JTUSWROURY U A}[ROOT 10

suorjeuriojsuei], door Ieaur]

-~

Story so far

e Permutation of perfectly nested loop can be modeled as a
linear transformation on the iteration space of the loop nest.

e Legality of permutation can be determined from the
dependence matrix of the loop nest.

e Transformed code can be generated using ILP calculator.

~

e Cache performance can be improved by tiling and permutation

4 N

Theory for permutations applies to other loop transformations that

can be modeled as linear transformations: skewing, reversal,scaling.
Transformation matrix: T’ (a non-singular matrix)

Dependence matrix: D

Matrix in which each column is a distance/direction vector
Legality: T.D > 0
Dependence matrix of transformed program: 71'.D

Small complication with code generation if scaling is included.

. /

-~

Exploiting temporal locality in wavefront

J
RN

4 /
3

2

1

/
/
2
f/

7y
z

e
P22V

—
S}
w
N
W
—_
\S)
w
N

Permutation is illegal! Tiling is illegal!

We have studied two transtformations: permutation and tiling.

Permutation and tiling are both illegal.

-

10

Loop Skewing: a linear loop transformation

°
o0
vV oo o
J| e o0 @ e o0 o
oo o -0 0 o
“Wooo Lol [u -0 0 o
LI = o-0 o
o/ooo I VAR Vv oo
oo o °
“/ooo
I U
10

Skewing of inner loop by outer loop: (k 1s some fixed integer)

k 1
Skewing of inner loop by an outer loop: always legal

New dependence vectors: compute T*D

In this example, D = ! T*D = 1

-1 0

This skewing has changed dependence vector but it has not brought dependent iterations

closer together....

13

\mwgibm outer loop by inner loop

=090
=000
o

[]

Outer loop skewing: w _w

Skewing of outer loop by inner loop: not necessarily legal

In this example, D= | 1 T*D = | 0| incorrect
-1 -1

How do we fix this??

Dependent iterations are closer together (good) but program is illegal (bad).

14

Loop Reversal:a linear loop transformation

5 -5
ooo00 00 — e 000000 [
0 [U 0
U= [-1][1]
DO I= I,N DO U= -N-1
X(I) = 142 X(-U) = -U +2

Transformation matrix = [-1]

Another example: 2-D loop, reverse inner loop ﬁd\l_ = _H_ og ﬁg
\Y 0 - J

Legality of loop reversal: Apply transformation matrix to all dependences & verify lex +ve

Code generation: easy

15

Need for composite transformations

=090
*=—0=0<0

s
7

Transformation: skewing followed by reversal

In final program, dependent iterations are
close together!

Composition of linear transformations
= another linear transformation!

. . . L
Composite transformation matrix is %
[

B -6l

How do we synthesize this composite transformation??

=0 —=0
=000

=0=0—>0

33

16

4 N

Some facts about permutation/reversal/skewing

e Transformation matrices for permutation/reversal /skewing are
unimodular.

e Any composition of these transformations can be represented
by a unimodular matrix.

¢ Any unimodular matrix can be decomposed into product of
permutation /reversal /skewing matrices.

e Legality of composite transformation 71": check that T.D > 0.
(Proof: T3 % (To x (Ty * D)) = (T3 % Ty xT1) x D.)

e Code generation algorithm:

e Original bounds: Ax1 < b

e Transformation: U =T x [

e New bounds: compute from AT~ U < b

. /

17

4 N

Synthesizing composite transformations using matrix-based

approaches

e Rather than reason about sequences of transformations, we can
reason about the single matrix that represents the composite
transformation.

e Enabling abstraction: dependence matrix

N \

18

-~

loops are legal).

-

J
5
4
3
2
1

In general, tiling is not legal.

AN

LML (AN

AN

NN

7,02 4

1 2 3 4

5

Tiling is illegal!

permutable loop nest?

e When we can, how do we do it?

Tiling is legal if loops are fully permutable (all permutations of

e Can we always convert a perfectly nested loop into a fully

Tiling is legal it all entries in dependence matrix are non-negative.

k

51

4 N

Theorem: If all dependence vectors are distance vectors, we can
convert entire loop nest into a fully permutable loop nest.

Example: wavetront

1
—1

Dependence matrix is

Dependence matrix of transtformed program must have all positive
entries.

So first row of transformation can be (1 0).

Second row of transformation (m 1) (for any m > 0).

General idea: skew inner loops by outer loops sufficiently to make

all negative entries non-negative.

. /

52

Transformation to make first row with negative entries into row
with non-negative entries

. P2 | T row a
el e p3 row b
-m -n -k first row

with negative entries

(a) for each negative entry in the first row with negative entries,

find the first positive number in the corresponding column
assume the rows for these positive entries are a,

b etc as shown above

(b) skew the row with negative entries by appropriate multiples of
rows a,b....

For our example, multiple of row a = ceiling(n/p2)

multiple of row b = ceiling(max(m/p1,k/p3))

Transformation: I

\
~ 00..0 ceiling(n/p2) 0 0 ceiling(max(m/p1,k/p3))0...0
\ I

53

4 N

General algorithm for making loop nest fully permutable:

If all entries in dependence matrix are non-negative, done.
Otherwise,

1. Apply algorithm on previous slide to first row with
non-negative entries.

2. Generate new dependence matrix.

3. If no negative entries, done.

4. Otherwise, go step (1).

N \

54

-~

-

— N W A~ N

:/;/

/.
[]

e
s e
/.
/.

e
%2

1 2 3 4

5

Original loop

Tiling generates a 4-deep loop nest.

Result of tiling transformed wavefront

u °

— N W B

1

Tiled fully permutable loop

2

3

4

5

Not as nice as height reduction solution, but it will work fine for
locality enhancement except at tile boundaries (but boundary

points small compared to number of interior points).

/

55

4 N

What happens with direction vectors?

In general, we cannot make loop nest fully permutable.

I_I
Example: D = —

I_I
Best we can do is to make some of the loops fully permutable.

We try to make outermost loops fully permutable, so we would
interchange the second and third loops, and then tile the first two

loops only.

Idea: algorithm will find bands of fully permutable loop nests.

. K

56

