSRIND: like JSR but address of method is on stack
• temp = Stack[SP];
• Stack[SP] = PC + 1;
• PC = temp;

Example

…….
JSR foo //suppose this command is in Program[32]
ADD
…..

foo: ADDSP 5 //suppose this command is in Program[98]
…….
JUMPIND//suppose this command is in Program[200]
…..

Sequence of PC values: ….,32,98,99,…,200,33,34,…..,
assuming stack just before JUMPIND is executed is same
as it was just after JSR was executed

10

SaM stack frame for CS 375

power(b,p){
if (p = = 0) return 1;
else return b*power(b,p-1);

}

return value

p

saved FBR
saved PC

b

return value

p

saved FBR
saved PC

b
return value

first parameter

nth parameter
saved FBR
saved PC
first local

…………..

mth local
………….

FBR

stack grows

one frame for power

Protocol for call/return
• Caller:

– creates return value slot
– evaluates parameters from first

to last, leaving values on stack
– LINK
– JSR to callee
– POPFBR //executed on return
– pop parameters

• Callee:
– create space for local variables
– execute code of callee

• Return from callee:
– Evaluate return value and write

into rv slot
– Pop off local variables
– JUMPIND //return to caller

return value
first parameter

nth parameter
saved FBR
saved PC
first local

…………..

mth local
………….

FBR

stack grows

Writing SaM code

• Start by drawing stack frames for each method in
your code.

• Write down the FBR offsets for each variable and
return value slot for that method.

• Translate Bali code into SaM code in a
compositional way. Think mechanically.

Recursive code generation

Construct Code

integer PUSHIMM xxx

x PUSHOFF yy //yy is offset for x

(e1 + e2) code for e1
code for e2
ADD

x = e; code for e
STOREOFF yy

{S1 S2 … Sn} code for S1
code for S2
….
code of Sn

11

Recursive code generation(contd)

Construct Code

if e then B1 else B2 code for e
JUMPC newLabel1
code for B2
JUMP newLabel2

newLabel1:
code for B1

newLabel2:

while e do B;
newLabel1:

code for e
ISNIL
JUMPC newLabel2
code for B
JUMP newLabel1

newLabel2:

JUMP newLabel1
newLabel2:

code for B
newLabel1:

code for e
JUMPC newLabel2

Better code

Recursive code generation(contd)

Construct Code

f(e1,e2,…en)
PUSHIMM 0//return value slot
Code for e1
…
Code for en
LINK//save FBR and update it
JSR f
POPFBR//restore FBR
ADDSP –n//pop parameters

Recursive code generation(contd)

f(p1,p2,…,pn){
int x,…,z;//locals
B}

ADDSP c // c is number of locals
code for B

fEnd:
STOREOFF r//r is offset of rv slot
ADDSP –c//pop locals off
JUMPIND//return to callee

return e; code for e
JUMP fEnd//go to end of method

Construct Code
OS code for SaM

• On a real machine
– OS would transfer control

to main procedure

– control returns to OS when
main terminates

• In SaM, it is convenient to
begin execution with code
that sets up stack frame
for main and calls main
– this allows us to treat main

like any other procedure

//OS code to set up call to main

PUSHIMM 0 //rv slot for main
LINK //save FBR
JSR main //call main
POPFBR
STOP

12

Symbol tables

• When generating code for a procedure, it is
convenient to have a map from variable names to
frame offsets

• This is called a “symbol table”
• For now, we will have

– one symbol table per procedure
– each table is a map from variable names to offsets

• Symbol tables will also contain information like
types from type declarations (see later)

Example

Variable Offset

n -1

rv -2

Let us write a program to compute absolute value of an integer.

Bali:

main() {
return abs(-5);

}

abs (n) {
if ((n > 0)) return n;
else return (n*-1);

}

return value

return value

n

saved FBR

saved PC

FBR

FBR saved FBR

saved PC

Symbol Table

Symbol Table

Variable Offset

rv -1

main() {
return abs(-5);
}

main:
ADDSP 0 // 0 is number of locals
code for “abs(-5)”
JUMP mainEnd

mainEnd:
STOREOFF -1//-1 is offset of rv

ADDSP -0 //pop locals off
JUMPIND//return to callee

(2)

main:
ADDSP 0 // 0 is number of locals
PUSHIMM 0
code for “-5”
LINK
JSR abs
POPFBR
ADDSP -1
JUMP mainEnd

mainEnd:
STOREOFF -1//-1 is offset of rv slot
ADDSP -0 //pop locals off
JUMPIND//return to callee

(3)

main:
ADDSP 0 // 0 is number of locals
code for “return abs(-5)”

mainEnd:
STOREOFF -1//-1 is offset of rv slot
ADDSP -0 //pop locals off
JUMPIND//return to callee

(1)

main:
ADDSP 0 // 0 is number of locals
PUSHIMM 0
PUSHIMM -5
LINK
JSR abs
POPFBR
ADDSP -1
JUMP mainEnd

mainEnd:
STOREOFF -1//-1 is offset of rv slot
ADDSP -0 //pop locals off
JUMPIND//return to callee

(4)

main:
//set up call to abs
PUSHIMM 0//return value slot for abs
PUSHIMM –5//parameter to abs
LINK//save FBR and update FBR
JSR abs//call abs
POPFBR //restore FBR
ADDSP –1//pop off parameter
//from code for return
JUMP mainEnd

mainEnd:
STOREOFF -1//store result of call
JUMPIND

PUSHOFF –1//get n
ISPOS //is it positive
JUMPC pos//if so, jump to pos
PUSHOFF –1//get n
PUSHIMM –1//push -1
TIMES//compute -n
JUMP absEnd//go to end
PUSHOFF –1//get n
JUMP absEnd

STOREOFF –2//store into r.v.
JUMPIND//return

abs:

pos:

absEnd:

//OS code to set up call to main
PUSHIMM 0 //rv slot for main
LINK //save FBR
JSR main //call main
POPFBR
STOP

Complete code

13

Factorial

main() {
return fact(5);

}

fact(n) {
if ((n ==0) return 1;
else return (n*fact(n-1));

}

FBR

FBR
Saved PC

Saved FBR
n
rv

rv

Saved PC
Saved FBR

Symbol Table

Variable Offset

n -1

rv -2

Symbol Table

Variable Offset

rv -1

//OS code to set up call to main
PUSHIMM 0 //rv slot for main
LINK //save FBR
JSR main //call main
POPFBR
STOP

main:
//code for call to fact(10)
PUSHIMM 0
PUSHIMM 10
LINK
JSR fact
POPFBR
ADDSP -1
//from code for return
JUMP mainEnd
//from code for function def

mainEnd:
STOREOFF -1
JUMPIND

fact:
PUSHOFF -1 //get n
PUSHIMM 0
EQUAL
JUMPC zer
PUSHOFF -1 //get n
PUSHIMM 0 // fact(n-1)
PUSHOFF -1
PUSHIMM 1
SUB
LINK
JSR fact
POPFBR
ADDSP -1
TIMES //n*fact(n-1)
JUMP factEnd

zer: PUSHIMM 1
JUMP factEnd

factEnd:
STOREOFF -2
JUMPIND

Running SaM code

• Download the SaM interpreter and run these
examples.

• Step through each command and see how
the computations are done.

• Write a method with some local variables,
generate code by hand for it, and run it.

