Loop Optimizations and Pointer Analysis

Loop optimizations
- Optimize loops
 - Loop invariant code motion [last time]
 - Strength reduction of induction variables
 - Induction variable elimination

Strength Reduction
- Basic idea: replace expensive operations (multiplications) with cheaper ones (additions) in definitions of induction variables

```
while (i<10) {
    j = 3*i+1;  // i<10
    a[j] = a[j] - 2;
    i = i+2;
}
```

Benefit: cheaper to compute \(s = s+6 \) than \(j = 3*i \)
- \(s = s+6 \) requires an addition
- \(j = 3*i \) requires a multiplication

Induction Variables
- An induction variable is a variable in a loop, whose value is a function of the loop iteration number \(v = f(i) \)

```
% s = 3*i+1;
while (i<10) {
    j = s;
    a[j] = a[j] - 2;
    i = i+2;
    s = s+6;
}
```

- In compilers, this a linear function:
 \(f(i) = c*i + d \)

- Observation: linear combinations of linear functions are linear functions
 - Consequence: linear combinations of induction variables are induction variables
Families of Induction Variables
- **Basic induction variable:** a variable whose only definition in the loop body is of the form
 \[i = i + c \]
 where \(c \) is a loop-invariant value

- **Derived induction variables:** Each basic induction variable \(i \) defines a family of induction variables \(\text{Family}(i) \)
 - \(k \in \text{Family}(i) \)
 - \(k \in \text{Family}(i) \) if there is only one definition of \(k \) in the loop body, and it has the form \(k = c*j \) or \(k = j+c \), where
 - \(j \in \text{Family}(i) \)
 - \(c \) is loop invariant
 - The only definition of \(j \) that reaches the definition of \(k \) is in the loop
 - There is no definition of \(i \) between the definitions of \(j \) and \(k \)

Representation
- Representation of induction variables in family \(i \) by triples:
 - Denote basic induction variable \(i \) by \(<i, 1, 0> \)
 - Denote induction variable \(k=i*a+b \) by triple \(<i, a, b> \)

Finding Induction Variables
Scan loop body to find all basic induction variables

do
 Scan loop to find all variables \(k \) with one assignment of form \(k = j*b \), where \(j \) is an induction variable \(<i,c,d> \), and make \(k \) an induction variable with triple \(<i,c*b,d> \)
 Scan loop to find all variables \(k \) with one assignment of form \(k = j+d \) where \(j \) is an induction variable with triple \(<i,c,d> \), and make \(k \) an induction variable with triple \(<i,c,b+d> \)

until no more induction variables found

Strength Reduction
- **Basic idea:** replace expensive operations (multiplications) with cheaper ones (additions) in definitions of induction variables

  ```
  while (i<10) {
    j = …; // <i,3,1>
    a[j] = a[j] -2;
    i = i+2;
  }
  ```

  ```
  while (i<10) {
    j = …; // <i,3,1>
    a[j] = a[j] -2;
    i = i+2;
    s = s+6;
  }
  ```

- **Benefit:** cheaper to compute \(s = s+6 \) than \(j = 3*i \)
 - \(s = s+6 \) requires an addition
 - \(j = 3*i \) requires a multiplication
General Algorithm

- Algorithm:
 For each induction variable \(j \) with triple \(<i, a, b>\) whose definition involves multiplication:
 1. create a new variable \(s \)
 2. replace definition of \(j \) with \(j=s \)
 3. immediately after \(i=i+c \), insert \(s = s+a*c \)
 (here \(a*c \) is constant)
 4. insert \(s = a*i+b \) into preheader

- Correctness: transformation maintains invariant \(s = a*i+b \)

Strength Reduction

- Gives opportunities for copy propagation, dead code elimination

```c
s = 3*i+1;
while (i<10) {
    j = s;
    a[j] = a[b] - 2;
    i = i+2;
    s= s+6;
}
```

Induction Variable Elimination

- Idea: eliminate each basic induction variable whose only uses are in loop test conditions and in their own definitions \(i = i+c \)
 - rewrite loop test to eliminate induction variable
 - Remove definition of basic induction variables (if not used after the loop)

```c
s = 3*i+1;
while (i<10) {
    a[s] = a[s] -2;
    i = i+2;
    s= s+6;
}
```

- When are induction variables used only in loop tests?
 - Usually, after strength reduction
 - Use algorithm from strength reduction even if definitions of induction variables don’t involve multiplications
Induction Variable Elimination

For each basic induction variable i whose only uses are
- The test condition $i < u$
- The definition of i: $i = i + c$
 - Take a derived induction variable k in family i, with triple $<i,c,d>$
 - Replace test condition $i < u$ with $k < c*u+d$
 - Remove definition $i = i+c$ if i is not live on loop exit

Where We Are

- Defined dataflow analysis framework
- Used it for several analyses
 - Live variables
 - Available expressions
 - Reaching definitions
 - Constant folding
- Loop transformations
 - Loop invariant code motion
 - Induction variables
- Next:
 - Pointer alias analysis

Pointer Alias Analysis

- Most languages use variables containing addresses
 - E.g. pointers (C,C++,), references (Java), call-by-reference parameters (Pascal, C++, Fortran)
- Pointer aliases: multiple names for the same memory location, which occur when dereferencing variables that hold memory addresses
- Problem:
 - Don't know what variables read and written by accesses via pointer aliases (e.g. $*p=y; x=*p; p->f=x; y=x->f;$ etc.)
 - Need to know accessed variables to compute dataflow information after each instruction

Pointer Alias Analysis

- Worst case scenarios
 - $*p = y$ may write any memory location
 - $x = *p$ may read any memory location
 - Such assumptions may affect the precision of other analyses
- Example 1: Live variables before any instruction $x = *p$, all the variables may be live
- Example 2: Constant folding
 - $a = 1; b = 2; *p = 0; c = a+b;$
 - $c = 3$ at the end of code only if $*p$ is not an alias for a or b
- Conclusion: precision of result for all other analyses depends on the amount of alias information available
 - hence, it is a fundamental analysis
Alias Analysis Problem

- **Goal**: for each variable v that may hold an address, compute the set $\text{Ptr}(v)$ of possible targets of v
 - $\text{Ptr}(v)$ is a set of variables (or objects)
 - $\text{Ptr}(v)$ includes stack- and heap-allocated variables (objects)

- **Is a “may” analysis**: if $x \in \text{Ptr}(v)$, then v may hold the address of x in some execution of the program

- **No alias information**: for each variable v, $\text{Ptr}(v) = V$, where V is the set of all variables in the program

Simple Alias Analyses

- **Address-taken analysis**:
 - Consider $\text{AT} = \text{set of variables whose addresses are taken}$
 - Then, $\text{Ptr}(v) = \text{AT}$, for each pointer variable v
 - Addresses of heap variables are always taken at allocation sites (e.g., `x = new int[2]; x = malloc(8);`)
 - Hence AT includes all heap variables

- **Type-based alias analysis**:
 - If v is a pointer (or reference) to type T, then $\text{Ptr}(v)$ is the set of all variables of type T
 - Example: $p->f$ and $q->f$ can be aliases only if p and q are references to objects of the same type
 - Works only for strongly-typed languages

Dataflow Alias Analysis

- **Dataflow analysis**: for each variable v, compute points-to set $\text{Ptr}(v)$ at each program point

- **Dataflow information**: set $\text{Ptr}(v)$ for each variable v
 - Can be represented as a graph $G \subseteq 2^{V \times V}$
 - Nodes = V (program variables)
 - There is an edge $v \rightarrow u$ if $u \in \text{Ptr}(v)$

```
Ptr(x) = {y}
Ptr(y) = {z,t}
```

- **Dataflow Lattice**: $(2^{V \times V}, \supseteq)$
 - $V \times V$ represents “every variable may point to every var.”
 - “may” analysis: top element is \emptyset, meet operation is \cup

- **Transfer functions**: use standard dataflow transfer functions:
 - $\text{out}(I) = (\text{in}(I)-\text{kill}(I)) \cup \text{gen}(I)$
 - $p = \text{addr q} \quad \text{kill}(I) = \{p\} \times V \quad \text{gen}(I) = \{<p,q>\}$
 - $p = q \quad \text{kill}(I) = \{p\} \times V \quad \text{gen}(I) = \{p\} \times \text{Ptr}(q)$
 - $p = *q \quad \text{kill}(I) = \{p\} \times V \quad \text{gen}(I) = \{p\} \times \text{Ptr(}\text{Ptr}(q))\}$
 - $*p = q \quad \text{kill}(I) = \ldots \quad \text{gen}(I) = \text{Ptr}(p) \times \text{Ptr}(q)$
 - For all other instruction, $\text{kill}(I) = \emptyset$, $\text{gen}(I) = \emptyset$

- **Transfer functions are monotonic, but not distributive!**
Alias Analysis Example

Program

```
x=&a;
y=&b;
c=&i;
if(i) x=y;
*x=c;
```

CFG

```
x=&a
y=&b
c=&i
if(i)
```

Points-to Graph
(at the end of program)

```
x=y

*x=c
```

Alias Analysis Uses

- Once alias information is available, use it in other dataflow analyses
- Example: Live variable analysis
 Use alias information to compute use[I] and def[I] for load and store statements:

 \[
 x = *y \quad \text{use}[I] = \{y\} \cup \text{Ptr}(y) \quad \text{def}[I] = \{x\} \\
 *x = y \quad \text{use}[I] = \{x,y\} \quad \text{def}[I] = \text{Ptr}(x)
 \]