Control Flow Graphs

e Control Flow Graph (CFG) = graph representation
of computation and control flow in the program
— framework to statically analyze program control-flow

Live variables and copy propagation e In a CEG:

— Nodes are basic blocks; they represent computation
— Edges characterize control flow between basic blocks

e Can build the CFG representation either from the
high IR or from the low IR

Build CFG from High IR Build CFG from Low IR
label L1
label L1 fjump cL2
) fjump c L2 1
while (c) { X=y+1; X=y+1;
xX=y+1; y=2%z; y=2%*z;
y=2*z fjump d L3 fjumpld L3
if (d) x =y+z; X =y+z; = :
y=1; label L3
z=1; label L3
7=x jump L1 z=1;
label L2 jump L1
zZ=X; label L2
Z=x;
3 4

Using CFGs

< Next: use CFG representation to statically
extract information about the program
— Reason at compile-time

— About the run-time values of variables and
expressions in all program executions

e Extracted information example: live variables

e ldea:
— Define program points in the CFG

— Reason statically about how the information flows
between these program points

Program Points

e Two program points for each instruction:
— There is a program point before each instruction
— There is a program point after each instruction

Point before ——— o
X =y+1
Point after °

* |n a basic block:

— Program point after an instruction = program point
before the successor instruction

Program Points: Example

Multiple successor blocks
means that point at the
end of a block has multiple
successor program points y =2*z

L]
X =y+1
L]

Depending on the if zd)
execution, control flows °

from a program point to
one of its successors °
X =y+z
Also multiple predecessors °

How does information
propagate between
program points?

Flow of Extracted Information

= Question 1: how does information X =.y+1
flow between the program points .
before and after an instruction? y =2*z
L]
 Question 2: how does information if (d)
flow between successor and °

predecessor basic blocks? .

X = y+z
L]

e ... in other words:

Q1: what is the effect of instructions? °
Q2: what is the effect of control flow?

Using CFGs

e To extract information: reason about how it
propagates between program points

* Rest of this lecture: how to use CFGs to

compute information at each program point for:

— Live variable analysis, which computes which
variables are live at each program point

— Copy propagation analysis, which computes the
variable copies available at each program point

Live variables

e A statementis a
definition of a variable
v if it may write to v.

* A statement is a use of
variable v if it may read
from v.

e Avariable v is live at a
point p in a CFG if
— there is a path from p to

a use of v, and

— that path does not
contain a definition of v

{x,y,z,d,c}

10

Computing Use/Def

e Compute use[l] and def[l] for each instruction I:

iflisx=yOPz: use[l] =4y, z} def[l] ={x}
iflisx=0Py : use[l] ={y} def[l] = {x}

iflisx=y o use[l] = {y} def[l] = {x}
iflisx=addry: use[l] ={} def[l] = {x}
if 1is if (x) o ouse[l] = {x} def[I] = {}

if lisreturnx : use[l] = {x} def[I] = {}
iflisx =f(y,,...., ¥, : use[l] ={yi, ..., ¥n}
def[1] = {}

(For now, ignore load and store instructions)

11

Part 1: Analyze Instructions

e Question: what is the relation between in[I]
sets of reaching definitions before and |
after an instruction? out[1]

e Examples:

conclude in[1] = {y,z} in[1] = {y,z,t} in[1] = {x.t}
X =y+z; X =y+z; X = X+1;
assume out[l] = {z} out[l] = {x,t} out[I] = {x,t}

e ... is there a general rule?

12

Live Variable Analysis

* Computes live variables at each program point

— l.e., variables holding values that may be used later (in
some execution of the program)

e For an instruction I, consider:
— in[1] = live variables at program point before |
— out[I] = live variables at program point after |

» For a basic block B, consider:
— in[B] = live variables at beginning of B
— out[B] = live variables at end of B

« If I = first instruction in B, then in[B] = in[1]
« If I' = last instruction in B, then out[B] = out[I']

13

How to Compute Liveness?

e Answer question 1: for each in[1]
instruction 1, what is the relation |
between in[I] and out[I] ? out[l]

* Answer question 2: for each B
basic block B with successor out[B]
blocks B, ..., B,, what is the
relation between out[B] and in[B,] in[B,] ‘
in[B,], ..., in[B,]? B, B,

14

Part 1: Analyze Instructions

* Question: what is the relation between in[I]
sets of live variables before and after |

an instruction? out[1]
e Examples:
conclude in[I] = {y,z} in[1] = {y.z,t} in[1] = {x,t}
X = y+z; X = y+z; X = x+1;
assume out[l] = {z} out[l] = {x,t} out[1] = {x,t}

e ... is there a general rule?

15

Analyze Instructions

¢ Yes: knowing variables live after I,

can compute variables live before I: inf1]
— Each variable live after | is also live I
before I, unless | defines (writes) it out[l]

— Each variable that | uses (reads) is also
live before instruction 1
* Mathematically:
in[1] = (out[l] — def[1]) U use[l]
where:

— def[I] = variables defined (written) by instruction |
— use[I] = variables used (read) by instruction |

16

Example

e Example: block B with three

instructions 11, 12, 13: Block B
Livel =in[B] =in[11] Livel

Live2 = out[11] = in[12] 11| x=y+1
Live3 = out[12] = in[13] Live2

Live4 = out[I3] = out[B] 12| y=2*z
- Relation between Live sets: Live3
Livel = (Live2-{x}) u {y} 13 if (d)
Live2 = (Live3-{y}) u {z} Live4

Live3 = (Lived-{}) u {d}

17

Backward Flow

= Relation: in[1]

in[1] = (out[I] — def[I]) v use[l] | ﬁ
out[l]
e The information flows backward!

e Instructions: can compute in[l] if we

know out[I] In[B]

X =y+1

e Basic blocks: information about live y =2%z
variables flows from out[B] to in[B] if (d)
out[B]

18

Part 2: Analyze Control Flow

e Question: for each basic block B
with successor blocks By, ..., B,
what is the relation between
out[B] and in[B,], ..., in[B,]?

e Examples:
2] o)
{xy.2} {xy.2}
N\ [
| [y 3 ‘ ‘ o ‘ ‘ {z
B, B, B, B, B,

e What is the general rule?

19

Analyze Control Flow

e Rule: A variables is live at end of block B if it is
live at the beginning of one (or more) successor
blocks

e Characterizes all possible program executions

e Mathematically:
out[B] = uin[B"]

B’ e succ(B)

* Again, information flows backward: from
successors B’ of B to basic block B

20

Constraint System

e Put parts together: start with CFG and derive a
system of constraints between live variable sets:

out[B] = v in[B] for each basic block B
B’ e succ(B)

{ in[1] = (out[l] — def[1]) W use[l] for each instruction |

* Solve constraints:
— Start with empty sets of live variables
— lteratively apply constraints
— Stop when we reach a fixed point

21

Live variables

Lio={}

L3 = {x} U (L10- {z})
L9 =12 U L3 U {c}

L8 = L9 - {z}

L7 = L9 - {z}

L6 = {y.z} U (L8 — {x})
L5=16 UL7 U {d}
L4={z} U (L5-{y}
L2 ={y} U (L4 -{x})
L1 =12 U L3 U {c}

Constraint Solving Algorithm

for all instructions | do in[I] = out[l] = J;
repeat
select an instuction | (or a basic block B) such that
in[1] = (out[1] — def[I]) v use[l]
or (respectively)
out[B] v in[B1]
B’ e succ(B)
and update in[1] (or out[B]) accordingly
until no such change is possible

23

Example

def = {x}, use = {y} -—-—-—-—F--—

def = {y}, use = {z} 1
def = {3}, use={d} -1

def = {x}, use = {y,z} ---——-- N

def ={z}, use={} ———\—- -~

def = {z}, use={x}--—--—--—--—-—--

24

Example Example
{ho {}o
f = =fc} ———— A - f = =fc} ———————— A -
def = {}, use = {c} i b def = {}, use ={c} { %
def = {x}, use = {y} - Yo def = {x}, use = {y}-----————+--- Yo
def = {y}, use = {z} -7~ def = {y}, use = {z} ————1-—
def={}, use={d} 1 1 def={}, use={d} ———1—— I3
{ " 18 { L S5
def = {x}, use = {y,z} ——- i def = {x}, use = {y,z} ——- E
def = {z}, use={} -\~ - {}2 def={z}, use={} ———-—--\c- - {}2
def = {z}, use={x}--—-—--—--------- Z=X 2 def = {z}, use ={x}-—-——--—-—---- e
, {4 ’ {3
25 26
Example Example
_ e/ R {ho _ P 4 N {o
def = {}, use ={c} i}g def = {}, use ={c} i}9
def = {x}, use = {y}--------f--—- Yo def = {x}, use = {y} -4 Yo
def = {y}, use = {z} -7 def = {y}, use ={z} -1
def={}, use={d} - 3 def={}, use={d} 1 {1
def = {x}, use ={y,z} ——--—- % - def = {x}, use ={y,z} ———-—- % -
def = {z}, use={} ———\— - {}2 def = {z}, use = {} ~——-—--—--\- - {}2
def = {z}, use ={x}--——-------+ zZ=X {}; def = {z}, use={x}-—----—-- {};
, {} ’ {}

Example

def = {x}, use ={y}
def = {y}, use ={z}
def = {}, use = {d}

Example

def = {x}, use ={y}
def = {y}, use ={z}
def = {}, use = {d}

o td o s
def = {x}, use = {y,z} --——— i def = {x}, use = {y,z} --——= E
def = {z}, use={} -\~ - {}2 def = {z}, use ={} -\~ - {}2
—{3 — {1
def = {z}, use ={x}--—--—-—--- Z=X oy def = {z}, use ={x}-—-——--—-—---- Z=X oy
| ! | !
29 30
Example Example
_ ./ N {}o — — et e[N {}o
def = {}, use ={c} i}g) def = {}, use ={c} i}9 |
def = {x}, use = {y} - V20 def = {x}, use = {y} - V2. dks
def = {y}, use = {z} ——1—— def = {y}, use ={z} ——1———
def={}, use={d} -1 .2 def={}, use={d} -1 o.2h
def = {x}, use = {y,z} ————{X'E E def = {x}, use = {y,z} ————{Y’E R
def = {z}, use={} ———\— - {}2 def = {z}, use = {} ~——-—--—--\- - {}2
—% —(%
def = {z}, use ={x}--—-—---------- Z=X PaY def ={z}, use={x}--—---------- Z=X P
| ! | !

Example

Example

_ e [e {}o _ e L ~ {}o
def = {3}, use = {c} 0 def = {}, use ={c} {20},
def = {x}, use = {y} - J# e def = {x}, use = {y} 4
def = {y}, use = {z} -1 def = {y}, use = {z} ————1-—
def={}, use={d} 7 .2 def={}, use={d} 7 e
def={x}, use ={y.7} ""{y’i def={x}, use={yz} ————{Y‘E
def={z}, use={} —--—-——--\- - {}2 def ={z}, use={} -\~ - {}2
1 1
def = {z}, use={x}--—-—--—--------- Z=X ?}}j def = {z}, use ={x}-—-——--—-—---- Z=X EX}}j
33 34
Example Example
_ 7 ~ {x.y,2,d,c}o _ 4 ~ {x.y.z,d,c}1o
def = {3, use = {c} frya, def = {3, use = {c} Doz
def = {x}, use = {y}--------f--—- Y4 ke def = {x}, use = {y} 1 = s
def = {y}, use = {z} -7 def = {y}, use ={z} -1
def={}, use={d} - s def={}, use={d} 1 .2
def = £, use = {y2} det = 0. use =y
def = {z}, use = {} ——————\— - Vi def = {z}, use={} -\~ ~ Vi
h x.y,2,d,cH
def = {z}, use ={x}--—-—--—-- Z=X 0 def = {z}, use ={x}--—--—-—-—-—--- Z=X e
th —
35 36

Example

def = {3, use = {c} ----—--—---/4- - {X,y,z o
def = {x}, use = {y} - {y.2,d}
def = {y}, use = {z} ~——-———-f--—

def = {3, use = {d} ~-------{--—- Y
def = {x}, use = {y,z} ,,,,{}/’i

def = {z}, use={} -\ - Oydch,

def = {z}, use = {x}---—---—-—--—--- ?}}8
1 7

Example

{xy:2,d,c}io
def = {}, ={c} ——————————£- -
ef = {}, use = {c} {rx,y,ij,d}g
def = {x}, use = {y}---—---—-—-F—--- ¥:z,d}s
def = {y}, use = {z} ———-——-1-—--
def={}, use={d} 7 s
def = {x}, use = {y,z})
{xy.d,c
def={z}, use={} -\ - Upyd.ck
x,y,z,d,c}

def = {z}, use = {x}--—-—---—-------- EX}}S
1 7

37 38
Example Example
_ 7 ~ {x.y.2,d.cho _ e/ ~ {xy.z.d.cho
def = {3, use = {c} fry, def = {3, use = {c} Doz
def = {x}, use = {y}--------f--—- Y4 ke def = {x}, use = {y} 1 = s
def = {y}, use = {z} -7 def = {y}, use ={z} -1
def = {}, use = {d} P e def = {3, use = {d} o Nz e
def = {x}, use = {y,z} BES def = {x}, use = {y,z} DAL
{xy.d,c {x,y.d,c
def={z}, use={} N\~ - vd.cha def={z}, use={} -\~ ~ Opndle
x,y,2,d,C}; x,y,z2,d,C},
def = {z}, use = {x}-——————~ EX}}:} def = {z}, use ={x}-——-—- z T X EX}}:
39 40

10

Example

{xy.z,d,cho

Example

{x.y,z,d,c}hyo

def = {}, use = {c} ~---------7- -) def = {}, use ={c} -/~ - frya),
def = {3, use = {y} | ek def = {3}, use = {y} -/ Y7
def = {y}, use = {z} -1 def = {y}, use = {z} ————1-—
def ={}, use ={d} 777{7 77777777 {x.)z,d,c}s def ={}, use={d} ———7 {x.¥2,d,c}s
y,z,d,d {y,z,d,q
def = {x}, use ={y,z} *{;(*y*a*c def = {x}, use =4{y,z} *{;*y*a*c
def={z}, use={} -\ - Ofvdclk def = {z}, use ={} ——--————--\c- - vk
x,y,z,d,c} x,y,z,d,c}
def = {z}, use ={x}-—--—- EX;S def = {z}, use = {x}---------m-m- EX}}S
! ! ! !
4 a2
Example Example
_ 7 ~ {x,y,2,d,c};o _ 4 ~ {x.y.z,d,c}1o
def = {}, use = {c} ix’y’é’d}g def = {}, use ={c} ix,y,é,d,c}g
def = {x}, use = {y}--------f--—- Y2dche def = {x}, use = {y} 1 Y24 e
def = {y}, use = {z} -7 def = {y}, use ={z} -1
def = {3}, use ={d} -“{‘y‘z‘;j‘ - bz dicks def = {}, use ={d} ___{_y:z_’;jj - xhz.dicls
def = {x}, use ={y,z} e def = {x}, use = {y.z} Py
def={z}, use={} N\~ - vd.cha def={z}, use={} -\~ ~ Opndle
x,y,2,d,C}; x,y,z2,d,C},
def = {2}, use = {x} -~ b def = {z}, use ={x} 1=x | %
I {} T {}
43 44

11

Example

{x,y,2,d,C}1o

{x.y,z,d,c}q
{¥:z,d.c}s

def = {}, use = {c} -—————--+#- -

def = {x}, use = {y} -4
def = {y}, use = {z} -1~
def ={}, use ={d} -
{y,z,d,q
def = {x}, use ={y,z} --—-—---
{x,y,d,c

def ={z}, use ={} -\~ -

{x,y.z,d,c}s

{x/y,d,c},
x,¥:2,d,c}

def = {z}, use = {x}-——-—— ?}}8
l 7

45

Fixed Point Reached

B e/ g {xy.2,d,c}yo
def = {}, use ={c} {x.y.2,d.cks
def = {x}, use = {y} -4 P
def = {y}, use = {z} 17—
def={}, use={d} ———1—— {x,yz,d.c}s

B _ {y.z.d,
def = {x}, use ={y,z} —---

{x,y,d,c
def={z}, use={} X~ - A
x,y,z,d,c}

def = {z}, use = {x}-——-—mr ;{(x}h
1 7

46

General questions

Do systems of equations of this sort always
have solutions?

If so, do they have unique solutions?

If there are multiple solutions, which one is the
“right” one?

How do we solve such systems of equations in
general?

If we use the iterative method, does it always
terminate and if so, does it always produce a
unigue answer?

47

Copy Propagation
Goal: determine copies available at each program point
Information: set of copies <x=y> at each point

For each instruction 1:
— in[I] = copies available at program point before |
— out[I] = copies available at program point after |

For each basic block B:
— in[B] = copies available at beginning of B
— out[B] = copies available at end of B

If 1 = first instruction in B, then in[B] = in[I]
If I’ = last instruction in B, then out[B] = out[I']

48

12

Same Methodology
1. Express flow of information (i.e., available copies):
— For points before and after each instruction (in[l], out[I])

— For points at exit and entry of basic blocks (in[B], out[B])

2. Build constraint system using the relations between
available copies

3. Solve constraints to determine available copies at
each point in the program

49

Analyze Instructions

* Knowing in[l], can compute out[l]:
— Remove from in[1] all copies <u=v> if
variable u or v is written by |
— Keep all other copies from in[l]
— If I is of the form x=y, add it to out[l]

* Mathematically:
out[I] = (in[I1] = Kill[1]) vgen[I]
where:
— kill[IT] = copies “killed” by instruction |
— gen[I] = copies “generated” by instruction |

in[1]
I

out[l]

50

Computing Kill/Gen
e Compute kill[l1] and gen[I] for each instruction I:

iflisx=yOPz: gen[l]={} kill[1] = {u=v]u or v is x}

iflisx=0Py : gen[l]={} kill[1] = {u=v]u or v is x}
iflisx=y :gen[l] = {x=y} kill[I] = {u=v|u or v is x}
if lisx=addry: gen[l] ={} kill[1] = {u=v]|u or v is x}
if 1is if (x) cgen[l]={} kill[1] = {3
if lisreturnx @ gen[l] ={} kill[l] = {3

if lis x = f(y,,..., vo) - gen[l] = {3} Kkill[l] = {u=v] uorvisx}

(again, ignore load and store instructions)

51

Forward Flow

e Relation:
out[1] = (in[I] = kill[1]) v gen[I]

e The information flows forward!

e Instructions: can compute out[l] if

in[1]
o

out[1]

we know in[l]

» Basic blocks: information about
available copies flows from in[B] to
out[B]

In[B]

X=y
y =2*z
if (d)

out[B]

52

13

Analyze Control Flow

e Rule: A copy is available at beginning of block B if
it is available at the end of all predecessor blocks

e Characterizes all possible program executions

e Mathematically:
in[B] = ~ out[B]

B’ € pred(B)

« Information flows forward: from predecessors B’
of B to basic block B

53

Constraint System

* Build constraints: start with CFG and derive a system of
constraints between sets of available copies:

{out[l] = (in[I] = kill[1]) W gen[l] for each instruction |

in[Bl]= M out[B] for each basic block B
B’ e pred(B)

* Solve constraints:

— Start with empty set of available copies at start and
universal set of available copies everywhere else

— lteratively apply constraints

— Stop when we reach a fixed point

54

Example

* What are the available
copies at the end of
the program?

x=y?

z=t?

x=z?

55

Example
— L=0

th’ ******* L, ={all}
* What are the available L SR Ly ={all}
copies at the end of —t——— L, ={all}
the program? /L ™ | Lo ={all}
—— Ly={all}
x=y? | T 1L, ={all}
***** 1, ={all}
=t? -} Ly={al}
= | Lo ={all}
- Ly, ={all}

x=z?

Ly, ={all}
777777 Liz ={all}
/T Ly, ={all}

56

14

Iteration 1

e What are the available

copies at the end of -
the program? /[T\Y |

Iteration 2

e What are the available

copies at the end of — 7 Ly ={z=1}
the program? /L 2\ | Lo={z=1}

Ls={x=y, 2=t}
= - Lo={x=y, 2=t} = - L=(z=1}
x=y? X__ f ————— L, ={x=z,2=t} x=y? X__ f ----- 1, ={z=t, x=2}
y =2*z "*\"1_—— B y=2*z | \ o
if (d) s ={x=17, z=t} if (d) 1 ={z=t, x=2}
7=t? -1 Ly={x=z, z=t} 7=t? -t~ Lg={z=t, x=z}
| t=1 | Lio={x=z, z=t} | t=1 | R Ly ={z=t, x=2}
Ly ={x=7} B B - Ly ={x=2}
x=z? = L, ={x=2} X=z? y—y L, ={x=2}
7=t | / Lig={x=2} 7=t | / Lig={x=z}
7 L, ={z=1} 7 Ly, ={z=t}
57 58
Fixed Point Reached! Summary
L=
=y | L e Extracting information about live variables and
L, ={x=y}
« What are the available =t | La={x=y, =t available copies is similar
copies at the end of PP Ly ={z=t} — Define the required information
if (c)
the program? ”::’ L?__iz{?;}t} — Define information before/after instructions
v NO Xx=z [\ L;{Z:L =7} — Define information at entry/exit of blocks
v y =2*z \ ety — Build constraints for instructions/control flow
. 1g={z=t, x=2}
7=t2 YES @ |\ Lo ={z=t, x=2} — Solve constraints to get needed information
’ | =1 | Lo ={z=t, x=2}
Ly ={x=z} .
x=z? NO) Lp={x=2} - ..is there a general framework?
=z
uz =t |7/ Lis={x=2} — Yes: dataflow analysis!
7 Ly ={z=t}

60

15

