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Parallel computing is changing

• Platforms
– Dedicated clusters versus cloud, mobile

• People
– Small number of scientists and engineers versus large 

number of self-trained parallel programmers
• Data

– Structured (vector, matrix) versus unstructured (graphs)

Old World New World



The Search for
“Scalable” Parallel Programming 

Models
• Tension between productivity 

and performance
– support large number of 

application programmers with 
small number of expert parallel 
programmers 

– performance comparable to 
hand-optimized codes

• Galois project
– data-centric abstractions for 

parallelism and locality
• operator formulation

– scalable parallel system
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What we have learned
• Abstractions for parallelism

– Yesterday: computation-centric abstractions
• Loops or procedure calls that can be executed in parallel

– Today: data-centric abstractions
• Operator formulation of algorithms

• Parallelization strategies
– Yesterday: static parallelization is the norm

• Inspector-executor, optimistic parallelization etc. needed only 
when you lack information about algorithm or data structure

– Today: optimistic parallelization is the baseline
• Inspector-executor, static parallelization etc. are possible 

only when algorithm has enough structure
• Applications

– Yesterday: programs are monoliths, whole-program analysis is 
essential

– Today: programs must be layered. Data abstraction is essential 
not just for software engineering but for parallelism.



Parallelism: Yesterday

• What does program do?
– It does not matter.

• Where is parallelism in program?
– Loop: do static analysis to find 

dependence graph
• Static analysis fails to find 

parallelism.
– May be there is no parallelism in 

program? 
• Thread-level speculation

– Misspeculation and overheads limit 
performance

– Misspeculation costs power and 
energy

Mesh m = /* read in mesh */
WorkList wl;
wl.add(m.badTriangles());
while (true) {

if (wl.empty()) break;
Element e = wl.get();     
if (e no longer in mesh) 

continue;
Cavity c = new Cavity();
c.expand();
c.retriangulate();
m.update(c);//update mesh
wl.add(c.badTriangles());

}



Parallelism: Today
• Parallelism:

– Bad triangles whose cavities do not 
overlap can be processed in parallel

– Parallelism must be found at runtime
• Data-centric view of algorithm

– Active elements: bad triangles
– Local view: operator applied to bad 

triangle:
{Find cavity of bad triangle (blue);
Remove triangles in cavity;
Retriangulate cavity and update mesh;}

– Global view: schedule
– Algorithm = Operator + Schedule

• Parallel data structures
– Graph
– Worklist of bad trianglesDelaunay mesh refinement

Red Triangle: badly shaped triangle
Blue triangles: cavity of bad triangle



Example: Graph analytics
• Single-source shortest-path problem
• Many algorithms

– Dijkstra (1959)
– Bellman-Ford  (1957)
– Chaotic relaxation (1969)
– Delta-stepping (1998)

• Common structure:
– Each node has distance label d
– Operator: 

relax-edge(u,v):
if d[v] > d[u]+length(u,v)
then d[v]  d[u]+length(u,v)

– Active node: unprocessed node whose 
distance field has been lowered

– Different algorithms use different 
schedules

– Schedules differ in parallelism, locality, 
work efficiency
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SSSP algorithms (I)
• Chaotic relaxation (1969):

– use set to track active nodes
– iterate over nodes in any order 
– nodes can be relaxed many times

• may do more work than Dijkstra

• Key data structures:
– Graph
– Work set/multiset: unordered

• Parallelization: 
– process multiple work-set nodes
– need concurrent data structures

• concurrent set/multiset: elements 
are added/removed correctly

• concurrent graph: simultaneous 
updates to node happen correctly 

• Unordered algorithm
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SSSP algorithms (I contd.)
• Need for synchronization at graph 

nodes
– Suppose nodes B and C are relaxed 

simultaneously
– Both relaxations may update value at D

• Value at D is infinity
• Relax-C operation reads this value and 

wants to update it to 3.
• At the same time, Relax-D operation reads 

D’s value and wants to update it to 12
• If the two updates are not sequenced 

properly, final value at D after both 
relaxations may be 12, which is incorrect

– One solution: ensure that the “read-
modify-write” in edge relaxation is 
“atomic” – no other thread can read or 
write that location while the read-
modify-write is happening

• Also need synchronization at node 
being relaxed to ensure its value is not 
changed by some other core when the 
node relaxation is going on
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SSSP algorithms (II)
• Dijkstra’s algorithm (1959):

– priority queue of nodes, ordered by 
shortest distance known to node

– iterate over nodes in priority order 
– node is relaxed just once
– work-efficient: O(|E|*lg(|V|))

• Active nodes: 
– nodes in PQ: level has been lowered but 

node has not yet been relaxed
• Key data structures:

– Graph
– Work set/multiset: ordered

• Priority queue

• Parallelism in algorithm
– Edges connected to node can be relaxed in 

parallel
– Difficult to relax multiple nodes from 

priority queue in parallel
– Little parallelism for sparse graphs

• Ordered algorithm
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SSSP algorithms (III)
• Delta-stepping (1998)

– variation of chaotic relaxation
– active nodes currently closer to source 

are more likely to be chosen for 
processing from set

• Work-set/multiset:
– Parameter: ∆
– Sequence of sets
– Nodes whose current distance is between 

n∆ and (n+1)∆ are put in the nth set
– Nodes in each set are processed in 

parallel
– Nodes in set n are completed before 

processing of nodes in set (n+1) are 
started

• ∆ = 1: Dijkstra
• ∆ =       : Chaotic relaxation
• Picking an optimal ∆ : 

– depends on graph and machine
– Do experimentally
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SSSP algorithms (IV)
• Bellman-Ford (1957):

– Iterate over all edges of graph in 
any order, relaxing each edge

– Do this |V| times
– O(|E|*|V|)

• Parallelization 
– Iterate over set of edges
– Inspector-executor:  use graph 

matching to generate a conflict-
free schedule of edge relaxations 
after input graph is given

– Edges in a matching do not have 
nodes in common so they can be 
relaxed without synchronization

– Barrier synchronization between 
successive stages in schedule
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Example: Stencil computation

Jacobi iteration, 5-point stencil

At At+1

//Jacobi iteration with 5-point stencil
//initialize array A
for time = 1, nsteps

for <i,j> in [2,n-1]x[2,n-1]
temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

for <i,j> in [2,n-1]x[2,n-1]:
A(i,j) = temp(i,j)

• Finite-difference 
computation

• Algorithm
– Active nodes: nodes in At+1
– Operator: five-point stencil
– Different schedules have 

different locality
• Regular application

– Grid structure and active 
nodes known statically

– Application can be 
parallelized at compile-
time

“Data-centric multilevel blocking” 
Kodukula et al, PLDI 1997.



Operator formulation of algorithms
• Active element

– Node /edge where computation is 
needed

• Local view: operator
– Update at active element
– Activity: application of operator to 

active element
– Neighborhood: Set of nodes/edges 

read/written by activity
• Global view: schedule

– Unordered algorithms: no semantic 
constraints but performance may 
depend on schedule

– Ordered algorithms: problem-
dependent order 

• Amorphous data-parallelism
– Multiple active nodes can be 

processed in parallel subject to  
neighborhood and ordering 
constraints

: active node

: neighborhood

Parallel program = Operator + Schedule + Parallel data structure



Parallelization strategies: Binding Time

Optimistic
Parallelization    (Time-warp)

Interference graph (DMR, chaotic SSSP)

Inspector-executor (Bellman-Ford)

Static parallelization   (stencil codes, FFT, dense linear algebra)Compile-time

After input
is given

During program
execution

After program 
is finished
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When do you know the active nodes and neighborhoods?

“The TAO of parallelism in algorithms” Pingali et al, PLDI 2011



Locality
i1

i2

i3

i4

i5

• Temporal locality:
– Activities with overlapping 

neighborhoods should be 
scheduled close in time 

– Example: activities i1 and i2
• Spatial locality:

– Abstract view of graph can be 
misleading

– Depends on the concrete 
representation of the data structure

• Inter-package locality:
– Partition graph between packages 

and partition concrete data structure 
correspondingly

– Active node is processed by 
package that owns that node

1 1 2 3
2 1 3 2
3.4 3.6 0.9 2.1

src
dst
val

Concrete representation:
coordinate storage

Abstract data structure



GALOIS SYSTEM



Galois system

• Ubiquitous parallelism:
– small number of expert 

programmers (Stephanies) must 
support  large number of 
application programmers (Joes)

– cf. SQL

• Galois system:
– Stephanie: library of concurrent 

data structures and runtime 
system

– Joe: application code in 
sequential C++

• Galois set iterator for highlighting 
opportunities for exploiting ADP

Parallel program = Operator + Schedule + Parallel data structures

Joe: Operator + Schedule

Stephanie: Parallel data structures



Hello graph Galois Program
#include “Galois/Galois.h”
#include “Galois/Graphs/LCGraph.h”

struct Data { int value; float f; };

typedef Galois::Graph::LC_CSR_Graph<Data,void> Graph;
typedef Galois::Graph::GraphNode Node;

Graph graph;

struct P {
void operator()(Node n, Galois::UserContext<Node>& ctx) {

graph.getData(n).value += 1;
}

};

int main(int argc, char** argv) {
graph.structureFromGraph(argv[1]);
Galois::for_each(graph.begin(), graph.end(), P());
return 0;

}

20

Data structure
Declarations

Galois Iterator

Operator



Parallel execution of Galois programs

21

Concurrent 
data structures

main()
….
for each …..{
…….
…….
}
.....

Master thread
Application Program

i1

i2

i3

i4

i5

• Application (Joe) program
– Sequential C++
– Galois set iterator: for each

• New elements can be added 
to set during iteration

• Optional scheduling 
specification (cf. OpenMP)

• Highlights opportunities in 
program for exploiting 
amorphous data-parallelism

• Runtime system
– Ensures serializability of 

iterations
– Execution strategies

• Speculation
• Interference graphs

Workset
of active nodes

Graph



PERFORMANCE STUDIES



Galois vs Other Graph Frameworks

Intel Study: Galois vs. Graph Frameworks

“Navigating the maze of graph analytics frameworks” Nadathur et al SIGMOD 2014



Galois: Graph analytics

• Galois lets you code more effective algorithms for graph 
analytics than DSLs like PowerGraph (left figure)

• Easy to implement APIs for graph DSLs on top on Galois and 
exploit better infrastructure (few hundred lines of code for 
PowerGraph and Ligra) (right figure)

“A lightweight infrastructure for graph analytics” Nguyen, Lenharth, Pingali (SOSP 2013)



Galois: Performance on SGI Ultraviolet



FPGA Tools

Moctar & Brisk,  “Parallel FPGA Routing based on the Operator Formulation” 
DAC 2014



Abelian Compiler

27



Distributed-memory
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rmat28 Twitter-
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|V| 268M 51M
|E| 4,296M 1,963M

Stampede cluster at TACC



GPU Code Generation*

 Three core optimizations:
− Nested Parallelism: improves load-balance
− Cooperative Conversion: reduces # of atomics
− Iteration Outlining: reduces GPU underutilization for 

short kernels

 Applied automatically by compiler

• Sreepathi Pai, Keshav Pingali, “A Compiler for Throughput Optimization of 
Graph Algorithms on GPUs”, OOPSLA 2016, To Appear.



GPU Performance

Baseline: best publicly available CUDA code for application 



Heterogeneous Execution 
(CPU+GPU)



Collaborations

• BAE:
– RIPE system for intrusion detection (DARPA project)
– Distributed, heterogeneous (multicore+GPU+FPGA) 

implementation of Galois
• HP Enterprise:

– Systems evaluation for graph analytics workloads
• Raytheon

– Parallel machine learning algorithms for smart weapons 
systems

• Proteus (DARPA project with MIT, Rice, Chicago)
– Approximate computing

• Maciej Paczynski, Krakow
– Multi-frontal sparse direct solvers for fracture problems



Conclusions
• Yesterday:

– Computation-centric view of 
parallelism

• Today:
– Data-centric  view of parallelism
– Operator formulation of 

algorithms
– Permits a unified view of 

parallelism and locality in 
algorithms

– Joe/Stephanie programming 
model

– Galois system is an 
implementation 

• Tomorrow:
– DSLs for different applications
– Layer on top of Galois

Joe: Operator + Schedule

Stephanie: Parallel data structures

Parallel program = Operator + Schedule + Parallel data structure



More information

• Website
– http://iss.ices.utexas.edu

• Download
– Galois system for multicores
– Lonestar benchmarks
– All our papers

http://iss.ices.utexas.edu/
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