
Keshav Pingali
The University of Texas at Austin

The Operator Formulation
and

Amorphous Data-Parallelism

Intelligent Software Systems group (ISS)
• Faculty

– Keshav Pingali, CS/ECE/ICES
• Research staff

– Andrew Lenharth
– Sree Pai

• PhD students
– Amber Hassaan
– Rashid Kaleem
– Michael He
– Yi-Shan Lu
– Roshan Dathathri
– Gurbinder Singh
– Sepideh Maliki

• Visitors from China, France, India, Norway, Poland, Portugal
• Home page: http://iss.ices.utexas.edu
• Funding: DARPA, NSF, BAE, HP, Intel, NEC, NVIDIA…

http://iss.ices.utexas.edu/

Parallel computing is changing

• Platforms
– Dedicated clusters versus cloud, mobile

• People
– Small number of scientists and engineers versus large

number of self-trained parallel programmers
• Data

– Structured (vector, matrix) versus unstructured (graphs)

Old World New World

The Search for
“Scalable” Parallel Programming

Models
• Tension between productivity

and performance
– support large number of

application programmers with
small number of expert parallel
programmers

– performance comparable to
hand-optimized codes

• Galois project
– data-centric abstractions for

parallelism and locality
• operator formulation

– scalable parallel system
4

Joe

Stephanie

What we have learned
• Abstractions for parallelism

– Yesterday: computation-centric abstractions
• Loops or procedure calls that can be executed in parallel

– Today: data-centric abstractions
• Operator formulation of algorithms

• Parallelization strategies
– Yesterday: static parallelization is the norm

• Inspector-executor, optimistic parallelization etc. needed only
when you lack information about algorithm or data structure

– Today: optimistic parallelization is the baseline
• Inspector-executor, static parallelization etc. are possible

only when algorithm has enough structure
• Applications

– Yesterday: programs are monoliths, whole-program analysis is
essential

– Today: programs must be layered. Data abstraction is essential
not just for software engineering but for parallelism.

Parallelism: Yesterday

• What does program do?
– It does not matter.

• Where is parallelism in program?
– Loop: do static analysis to find

dependence graph
• Static analysis fails to find

parallelism.
– May be there is no parallelism in

program?
• Thread-level speculation

– Misspeculation and overheads limit
performance

– Misspeculation costs power and
energy

Mesh m = /* read in mesh */
WorkList wl;
wl.add(m.badTriangles());
while (true) {

if (wl.empty()) break;
Element e = wl.get();
if (e no longer in mesh)

continue;
Cavity c = new Cavity();
c.expand();
c.retriangulate();
m.update(c);//update mesh
wl.add(c.badTriangles());

}

Parallelism: Today
• Parallelism:

– Bad triangles whose cavities do not
overlap can be processed in parallel

– Parallelism must be found at runtime
• Data-centric view of algorithm

– Active elements: bad triangles
– Local view: operator applied to bad

triangle:
{Find cavity of bad triangle (blue);
Remove triangles in cavity;
Retriangulate cavity and update mesh;}

– Global view: schedule
– Algorithm = Operator + Schedule

• Parallel data structures
– Graph
– Worklist of bad trianglesDelaunay mesh refinement

Red Triangle: badly shaped triangle
Blue triangles: cavity of bad triangle

Example: Graph analytics
• Single-source shortest-path problem
• Many algorithms

– Dijkstra (1959)
– Bellman-Ford (1957)
– Chaotic relaxation (1969)
– Delta-stepping (1998)

• Common structure:
– Each node has distance label d
– Operator:

relax-edge(u,v):
if d[v] > d[u]+length(u,v)
then d[v]  d[u]+length(u,v)

– Active node: unprocessed node whose
distance field has been lowered

– Different algorithms use different
schedules

– Schedules differ in parallelism, locality,
work efficiency

G

A

B

C
D

E

F
H

2

5

1

7

4

3

2

9

2

1

0 ∞

∞
∞∞

∞

∞

∞

2

5

SSSP algorithms (I)
• Chaotic relaxation (1969):

– use set to track active nodes
– iterate over nodes in any order
– nodes can be relaxed many times

• may do more work than Dijkstra

• Key data structures:
– Graph
– Work set/multiset: unordered

• Parallelization:
– process multiple work-set nodes
– need concurrent data structures

• concurrent set/multiset: elements
are added/removed correctly

• concurrent graph: simultaneous
updates to node happen correctly

• Unordered algorithm

A

B

C
D

E

F

G

H

2

5

1

7

4

3

2

9

2

1

A B
C DE F

0

D Set

0
5

2

12

15

16

3

SSSP algorithms (I contd.)
• Need for synchronization at graph

nodes
– Suppose nodes B and C are relaxed

simultaneously
– Both relaxations may update value at D

• Value at D is infinity
• Relax-C operation reads this value and

wants to update it to 3.
• At the same time, Relax-D operation reads

D’s value and wants to update it to 12
• If the two updates are not sequenced

properly, final value at D after both
relaxations may be 12, which is incorrect

– One solution: ensure that the “read-
modify-write” in edge relaxation is
“atomic” – no other thread can read or
write that location while the read-
modify-write is happening

• Also need synchronization at node
being relaxed to ensure its value is not
changed by some other core when the
node relaxation is going on

A

B

C
D

E

F

G

H

2

5

1

7

4

3

2

9

2

1

B
C

0

Set

0
5

2
∞

∞

∞

∞
∞

SSSP algorithms (II)
• Dijkstra’s algorithm (1959):

– priority queue of nodes, ordered by
shortest distance known to node

– iterate over nodes in priority order
– node is relaxed just once
– work-efficient: O(|E|*lg(|V|))

• Active nodes:
– nodes in PQ: level has been lowered but

node has not yet been relaxed
• Key data structures:

– Graph
– Work set/multiset: ordered

• Priority queue

• Parallelism in algorithm
– Edges connected to node can be relaxed in

parallel
– Difficult to relax multiple nodes from

priority queue in parallel
– Little parallelism for sparse graphs

• Ordered algorithm

H

<A,0> <B,5><C,2><D,3>

A

B

C
D

E

F

G

2

5

1

7

4

3

2

9

2

1

0

2

5

3

6

7

<B,5> <E,6> <F,7>

Priority queue

SSSP algorithms (III)
• Delta-stepping (1998)

– variation of chaotic relaxation
– active nodes currently closer to source

are more likely to be chosen for
processing from set

• Work-set/multiset:
– Parameter: ∆
– Sequence of sets
– Nodes whose current distance is between

n∆ and (n+1)∆ are put in the nth set
– Nodes in each set are processed in

parallel
– Nodes in set n are completed before

processing of nodes in set (n+1) are
started

• ∆ = 1: Dijkstra
• ∆ = : Chaotic relaxation
• Picking an optimal ∆ :

– depends on graph and machine
– Do experimentally

A

B

C
D

E

F

G

H

2

5

1

7

4

3

2

9

2

1

0

∆ ∆ ∆

∞

SSSP algorithms (IV)
• Bellman-Ford (1957):

– Iterate over all edges of graph in
any order, relaxing each edge

– Do this |V| times
– O(|E|*|V|)

• Parallelization
– Iterate over set of edges
– Inspector-executor: use graph

matching to generate a conflict-
free schedule of edge relaxations
after input graph is given

– Edges in a matching do not have
nodes in common so they can be
relaxed without synchronization

– Barrier synchronization between
successive stages in schedule

A

B

C
E

F
H

2

5

1

7

4

3

2

9

2

1

0

G

1. {(A,B),(C,D),(E,H)},
2. {(A,C),(B,D),(E,G),(F,H)},
3. {(D,E),(G,H)}
4. {(D,F)}

Conflict-free schedule

D

Example: Stencil computation

Jacobi iteration, 5-point stencil

At At+1

//Jacobi iteration with 5-point stencil
//initialize array A
for time = 1, nsteps

for <i,j> in [2,n-1]x[2,n-1]
temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

for <i,j> in [2,n-1]x[2,n-1]:
A(i,j) = temp(i,j)

• Finite-difference
computation

• Algorithm
– Active nodes: nodes in At+1
– Operator: five-point stencil
– Different schedules have

different locality
• Regular application

– Grid structure and active
nodes known statically

– Application can be
parallelized at compile-
time

“Data-centric multilevel blocking”
Kodukula et al, PLDI 1997.

Operator formulation of algorithms
• Active element

– Node /edge where computation is
needed

• Local view: operator
– Update at active element
– Activity: application of operator to

active element
– Neighborhood: Set of nodes/edges

read/written by activity
• Global view: schedule

– Unordered algorithms: no semantic
constraints but performance may
depend on schedule

– Ordered algorithms: problem-
dependent order

• Amorphous data-parallelism
– Multiple active nodes can be

processed in parallel subject to
neighborhood and ordering
constraints

: active node

: neighborhood

Parallel program = Operator + Schedule + Parallel data structure

Parallelization strategies: Binding Time

Optimistic
Parallelization (Time-warp)

Interference graph (DMR, chaotic SSSP)

Inspector-executor (Bellman-Ford)

Static parallelization (stencil codes, FFT, dense linear algebra)Compile-time

After input
is given

During program
execution

After program
is finished

1

2

3

4

When do you know the active nodes and neighborhoods?

“The TAO of parallelism in algorithms” Pingali et al, PLDI 2011

Locality
i1

i2

i3

i4

i5

• Temporal locality:
– Activities with overlapping

neighborhoods should be
scheduled close in time

– Example: activities i1 and i2
• Spatial locality:

– Abstract view of graph can be
misleading

– Depends on the concrete
representation of the data structure

• Inter-package locality:
– Partition graph between packages

and partition concrete data structure
correspondingly

– Active node is processed by
package that owns that node

1 1 2 3
2 1 3 2
3.4 3.6 0.9 2.1

src
dst
val

Concrete representation:
coordinate storage

Abstract data structure

GALOIS SYSTEM

Galois system

• Ubiquitous parallelism:
– small number of expert

programmers (Stephanies) must
support large number of
application programmers (Joes)

– cf. SQL

• Galois system:
– Stephanie: library of concurrent

data structures and runtime
system

– Joe: application code in
sequential C++

• Galois set iterator for highlighting
opportunities for exploiting ADP

Parallel program = Operator + Schedule + Parallel data structures

Joe: Operator + Schedule

Stephanie: Parallel data structures

Hello graph Galois Program
#include “Galois/Galois.h”
#include “Galois/Graphs/LCGraph.h”

struct Data { int value; float f; };

typedef Galois::Graph::LC_CSR_Graph<Data,void> Graph;
typedef Galois::Graph::GraphNode Node;

Graph graph;

struct P {
void operator()(Node n, Galois::UserContext<Node>& ctx) {

graph.getData(n).value += 1;
}

};

int main(int argc, char** argv) {
graph.structureFromGraph(argv[1]);
Galois::for_each(graph.begin(), graph.end(), P());
return 0;

}

20

Data structure
Declarations

Galois Iterator

Operator

Parallel execution of Galois programs

21

Concurrent
data structures

main()
….
for each …..{
…….
…….
}
.....

Master thread
Application Program

i1

i2

i3

i4

i5

• Application (Joe) program
– Sequential C++
– Galois set iterator: for each

• New elements can be added
to set during iteration

• Optional scheduling
specification (cf. OpenMP)

• Highlights opportunities in
program for exploiting
amorphous data-parallelism

• Runtime system
– Ensures serializability of

iterations
– Execution strategies

• Speculation
• Interference graphs

Workset
of active nodes

Graph

PERFORMANCE STUDIES

Galois vs Other Graph Frameworks

Intel Study: Galois vs. Graph Frameworks

“Navigating the maze of graph analytics frameworks” Nadathur et al SIGMOD 2014

Galois: Graph analytics

• Galois lets you code more effective algorithms for graph
analytics than DSLs like PowerGraph (left figure)

• Easy to implement APIs for graph DSLs on top on Galois and
exploit better infrastructure (few hundred lines of code for
PowerGraph and Ligra) (right figure)

“A lightweight infrastructure for graph analytics” Nguyen, Lenharth, Pingali (SOSP 2013)

Galois: Performance on SGI Ultraviolet

FPGA Tools

Moctar & Brisk, “Parallel FPGA Routing based on the Operator Formulation”
DAC 2014

Abelian Compiler

27

Distributed-memory

28

rmat28 Twitter-
50

|V| 268M 51M
|E| 4,296M 1,963M

Stampede cluster at TACC

GPU Code Generation*

 Three core optimizations:
− Nested Parallelism: improves load-balance
− Cooperative Conversion: reduces # of atomics
− Iteration Outlining: reduces GPU underutilization for

short kernels

 Applied automatically by compiler

• Sreepathi Pai, Keshav Pingali, “A Compiler for Throughput Optimization of
Graph Algorithms on GPUs”, OOPSLA 2016, To Appear.

GPU Performance

Baseline: best publicly available CUDA code for application

Heterogeneous Execution
(CPU+GPU)

Collaborations

• BAE:
– RIPE system for intrusion detection (DARPA project)
– Distributed, heterogeneous (multicore+GPU+FPGA)

implementation of Galois
• HP Enterprise:

– Systems evaluation for graph analytics workloads
• Raytheon

– Parallel machine learning algorithms for smart weapons
systems

• Proteus (DARPA project with MIT, Rice, Chicago)
– Approximate computing

• Maciej Paczynski, Krakow
– Multi-frontal sparse direct solvers for fracture problems

Conclusions
• Yesterday:

– Computation-centric view of
parallelism

• Today:
– Data-centric view of parallelism
– Operator formulation of

algorithms
– Permits a unified view of

parallelism and locality in
algorithms

– Joe/Stephanie programming
model

– Galois system is an
implementation

• Tomorrow:
– DSLs for different applications
– Layer on top of Galois

Joe: Operator + Schedule

Stephanie: Parallel data structures

Parallel program = Operator + Schedule + Parallel data structure

More information

• Website
– http://iss.ices.utexas.edu

• Download
– Galois system for multicores
– Lonestar benchmarks
– All our papers

http://iss.ices.utexas.edu/

	Slide Number 1
	Intelligent Software Systems group (ISS)
	Parallel computing is changing
	The Search for�“Scalable” Parallel Programming Models
	What we have learned
	Parallelism: Yesterday
	Parallelism: Today
	Example: Graph analytics
	SSSP algorithms (I)
	SSSP algorithms (I contd.)
	SSSP algorithms (II)
	SSSP algorithms (III)
	SSSP algorithms (IV)
	Example: Stencil computation
	Operator formulation of algorithms
	Parallelization strategies: Binding Time
	Locality
	Galois system
	Galois system
	Hello graph Galois Program
	Parallel execution of Galois programs
	Performance Studies
	Galois vs Other Graph Frameworks
	Galois: Graph analytics
	Galois: Performance on SGI Ultraviolet
	FPGA Tools
	Slide Number 27
	Distributed-memory
	Slide Number 29
	Slide Number 30
	Heterogeneous Execution (CPU+GPU)
	Collaborations
	Conclusions
	More information

