
Optimizing MMM
& ATLAS Library Generator

Recall: MMM miss ratios
L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300
– 16KB 32B/Block 4-way 8-byte elements

IJK version (large cache)

DO I = 1, N//row-major storage
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

 Large cache scenario:
 Matrices are small enough to fit into cache
 Only cold misses, no capacity misses
 Miss ratio:

 Data size = 3 N2

 Each miss brings in b floating-point numbers
 Miss ratio = 3 N2 /b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)

C

B
A

K

K

IJK version (small cache)

DO I = 1, N
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

 Small cache scenario:
 Matrices are large compared to cache

 reuse distance is not O(1) => miss
 Cold and capacity misses
 Miss ratio:

 C: N2/b misses (good temporal locality)
 A: N3 /b misses (good spatial locality)
 B: N3 misses (poor temporal and spatial locality)
 Miss ratio  0.25 (b+1)/b = 0.3125 (for b = 4)

C

B
A

K

K

MMM experiments
L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300
– 16KB 32B/Block 4-way 8-byte elements

Can we predict this?

How large can matrices be and still
not suffer capacity misses?

DO I = 1, M
DO J = 1, N

DO K = 1, P
C(I,J) = C(I,J) + A(I,K)*B(K,J)

 How large can these matrices be without suffering capacity
misses?
 Each iteration of outermost loop walks over entire B matrix, so all

of B must be in cache
 We walk over rows of A and successive iterations of middle loop

touch same row of A, so one row of A must be in cache
 We walk over elements of C one at a time.
 So inequality is NP + P + 1 <= C

C

B

A
K

K

M

N

P

Check with experiment

 For our machine, capacity of L1 cache is
16KB/8 doubles = 211 doubles

 If matrices are square, we must solve
N^2 + N + 1 = 211

which gives us N = 45
 This agrees well with experiment.

High-level picture of high-performance
MMM code

 Block the code for each level of memory
hierarchy
 Registers
 L1 cache
 …..

 Choose block sizes at each level using the
theory described previously
 Useful optimization: choose block size at level

L+1 to be multiple of the block size at level L

ATLAS

 Library generator for MMM and other BLAS
 Blocks only for registers and L1 cache
 Uses search to determine block sizes, rather

than the analytical formulas we used
 Search takes more time, but we do it once when

library is produced
 Let us study structure of ATLAS in little more

detail

 Original ATLAS Infrastructure

 Model-Based ATLAS Infrastructure

Our approach

Detect
Hardware

Parameters

ATLAS Search
Engine

(MMSearch)
NR

MulAdd
L*

L1Size
ATLAS MM

Code Generator
(MMCase)

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile,
Execute,
Measure

MFLOPS

Detect
Hardware

Parameters
ModelNR

MulAdd
L*

L1I$Size ATLAS MM
Code Generator

(MMCase)
xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

BLAS

 Let us focus on MMM:
for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)

for (int k = 0; k < K; k++)
C[i][j] += A[i][k]*B[k][j]

 Properties
 Very good reuse: O(N2) data, O(N3) computation
 Many optimization opportunities

 Few “real” dependencies
 Will run poorly on modern machines

 Poor use of cache and registers
 Poor use of processor pipelines

Optimizations

 Cache-level blocking (tiling)
 Atlas blocks only for L1 cache
 NB: L1 cache time size

 Register-level blocking
 Important to hold array values in registers
 MU,NU: register tile size

 Filling the processor pipeline
 Unroll and schedule operations
 Latency, xFetch: scheduling parameters

 Versioning
 Dynamically decide which way to compute

 Back-end compiler optimizations
 Scalar Optimizations
 Instruction Scheduling

Cache-level blocking (tiling)

 Tiling in ATLAS
 Only square tiles

(NBxNBxNB)
 Working set of tile fits in L1
 Tiles are usually copied to

continuous storage
 Special “clean-up” code

generated for boundaries
 Mini-MMM

for (int j = 0; j < NB; j++)
for (int i = 0; i < NB; i++)

for (int k = 0; k < NB; k++)
C[i][j] += A[i][k] * B[k][j]

 NB: Optimization parameter

B

N

M

A C

N
B

NB

K

K

Register-level blocking

 Micro-MMM
 A: MUx1
 B: 1xNU
 C: MUxNU
 MUxNU+MU+NU registers

 Unroll loops by MU, NU, and KU
 Mini-MMM with Micro-MMM inside

for (int j = 0; j < NB; j += NU)
for (int i = 0; i < NB; i += MU)

load C[i..i+MU-1, j..j+NU-1] into registers
for (int k = 0; k < NB; k++)

load A[i..i+MU-1,k] into registers
load B[k,j..j+NU-1] into registers
multiply A’s and B’s and add to C’s

store C[i..i+MU-1, j..j+NU-1]

 Special clean-up code required if
NB is not a multiple of MU,NU,KU

 MU, NU, KU: optimization parameters

B

NB

N
B

A C

K
M

U

NU

K

KU times

Scheduling

 FMA Present?
 Schedule Computation

 Using Latency
 Schedule Memory Operations

 Using IFetch, NFetch,FFetch

 Latency, xFetch: optimization parameters

M1

M2

M3

M4

MMU*NU

…

A1

A2

A3

A4

AMU*NU

…

L1

L2

L3

LMU+NU

…

Latency=2

A1

A2

AMU*NU

…

Computation

Memory
OperationsComputation

Memory
Operations

Computation

Memory
Operations

Computation

Memory
Operations

Computation

Memory
Operations

IFetch Loads

NFetch Loads

NFetch Loads

NFetch Loads

…

Search Strategy
 Multi-dimensional optimization problem:

 Independent parameters: NB,MU,NU,KU,…
 Dependent variable: MFlops
 Function from parameters to variables is given implicitly; can be

evaluated repeatedly
 One optimization strategy: orthogonal line search

 Optimize along one dimension at a time, using reference values
for parameters not yet optimized

 Not guaranteed to find optimal point, but might come close

Find Best NB

 Search in following range
 16 <= NB <= 80
 NB2 <= L1Size

 In this search, use simple estimates for other
parameters
 (eg) KU: Test each candidate for

 Full K unrolling (KU = NB)
 No K unrolling (KU = 1)

 Original ATLAS Infrastructure

 Model-Based ATLAS Infrastructure

Model-based optimization

Detect
Hardware

Parameters

ATLAS Search
Engine

(MMSearch)
NR

MulAdd
L*

L1Size
ATLAS MM

Code Generator
(MMCase)

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile,
Execute,
Measure

MFLOPS

Detect
Hardware

Parameters
ModelNR

MulAdd
L*

L1I$Size ATLAS MM
Code Generator

(MMCase)
xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

Modeling for Optimization Parameters

 Optimization parameters
 NB

 Hierarchy of Models (later)
 MU, NU



 KU
 maximize subject to L1 Instruction Cache

 Latency
 (L* + 1)/2

 MulAdd
 hardware parameter

 xFetch
 set to 2

NRLatencyNUMUNUMU ≤+++*

Largest NB for no
capacity/conflict misses

 If tiles are copied into
contiguous memory,
condition for only cold misses:
 3*NB2 <= L1Size

A

k

B

j

k

i

NB
NB

NB
NB

Largest NB for no capacity misses

 MMM:
for (int j = 0; i < N; i++)

for (int i = 0; j < N; j++)
for (int k = 0; k < N; k++)
c[i][j] += a[i][k] * b[k][j]

 Cache model:
 Fully associative
 Line size 1 Word
 Optimal Replacement

 Bottom line:
NB2+NB+1<C
 One full matrix
 One row / column
 One element

A

M
 (I)

K

C

B

N (J)

K

Summary: Modeling for Tile Size (NB)

 Models of increasing complexity
 3*NB2 ≤ C

 Whole work-set fits in L1
 NB2 + NB + 1 ≤ C

 Fully Associative
 Optimal Replacement
 Line Size: 1 word

 or

 Line Size > 1 word

 or

 LRU Replacement

B

N

M

A C

N
B

NB

K

KB
C

B
NB

B
NB

≤+




+






 1
2

B
CNB

B
NB

≤++




 1
2

B
C

B
NB

B
NB

B
NB

≤







+



+



+







 12
2

B
CNB

B
NB

≤++






 13
2

A

M
(I)

K

C

B

N (J)

K
B

A

M
(I)

K

C

B

N (J)

K
L

Summary of model

Experiments
• Ten modern architectures
• Model did well on

•RISC architectures
•UltraSparc: did better

• Model did not do as well on
•Itanium
•CISC architectures

• Substantial gap between
ATLAS CGw/S and ATLAS
Unleashed on some
architectures

Some sensitivity graphs for Alpha 21264

Eliminating performance gaps
 Think globally, search locally
 Gap between model-based optimization and

empirical optimization can be eliminated by
 Local search:

 for small performance gaps
 in neighborhood of model-predicted values

 Model refinement:
 for large performance gaps
 must be done manually
 (future) machine learning: learn new models

automatically

 Model-based optimization and empirical
optimization are not in conflict

Small performance gap: Alpha 21264

ATLAS CGw/S:
mini-MMM: 1300 MFlops
NB = 72
(MU,NU) = (4,4)

ATLAS Model
mini-MMM: 1200 MFlops
NB = 84
(MU,NU) = (4,4)

• Local search
•Around model-predicted NB
•Hill-climbing not useful
•Search interval:[NB-lcm(MU,NU),NB+lcm(MU,NU)]

•Local search for MU,NU
•Hill-climbing OK

Large performance gap: Itanium

MMM Performance

NB Sensitivity

Performance of mini-MMM
• ATLAS CGw/S: 4000 MFlops
• ATLAS Model: 1800 MFlops

Problem with NB value
ATLAS Model: 30
ATLAS CGw/S: 80 (search space max)

Local search will not solve problem.

Itanium diagnosis and solution
 Memory hierarchy

 L1 data cache: 16 KB
 L2 cache: 256 KB
 L3 cache: 3 MB

 Diagnosis:
 Model tiles for L1 cache
 On Itanium, FP values not cached in L1 cache!
 Performance gap goes away if we model for L2 cache (NB = 105)
 Obtain even better performance if we model for L3 cache

(NB = 360, 4.6 GFlops)
 Problem:

 Tiling for L2 or L3 may be better than tiling for L1
 How do we determine which cache level to tile for??

 Our solution: model refinement + a little search
 Determine tile sizes for all cache levels
 Choose between them empirically

Large performance gap: Opteron

MMM Performance

MU,NU Sensitivity

Performance of mini-MMM
• ATLAS CGw/S: 2072 MFlops
• ATLAS Model: 1282 MFlops

Key differences in parameter values:MU/NU
• ATLAS CGw/S: (6,1)
• ATLAS Model: (2,1)

Opteron diagnosis and solution
 Opteron characteristics

 Small number of logical registers
 Out-of-order issue
 Register renaming

 For such processors, it is better to
 let hardware take care of scheduling dependent

instructions,
 use logical registers to implement a bigger register tile.

 x86 has 8 logical registers
  register tiles must be of the form (x,1) or (1,x)

Refined model

Bottom line

• Refined model is not complex.
• Refined model by itself eliminates
most performance gaps.
• Local search eliminates all
performance gaps.

Future Directions

 Repeat study with FFTW/SPIRAL
 Uses search to choose between algorithms

 Feed insights back into compilers
 Build a linear algebra compiler for generating high-

performance code for dense linear algebra codes
 Start from high-level algorithmic descriptions
 Use restructuring compiler technology

 Generalize to other problem domains

Performance of MMM code produced by
Intel’s Itanium compiler (-O3)

Goto BLAS obtains close to 99% of peak, so compiler is pretty good!

GFLOPS relative to -O2; bigger is better

0

5

10

15

20

25

30

-O
1

-O
2

+ p
ref

etc
h

+ i
nte

rch
an

ge

+ u
nro

ll-j
am

+ b
loc

kin
g =

 -O
3

gc
c -

O4

fa
ct

or
 fa

st
er

 th
an

 -O
2

92% of Peak
Performance

	Optimizing MMM� & ATLAS Library Generator
	Recall: MMM miss ratios
	IJK version (large cache)
	IJK version (small cache)
	MMM experiments
	How large can matrices be and still not suffer capacity misses?
	Check with experiment
	High-level picture of high-performance MMM code
	ATLAS
	Our approach
	BLAS
	Optimizations
	Cache-level blocking (tiling)
	Register-level blocking
	Scheduling
	Search Strategy
	Find Best NB
	Model-based optimization
	Modeling for Optimization Parameters
	Largest NB for no capacity/conflict misses
	Largest NB for no capacity misses
	Summary: Modeling for Tile Size (NB)
	Summary of model
	Experiments
	Some sensitivity graphs for Alpha 21264
	Eliminating performance gaps
	Small performance gap: Alpha 21264
	Large performance gap: Itanium
	Itanium diagnosis and solution
	Large performance gap: Opteron
	Opteron diagnosis and solution
	Refined model
	Bottom line
	Future Directions
	Performance of MMM code produced by �Intel’s Itanium compiler (-O3)

