Static Single Assignment (SSA)
Form



SSA form

Static single assighment form

— Intermediate representation of program in which every use of a
variable is reached by exactly one definition

— Most programs do not satisfy this condition

* (eg) see program on next slide: use of Z in node F is reached by
definitions in nodes A and C

— Requires inserting dummy assignments called ®-functions at
merge points in the CFG to “merge” multiple definitions

— Simple algorithm (see transformed example on next slide):
* Insert ®-functions for all variables at all merge points in the CFG
* Solve Reaching Definitions
* Rename each real and dummy assignment of a variable uniquely



SSA example

D| Z3:= ®(21,Z3)

v
G
E
Z4:= ®(72,Z3)
p2

l

print(Z4)

l

END




Minimal SSA form

In previous example, dummy assignment
since there is no actual assignment to Z in nodes
D and G of the original program

Minimal SSA form

— SSA form of program that does not contain such “unnecessary”
dummy assignments

— See example on next slide

Question: how do we construct minimal SSA form
directly?

— Place ¢-functions

— Perform renaming



Minimal-SSA form Example

| START
Alz= ]

Z4 = @ (22,21)}
p2

END F rint§Z4§

END

(a) Original Control Flow Graph (b) Control Flow Graph with  ®-functions




Intuition for @-function Placement

* Compute Merge relation M: V = P(V)

* If node N contains an assignment to a variable x,
then node Z is in M(N) if:

1. Thereis a non-null path P1:=N >%*7Z

The value computed at X reaches Z

2. There is a non-null path P2 := START 2>*7Z
3. P1and P2 are disjoint except for Z

* IfSC V where there are assignments to variable x,
then place ¢ functions for x in nodes U M(N)

NES



Dominance frontier

* Dominance frontier of node w

— Node u is in dominance frontier of node w if w

 dominates a CFG predecessor v of u, but
» does not strictly dominate u

 Dominance frontier = control dependence in
reverse graph! AB CDE FG

Example from previous slide

GO mMmmQO >
X




lterated dominance frontier

Irreflexive transitive closure of dominance frontier relation
Related notion: iterated control dependence in reverse graph

Where to place ®-functions for a variable Z
— Let Assignments = {START} U {nodes with assignments to Z in original CFG}
— Find set | = iterated dominance frontier of nodes in Assignments
— Place ®-functions in nodes of set |

For example
— Assignments = {START,A,C}
— DF(Assignments) = {E}
— DF(DF(Assignments)) = {B}
— DF(DF(DF(Assignments))) = {B}
— So | ={E,B}
— This is where we place ®-functions, which is correct



Variable Renaming

* Use in a non-¢ statement:
— Use immediately dominating definition of V
(+ ¢ nodes inserted for V)

 Useina ¢ operand:

— Use definition that immediately dominates
incoming CFG edge (not ¢)



Computing SSA form

e Cytron et al algorithm

— compute DF relation (see slides on computing control-
dependence relation)

— find irreflexive transitive closure of DF relation for set of
assignments for each variable

 Computing full DF relation
— Cytron et al algorithm takes O(|V| +|DF|) time
— | DF| can be quadratic in size of CFG

* Faster algorithms
— O(|V|+]|E]|) time per variable: see Bilardi and Pingali



Using SSA for Optimization



Constant Propagation as an Example
(i) ...

X:=1; X:=1;

Vi=X+2; y:=3;
if (x>z) then y:=5; fi :> if (1>z) then y:=5; fi
Yo Yo

Constant propagation may simplify control flow as well
(ii) ... .

X:=1; X:=1;

Vi=X+2; y:=3; < dead code

if (y>x) theny:=5; fi  waw) if (true) theny:=5; fi

VAR e D



Overview of algorithm

* Build CFG of program
— makes control flow explicit

e Perform “symbolic evaluation” to determine
constants

* Replace constant-valued variables uses by
their values and simplify expressions and
control-flow



Step 1: Build the CFG

START
x:=1
y=x+2
X := 1; _ y=X
1.3 - _
Yi=X+2;
o o v:i=25
if (y>x) then y:=5; fi
Y. 15/ -
merge

control flow graph (CFG)

state vectorson CFG edges



Step 2: Symbolic Evaluation Over CFG

* Propagate values from following lattice

Definitely not constant/Can’t
determine to be a constant

. Join(T,0)y=T meet(0,-1) =
false true ..-1 O 1 .. join(0,-1) =T meet(T.1) =1

' Yet to be determined

* Two operators
— Join(a,b): lowest value above both a and b (also writtenasa U b)
— Meet(a,b): highest value below both a2 and b (also written as a M b)

* Symbolic interpretation of expressions

— EVAL(e, Vin): if any argument of e is T (or L) in Vin, return T (or L
respectively); otherwise, evaluate e normally and return the value



Dataflow Algorithm

1. Associate one state vector with each edge of CFG
2. Set each entry of state vector on edge out of start to T, and place this edge in worklist

3. while (worklist not empty) {

}

Edge ed := worklist.getRandom();
Vin := state-vector[ed]
// Symbolically evaluate target node of the edge using state vectors on inputs
// and propagate result state vector to output edge of node
if (target[ed] is “x:=¢e”) {
Propagate Vin[EVAL[e,Vin)/x] to output edge;
J}else if (target[ed] is “switch(p)”) {
if (EVAL(p, Vin) is T)
Propagate Vin to all outputs of switch;
else if (EVAL(p, Vin) is true)
Propagate Vin to true side of switch;
else
Propagate Vin to false side of switch;
}else // target node is merge
Propagate join of state vectors on all inputs to output

}

If this changes output state vector, enqueue output edge on worklist



Applying Algorithm on Running Example

START
x =1
|
Vi=X+2
1 3
Yy = X
1 3
y=3
1 5
merge
1.5

control flow graph (CFG)

state vectorson CFG cdges



Subtleties of Algorithm

START

...........

First time through loop, use of x in loop is determined
to be constant 1. Next time though loop, it reaches
final value T.



Algorithm Complexity

Height of lattice := 2 = each state vector can
change value 2*V times

So while loop in algorithm is executed at most
2*E*V times

Cost of each iteration: O(V)

Overall algorithm takes O(EV?) time



Optimizing Constant Propagation

* |terative procedure is just a method to solve
lattice equations

* Optimize by exploiting sparsity in the dataflow
equations

— Usually, a dataflow equation involves only a small
number of dataflow variables



Optimizing Constant Propagation

* Current algorithm uses the CFG to propagate state
vectors

* Propagating information for all variables in lock-step
forces a lot of useless copying of information from one
vector to another

— e.g. a variable defined at the top of the procedure and
used only at the bottom

e Solution:
— Do constant propagation for each variable separately

— Propagate information directly from definitions to uses,
skipping over irrelevant portions of control flow graph



Constant Propagation Using Def-Use
Chains

Associate cell with each |hs and rhs occurrence of all variables, initialize to L

Propagate T along each def-use edge out of START, and enqueue target
statements of def-use edges onto worklist

Enqueue all definitions with constant RHS onto worklist

while (worklist not empty) {

Def d := worklist.getNext();

cell[LHS[d]] := Evaluate(RHS[d]) // using cell[Var], V var in RHS[d]

if (cell[LHS[d]] changes) {
Propagate cell[LHS[d]] value along def-use chains to each use stmt
//(take join of cell[LHS[d]] and cell value at use)
if (cell[use] changes && use is definition)

worklist.add(use)

}
}



Example

control flow graph (CFG)

def-use edges

cell for value at definition/use



Analysis of Use-Def Based Constant
Propagation

Complexity: O(sizeof(def-use chains))
— This can be as large as O(N2V), where N is # CFG-Nodes
— With SSA this is reduced to O(EV)

Problem with algorithm: Loss of accuracy

— Propagation along def-use chains cannot determine directly that y := 45 is dead code, so last
use of y is not marked constant

— We compute def-use chains before doing constant propagation, so we don’t recognize dead
code

Possible solution: Repeated cycles of reaching definitions computation, constant
propagation and dead code elimination

Is there a better way?

Key idea:
— Find unreachable statements during constant propagation
— Do not propagate values out of unreachable definitions



High Level View of Potential Solution

Use Control Dependence and
Def-Use chains

Control Dependence: x:=1
— Node nis control dependent on S control flow graph (CFG)
predicate p if p determines

whether n is executed e

Convention: assume START is a
predicate, so unconditionally
executed statements are control
dependent on START

CDG: Control Dependence Graph



High Level Idea

Propagate “liveness” along control dependence
edges while propagating constants along Def-Use chains

START |

-1 S0 1311 S
AaTLOO NRiGaas

control dependence cdges

merge



Revised Algorithm

1. Associate cell with each lhs and rhs occurrence of all variables and with each statement, initialize to L

2. Propagate T along each Def-Use edge and control dependence edge out of START. If value in any target cell
changes, enqueue target statement onto worklist

3. while (worklist not empty) {
Stmt d := worklist.getNext();
if (CDEP-cell[d]is T) {
switch (type of d) {
case(definition): {
cell[LHS[d]] := Evaluate(RHS[d]) // using cell[Var], ¥ var in RHS[d]
if (cell[LHS[d]] changes) {
Propagate cell[LHS[d]] value along def-use chains to each use stmt
//(take join of cell[LHS[d]] and cell value at use)
if (cell[use] changes) // if cell value at use changes
worklist.add(use)
/
}
case(switch): {
Evaluate predicate and propagate along appropriate CDEP edges out of predicate
if (cell value at target changes)
worklist.add(target)
}
}
}
}



Observations

We do not propagate information out of dead
(unreachable) statements

Precision is still not as good as CFG algorithm

— We still propagate information out of statements that
are executed but are irrelevant to output

Need algorithm to compute control dependences
in general graph

Size of CDG: O(EN) (can be reduced)



Problematic Case

CSTART
=
[k




Solutions

* Require that a variable assigned on one side of a
conditional be assigned on both sides of conditional
(by inserting dummy assignments of form x:= x).
Programmers don’t want to do this

 Make compiler insert dummy assignments. Hard to
figure out in presence of unstructured control flow

e Use SSA form: ensure that every use is reached by
exactly one definition by inserting d-functions at
merges to combine reaching definitions



SSA Algorithm for Constant Propagation

_START

¢d-function combines different
reaching definitions at a merge into a
single one at output of merge

¢d-function is like a pseudo-assignment

Control dependence at merge:
compute for each side of the merge
separately

Constant propagation:

— Similar to previous algorithm, but at
merge, propagate join of inputs only
from live sides of merge

Minimal SSA permits Def-Use chains
to bypass a merge if same definition
reaches all sides of merge



Sparse Dataflow Evaluator Graphs

 Same idea can be applied to other dataflow
problems
— Perform dataflow for each sub-problem separately

(e.g. for each expression separately in available
expressions problem)

— Build a sparse graph in which only statements that
modify or use dataflow information for sub-problem
are present and solve that

e Sparse dataflow evaluator graph can be built in O
(|E|) time per problem (Pingali & Bilardi PLDI’96)



Sparse Dataflow Evaluator Graphs

START

XYL

p1

X=..... LXHY..

LXHY

X:=...
. p2

END

Control Flow Graph

Av:=0

AV
Av =1

AV

Av:=0 Av :=...1

VAV
Av =1

Av:

I
o

Sparse Dataflow Evaluator Graph
for availability of x+y



When is SSA form useful?

For many dataflow problems, SSA form enables sparse
dataflow analysis that

— vyields the same precision as bit-vector CFG-based dataflow analysis
— but is asymptotically faster since it permits the exploitation of sparsity

SSA has two distinct features
— factored def-use chains (more compact than base def-use)
— renaming

— you do not have to perform renaming to get advantage of SSA for
many dataflow problems

The bit-vector approach allows an implicit form of parallelism
to be exploited

When a I|;)roble_m is not formulated using the bit-vector
approach, SSA is preferable

— Constant propagation
— Useful in pointer analysis
— Value numbering



