
Optimizing MMM
& ATLAS Library Generator



Recall: MMM miss ratios
L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300
– 16KB 32B/Block 4-way 8-byte elements



IJK version (large cache)

DO I = 1, N//row-major storage
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

 Large cache scenario:
 Matrices are small enough to fit into cache
 Only cold misses, no capacity misses
 Miss ratio:   

 Data size = 3 N2 

 Each miss brings in b floating-point numbers
 Miss ratio = 3 N2 /b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)
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IJK version (small cache)

DO I = 1, N
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

 Small cache scenario: 
 Matrices are large compared to cache

 reuse distance is not O(1) => miss
 Cold and capacity misses 
 Miss ratio:   

 C:  N2/b misses (good temporal locality)
 A: N3 /b misses (good spatial locality)
 B:  N3 misses (poor temporal and spatial locality)
 Miss ratio  0.25 (b+1)/b = 0.3125 (for b = 4)
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MMM experiments
L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300
– 16KB 32B/Block 4-way 8-byte elements

Can we predict this?



How large can matrices be and still 
not suffer capacity misses?

DO I = 1, M
DO J = 1, N

DO K = 1, P
C(I,J) = C(I,J) + A(I,K)*B(K,J)

 How large can these matrices be without suffering capacity 
misses?
 Each iteration of outermost loop walks over entire B matrix, so all 

of B must be in cache
 We walk over rows of A and successive iterations of middle loop 

touch same row of A, so one row of A must be in cache
 We walk over elements of C one at a time.
 So inequality is NP + P + 1 <= C
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Check with experiment

 For our machine, capacity of L1 cache is 
16KB/8 doubles = 211 doubles

 If matrices are square, we must solve 
N^2 + N + 1 = 211

which gives us N = 45
 This agrees well with experiment.



High-level picture of high-performance 
MMM code

 Block the code for each level of memory 
hierarchy
 Registers
 L1 cache
 …..

 Choose block sizes at each level using the 
theory described previously
 Useful optimization: choose block size at level 

L+1 to be multiple of the block size at level L



ATLAS

 Library generator for MMM and other BLAS
 Blocks only for registers and L1 cache
 Uses search to determine block sizes, rather 

than the analytical formulas we used
 Search takes more time, but we do it once when 

library is produced
 Let us study structure of ATLAS in little more 

detail



 Original ATLAS Infrastructure

 Model-Based ATLAS Infrastructure

Our approach
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BLAS

 Let us focus on MMM: 
for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)

for (int k = 0; k < K; k++)
C[i][j] += A[i][k]*B[k][j]

 Properties
 Very good reuse: O(N2) data, O(N3) computation
 Many optimization opportunities

 Few “real” dependencies
 Will run poorly on modern machines

 Poor use of cache and registers
 Poor use of processor pipelines



Optimizations

 Cache-level blocking (tiling)
 Atlas blocks only for L1 cache
 NB: L1 cache time size

 Register-level blocking
 Important to hold array values in registers
 MU,NU: register tile size

 Filling the processor pipeline
 Unroll and schedule operations
 Latency, xFetch: scheduling parameters

 Versioning
 Dynamically decide which way to compute

 Back-end compiler optimizations
 Scalar Optimizations
 Instruction Scheduling



Cache-level blocking (tiling)

 Tiling in ATLAS
 Only square tiles 

(NBxNBxNB)
 Working set of tile fits in L1
 Tiles are usually copied to 

continuous storage
 Special “clean-up” code 

generated for boundaries
 Mini-MMM

for (int j = 0; j < NB; j++)
for (int i = 0; i < NB; i++)

for (int k = 0; k < NB; k++)
C[i][j] += A[i][k] * B[k][j]

 NB: Optimization parameter
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Register-level blocking

 Micro-MMM
 A: MUx1
 B: 1xNU
 C: MUxNU
 MUxNU+MU+NU registers

 Unroll loops by MU, NU, and KU
 Mini-MMM with Micro-MMM inside

for (int j = 0; j < NB; j += NU)
for (int i = 0; i < NB; i += MU)

load C[i..i+MU-1, j..j+NU-1] into registers
for (int k = 0; k < NB; k++)

load A[i..i+MU-1,k] into registers
load B[k,j..j+NU-1] into registers
multiply A’s and B’s and add to C’s

store C[i..i+MU-1, j..j+NU-1]

 Special clean-up code required if 
NB is not a multiple of MU,NU,KU

 MU, NU, KU: optimization parameters
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Scheduling

 FMA Present?
 Schedule Computation

 Using Latency
 Schedule Memory Operations

 Using IFetch, NFetch,FFetch

 Latency, xFetch: optimization parameters

M1

M2

M3

M4

MMU*NU

…

A1

A2

A3

A4

AMU*NU

…

L1

L2

L3

LMU+NU

…

Latency=2

A1

A2

AMU*NU

…

Computation

Memory
OperationsComputation

Memory
Operations

Computation

Memory
Operations

Computation

Memory
Operations

Computation

Memory
Operations

IFetch Loads

NFetch Loads

NFetch Loads

NFetch Loads

…



Search Strategy
 Multi-dimensional optimization problem:

 Independent parameters: NB,MU,NU,KU,…
 Dependent variable: MFlops
 Function from parameters to variables is given implicitly; can be 

evaluated repeatedly
 One optimization strategy: orthogonal line search

 Optimize along one dimension at a time, using reference values 
for parameters not yet optimized

 Not guaranteed to find optimal point, but might come close



Find Best NB

 Search in following range
 16 <= NB <= 80
 NB2  <= L1Size

 In this search, use simple estimates for other 
parameters
 (eg) KU: Test each candidate for

 Full K unrolling (KU = NB)
 No K unrolling (KU = 1)



 Original ATLAS Infrastructure

 Model-Based ATLAS Infrastructure

Model-based optimization
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Modeling for Optimization Parameters

 Optimization parameters
 NB

 Hierarchy of Models (later)
 MU, NU



 KU
 maximize subject to L1 Instruction Cache

 Latency
 (L* + 1)/2

 MulAdd
 hardware parameter

 xFetch
 set to 2

NRLatencyNUMUNUMU ≤+++*



Largest NB for no 
capacity/conflict misses

 If tiles are copied into 
contiguous memory, 
condition for only cold misses:
 3*NB2 <= L1Size
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Largest NB for no capacity misses

 MMM:
for (int j = 0; i < N; i++)

for (int i = 0; j < N; j++)
for (int k = 0; k < N; k++)
c[i][j] += a[i][k] * b[k][j]

 Cache model:
 Fully associative
 Line size 1 Word
 Optimal Replacement

 Bottom line:
NB2+NB+1<C
 One full matrix
 One row / column
 One element
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Summary: Modeling for Tile Size (NB)

 Models of increasing complexity
 3*NB2 ≤ C

 Whole work-set fits in L1
 NB2 + NB + 1 ≤ C

 Fully Associative
 Optimal Replacement
 Line Size: 1 word

 or

 Line Size > 1 word 

 or   

 LRU Replacement
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Summary of model



Experiments
• Ten modern architectures
• Model did well on 

•RISC architectures 
•UltraSparc: did better

• Model did not do as well on 
•Itanium
•CISC architectures

• Substantial gap between     
ATLAS CGw/S and ATLAS 
Unleashed on some 
architectures



Some sensitivity graphs for Alpha 21264



Eliminating performance gaps
 Think globally, search locally
 Gap between model-based optimization and 

empirical optimization can be eliminated by
 Local search: 

 for small performance gaps
 in neighborhood of model-predicted values

 Model refinement: 
 for large performance gaps
 must be done manually 
 (future) machine learning: learn new models 

automatically 

 Model-based optimization and empirical 
optimization are not in conflict



Small performance gap: Alpha 21264

ATLAS CGw/S:
mini-MMM: 1300 MFlops
NB = 72
(MU,NU) = (4,4)

ATLAS Model
mini-MMM: 1200 MFlops
NB = 84
(MU,NU) = (4,4)

• Local search
•Around model-predicted NB
•Hill-climbing not useful
•Search interval:[NB-lcm(MU,NU),NB+lcm(MU,NU)]

•Local search for MU,NU
•Hill-climbing OK



Large performance gap: Itanium 

MMM Performance

NB Sensitivity

Performance of mini-MMM
• ATLAS CGw/S: 4000 MFlops
• ATLAS Model: 1800 MFlops

Problem with NB value
ATLAS Model: 30
ATLAS CGw/S: 80 (search space max)

Local search will not solve problem.



Itanium diagnosis and solution
 Memory hierarchy

 L1 data cache: 16 KB
 L2 cache: 256 KB
 L3 cache: 3 MB

 Diagnosis:
 Model tiles for L1 cache 
 On Itanium, FP values not cached in L1 cache!
 Performance gap goes away if we model for L2 cache (NB = 105)
 Obtain even better performance if we model for L3 cache                         

(NB = 360, 4.6 GFlops)
 Problem:

 Tiling for L2 or L3 may be better than tiling for L1
 How do we determine which cache level to tile for??

 Our solution: model refinement + a little search
 Determine tile sizes for all cache levels
 Choose between them empirically



Large performance gap: Opteron 

MMM Performance

MU,NU Sensitivity

Performance of mini-MMM
• ATLAS CGw/S: 2072 MFlops
• ATLAS Model:  1282 MFlops

Key differences in parameter values:MU/NU
• ATLAS CGw/S: (6,1)
• ATLAS Model:  (2,1)



Opteron diagnosis and solution
 Opteron characteristics

 Small number of logical registers
 Out-of-order issue
 Register renaming

 For such processors, it is better to 
 let hardware take care of scheduling dependent 

instructions,
 use logical registers to implement a bigger register tile.

 x86 has 8 logical registers  
  register tiles must be of the form (x,1) or (1,x)



Refined model



Bottom line

• Refined model is not complex.
• Refined model by itself eliminates       
most performance gaps.
• Local search eliminates all 
performance gaps.



Future Directions

 Repeat study with FFTW/SPIRAL
 Uses search to choose between algorithms

 Feed insights back into compilers
 Build a linear algebra compiler for generating high-

performance code for dense linear algebra codes
 Start from high-level algorithmic descriptions
 Use restructuring compiler technology

 Generalize to other problem domains



Performance of MMM code produced by 
Intel’s Itanium compiler (-O3)

Goto BLAS obtains close to 99% of peak, so compiler is pretty good!

GFLOPS relative to -O2; bigger is better
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