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Introduction to Parsing
(adapted from CS 164 at Berkeley)

Outline

• Parser overview
• Context-free grammars (CFG’s)
• Derivations
• Syntax-Directed Translation

The Functionality of the Parser

• Input: sequence of tokens from lexer

• Output: abstract syntax tree of the program

• One-pass compiler: directly generate 
assembly code
– This is what you will do in the first assignment
– Bali  SaM code

Example

• Pyth:                    if x == y: z =1
else: z = 2

• Parser input: IF  ID  ==  ID :  ID = INT  ELSE : ID = INT 

• Parser output (abstract syntax tree):

IF-THEN-ELSE

== = =

ID ID ID ID INTINT
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Why A Tree?

• Each stage of the compiler has two purposes:
– Detect and filter out some class of errors
– Compute some new information or translate the 

representation of the program to make things 
easier for later stages

• Recursive structure of tree suits recursive 
structure of language definition

• With tree, later stages can easily find “the 
else clause”, e.g., rather than having to scan 
through tokens to find it.

Notation for Programming Languages

• Grammars:
E  int
E  E + E
E  E * E
E  ( E )

• We can view these rules as rewrite rules
– We start with E and replace occurrences of E with 

some right-hand side
• E  E * E  ( E ) * E  ( E + E ) * E  …

 (int + int) * int

Context-Free Grammars

• A CFG consists of
– A set of non-terminals N

• By convention, written with capital letter in these notes
– A set of terminals T

• By convention, either lower case names or punctuation
– A start symbol S (a non-terminal)
– A set of productions 

• Assuming E  N
E   , or         
E  Y1 Y2 ... Yn where   Yi  N  T

Examples of CFGs

Simple arithmetic expressions:
E  int
E  E + E
E  E * E
E  ( E )

– One non-terminal: E
– Several terminals: int, +, *, (, )

• Called terminals because they are never replaced
– By convention the non-terminal for the first 

production is the start one
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Key Idea

1. Begin with a string consisting of the start 
symbol

2. Replace any non-terminal X in the string by a 
right-hand side of some production 

X  Y1 … Yn

3. Repeat (2) until there are only terminals in 
the string

4. The successive strings created in this way 
are called sentential forms.

The Language of a CFG (Cont.)

Write
X1 … Xn * Y1 … Ym

if
X1 … Xn  …  …  Y1 … Ym

in 0 or more steps

The Language of a CFG

Let G be a context-free grammar with start 
symbol S. Then the language of G is:

L(G) = { a1 … an | S * a1 … an and every ai

is a terminal }

Examples:

• S  0 also written as S  0 | 1
S  1

Generates the language { “0”, “1” }
• What about S  1 A 

A  0 | 1
• What about S  1 A 

A  0 | 1 A
• What about S   | ( S )
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Derivations and Parse Trees

• A derivation is a sequence of sentential forms 
resulting from the application of a sequence of 
productions

S  …  …

• Parse tree: summary of derivation w/o specifying 
completely the order in which rules were applied
– Start symbol is the tree’s root
– For a production X  Y1 … Yn add children  

Y1, …, Yn to node X

Derivation Example

• Grammar
E  E + E | E * E | (E) | int

• String
int * int + int

Derivation in Detail (1)

E
E

Derivation in Detail (2)

E

E E+

E
 E + E
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Derivation in Detail (3)

E

E

E E

E+

*

E
 E + E
 E * E + E

Derivation in Detail (4)

E

E

E E

E+

*

int

E
 E + E
 E * E + E
 int * E + E

Derivation in Detail (5)

E

E

E E

E+

*

intint

E
 E + E
 E * E + E
 int * E + E
 int * int + E

Derivation in Detail (6)

E

E

E E

E+

int*

intint

E
 E + E
 E * E + E
 int * E + E
 int * int + E
 int * int + int
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Notes on Derivations

• A parse tree has
– Terminals at the leaves
– Non-terminals at the interior nodes

• A left-right traversal of the leaves is the 
original input

• The parse tree shows the association of 
operations, the input string does not !
– There may be multiple ways to match the input
– Derivations (and parse trees) choose one

AST vs. Parse Tree

• AST is condensed form of a parse tree
– operators appear at internal nodes, not at leaves.
– "Chains" of single productions are collapsed. 
– Lists are "flattened". 
– Syntactic details are omitted

• e.g., parentheses, commas, semi-colons
• AST is a better structure for later compiler 

stages
– omits details having to do with the source language,
– only contains information about the essential

structure of the program. 

Example: 2 * (4 + 5)      Parse tree vs. AST

E

int (2)

*

+2

54

T

FT

F
E

T

F

E

T

F

*

)

+

(

int (5)

int (4)

Summary of Derivations

• We are not just interested in whether              
s  L(G)

• Also need derivation (or parse tree) and AST. 
• Parse trees slavishly reflect the grammar.
• Abstract syntax trees abstract from the grammar, 

cutting out detail that interferes with later stages.
• A derivation defines a parse tree

– But one parse tree may have many derivations
• Derivations drive translation (to ASTs, etc.)
• Leftmost and rightmost derivations most important in 

parser implementation
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Ambiguity

• Grammar
E  E + E | E * E |  ( E ) | int

• Strings
int + int + int

int * int + int

Ambiguity. Example

The string int + int + int has two parse trees

E

E

E E

E+

int +

intint

E

E

E E

E+

int+

intint

+ is left-associative

Ambiguity. Example

The string int * int + int has two parse trees

E

E

E E

E*

int +

intint

E

E

E E

E+

int*

intint

* has higher precedence than +

Ambiguity (Cont.)

• A grammar is ambiguous if it has more than 
one parse tree for some string
– Equivalently, there is more than one rightmost or 

leftmost derivation for some string
• Ambiguity is bad

– Leaves meaning of some programs ill-defined
• Ambiguity is common in programming languages

– Arithmetic expressions
– IF-THEN-ELSE
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Dealing with Ambiguity

• There are several ways to handle ambiguity

• Most direct method is to rewrite the grammar 
unambiguously

E  E + T | T
T  T * int | int | ( E )

• Enforces precedence of * over +
• Enforces left-associativity of + and * 

Ambiguity. Example

The int * int + int has only one parse tree now

E

E

E E

E*

int +

intint

E

T

T int

T+

int

*

E

int

Ambiguity

• Impossible to convert automatically an ambiguous 
grammar to an unambiguous one

• Used with care, ambiguity can simplify the grammar
– Sometimes allows more natural definitions
– But we need disambiguation mechanisms

• Instead of rewriting the grammar
– Use the more natural (ambiguous) grammar
– Along with disambiguating declarations

• Most tools allow precedence and associativity 
declarations to disambiguate grammars

• Examples …

Associativity Declarations

• Consider the grammar            E  E + E | int 
• Ambiguous: two parse trees of int + int + int

E

E

E E

E+

int +

intint

E

E

E E

E+

int+

intint

• Left-associativity declaration: %left  ‘+’
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Summary

• Grammar is specified using a context-free language 
(CFL)

• Derivation: starting from start symbol, use grammar 
rules as rewrite rules to derive input string
– Leftmost and rightmost derivations

• Parse trees and abstract syntax trees
• Ambiguous grammars

– Ambiguity should be eliminated by modifying grammar, by 
specifying precedence rules etc. depending on how ambiguity 
arises in the grammar

• Remaining question: how do we find the derivation for 
a given input string?


