Analysis of
programs with pointers

Simple example

x:=5 St
ptr := &x S2

*ptr:=9 S3

y =X S4
program

*  What are the defs and uses of x in this program?

« Problem: just looking at variable names will not give you the correct
information
— After statement S2, program names “x” and “*ptr” are both expressions
that refer to the same memory location (aliases)
— We say that ptr points-to x after statement S2.
+ In a C-like language that has pointers, we must know the points-to
relation to be able to determine defs and uses correctly

Program model
For now, only types are

int, int*, int**etc. XEHEH—;' initial

No heap yE}*E*? state
[

— All pointers point to only
to stack variables

No procedure or x E"Iil x=y

function calls y

Statements involving c d

pointer variables:

— address: x := &y X E’il .

— copy: X:=y x=y
. = y

— load: X =%y

— store:  *x:=y

Arbitrary computations X ﬁ .
involving ints y x=y

Points-to relation

 Directed graph:
— nodes are program variables
— edge (a,b): variable a points-to variable b

@/

» Can use a special node to represent NULL

+ Points-to relation is different at different program
points




Points-to graph

» Out-degree of node may be more than one
— if points-to graph has edges (a,b) and (a,c), it means that
variable a may point to either b or ¢

— depending on how we got to that point, one or the other
will be true

— path-sensitive analyses: track how you got to a program
point (we will not do this) l

if (p)
then x := &y X_;/& X';&z
else x 1= &z Y '/

What does x point to here? ‘f

Ordering on points-to relation

» Subset ordering: for a given set of
variables
— Least element is graph with no edges

—G1 <= G2 if G2 has all the edges G1 has and
maybe some more

» Given two points-to relations G1 and G2

— G1 U G2: least graph that contains all the
edges in G1 and in G2

Overview

We will look at three different points-to analyses.
Flow-sensitive points-to analysis
— Dataflow analysis
— Computes a different points-to relation at each point in program
Flow-insensitive points-to analysis
— Computes a single points-to graph for entire program
— Andersen’s algorithm

« Natural simplification of flow-sensitive algorithm
— Steensgard’s algorithm

« Nodes in tree are equivalence classes of variables

— if x may point-to either y or z, put y and z in the same equivalence class

« Points-to relation is a tree with edges from children to parents rather
than a general graph

« Less precise than Andersen’s algorithm but faster

ptr  x z y w ptr  x z y w
X =&z e o
ptr := &x

e Andersen’s algorithm

y = &w
ptr:= &y

- - /’: o — —

- ptr
Flow-sensitive algorithm Xy zw

Steensgard’s algorithm




Notation

» Suppose S and S1 are set-valued variables.
+ S €& S1: strong update

— set assignment
+ S U< S1: weak update

— set union: this is like S €< S U S1

Flow-sensitive algorithm

Dataflow equations

» Forward flow, any path analysis
» Confluence operator: G1 U G2
+ Statements

G G
X =&y X:="y
G = G with pt(x) € {y} + G'= G with pt(x) € U pt(a)

for all a in pt(y)

G G
G’ = G with pt'(x) € pt(y)

v G'= G with pt'(a) U pt(y)
for all a in pt(x)

Dataflow equations (contd.)

G G

G’ = G with pt'(x) € {y} G’ = G with pt'(x) € U pt(a)
/
/

for alta in pt(y)

G / ///
G'=Gwitfipt() € ptly) _— * G =G with pt(a) U< pt(y)

e P 7
~ for all a in‘pt(x)

/ /
/ d e /
/ d // /
- /
/ S /
/) /
/ // e 4
o /

»
strong updates weak update (why?)




Strong vs. weak updates

» Strong update:
— At assignment statement, you know precisely which variable is
being written to
— Example: x:=....
— You can remove points-to information about x coming into the
statement in the dataflow analysis.
* Weak update:
— You do not know precisely which variable is being updated; only
that it is one among some set of variables.
— Example: *x:= ...
— Problem: at analysis time, you may not know which variable x
points to (see slide on control-flow and out-degree of nodes)

— Refinement: if out-degree of x in points-to graph is 1 and x is
known not be nil, we can do a strong update even for *x := ...

Structures

 Structure types
— struct cell {int value; struct cell *left, *right;}
— struct cell x,y;
» Use a “field-sensitive” model
— x and y are nodes
- ejatr:‘? node has three internal fields labeled value, left,
rng
» This representation permits pointers into fields of
structures

— If this is not necessary, we can simply have a node for
each structure and label outgoing edges with field
name

Example
int main(void)

{ struct cell {int value; X
struct cell *next; Mnext | y
value | next

b L .
struct cell x,y,z,*p; D value| next
int sum; \ «

z

x.value = 5;
x.next = &y;
y.value = 6;
y.next = &z;
z.value = 7; X
znext = NULL; vave [nex | Y
o ax / * ][]
sum = 0; // 2 [
while (p = NULL) { ¥
sum =sum + (*p).value; —
p=(p)next . —

}

return sum;

i value‘ next

<

Z.
-{ value | next |

. «
T NULL

CNULL )

Flow-insensitive algorithms




Flow-insensitive analysis

» Flow-sensitive analysis computes a different graph at
each program point.
* This can be quite expensive.
» One alternative: flow-insensitive analysis
— Intuition:compute a points-to relation which is the least upper
bound of all the points-to relations computed by the flow-
sensitive analysis
e Approach:
— Ignore control-flow
— Consider all assignment statements together
« replace strong updates in dataflow equations with weak updates
— Compute a single points-to relation that holds regardless of the
order in which assignment statements are actually executed

Andersen’s algorithm

. Statements . w:ak updates only
VAN

G 7
X =&y ,,/"

G = G with pt(x) U< {y} G = G with pt(x) U‘é pt(a)
for all a in pt(y)

\

G Y G
G = G with pt(x) U< pt(y) G = G with pt(a) U< pt(y)

for all a in pt(x)

Example

int main(void)
{ struct cell {int value;
struct cell *next;

struct cell x,y,z,*p;

int sum;

x.value = 5; G
x.next = &y;

y.value = 6;

y.next = &z;

z.value =7; .

z.next = NULL; p = ("p).next;

p=&x; . . . .
sum = 0; Assignments for flow-insensitive analysis

while (p = NULL) {
sum = sum + (*p).value;
p = (*p).next;
}

return sum;

Solution to
flow-insensitive equations

X
valve| next | Y
» * | value | next

- Compare with points-to graphs for flow-sensitive solution
- Why does p point-to NULL in this graph?




Andersen’s algorithm
formulated using set constraints

« Statements

pt:var— 2"
X =&y X:=*y
y € pt(x) vae pt(y).pt(x) 2 pt(a)

pt(x) = pt(y) Vae pt(x).pt(a) = pt(y)

Steensqgard’s algorithm

* Flow-insensitive
» Computes a points-to graph in which there is no
fan-out

— In points-to graph produced by Andersen’s algorithm,
if x points-to y and z, y and z are collapsed into an
equivalence class

— Less accurate than Andersen’s but faster

* We can exploit this to design an O(N*OL(N))
algorithm, where N is the number of statements in
the program.

Steensqgard’s algorithm
using set constraints

» Statements
pt:var— 2"
No fan-out Vx.Vy,z e pt(x).pt(y) = pt(z)

X =&y X =%y
y € pt(x) Vae pt(y).pt(x) = pt(a)

pt(x) = pt(y) Vae pt(x).pt(a) = pt(y)

Trick for one-pass processing

« Consider the following equations

pt(x) = pt(y) dummy e pt(x)
ze pt(x) pt(x) = pt(y)
Z € pt(x)

«  When first equation on left is processed, x and y are not pointing to
anything.

« Once second equation is processed, we need to go back and
reprocess first equation.

« Trick to avoid doing this: when processing first equation, if x and y
are not pointing to anything, create a dummy node and make x and
y point to that

— this is like solving the system on the right

It is easy to show that this avoids the need for revisiting equations.




Algorithm

Can be implemented in single pass through
program

Algorithm uses union-find to maintain
equivalence classes (sets) of nodes
Points-to relation is implemented as a pointer
from a variable to a representative of a set

Basic operations for union find:

— rep(v): find the node that is the representative of the
setthat visin

— union(v1,v2): create a set containing elements in sets
containing v1 and v2, and return representative of
that set

Auxiliary methods

class var { rec_union(var vi, var v2) {
//instance variables
; pl = pt(rep(vi));
points_to: var; P2 = ptlrep(v2));
X t1 = union(rep(vl), rep(v2));
name: string; if (pl == p2)

return;
else if (pl != null & p2 != null)

//constructor; also t2 = rec_union(pl, p2);

creates singleton set in else if (pl != null) t2 = pl;

union-find data structure 511‘-"5 éi (p2 _‘1’ null) t2 = p2;
else t2 = null;

var (string) ;

//class method; also

creates singleton set in )

union-find data structure

make-dummy-var () :var;

tl.set_pt(t2);
return tl;

not have to be representative
t = rep(v);
//instance methods return t.get_pt();
R . //always returns a representative
get_pt(): var;

set_pt (var) ;//updates rep )

Algorithm

Initialization: make each program variable into an object of type var
and enter object into union-find data structure

for each statement S in the program do
Sis x := &y: {if (pt(x) == null)
x.set-pt(rep(y));
else rec-union(pt(x),y);

}
Sis x := y: {if (pt(x) == null and pt(y) == null)
x.set-pt(var.make-dummy-var());
y.set-pt(rec-union(pt(x),pt(y)));

}
Sis x := *y:{if (pt(y) == null)
y.set-pt(var.make-dummy-var());
var a := pt(y);
if(pt(a) == null)
a.set-pt(var.make-dummy-var());
x.set-pt(rec-union(pt(x),pt(a)));

S is *x = y:{if (pt(x) null)
x.set-pt(var.make-dummy-var());
var a := pt(x);

if(pt(a) == null)
a.set-pt(var.make-dummy-var());

y.set-pt(rec-union(pt(y),pt(a)));

}

Inter-procedural analysis

* What do we do if there are function calls?

xl = &a X2 = &a
vyl = &b y2 = &b
swap (x1, yl) swap (x2, y2)

swap (pl, p2) {

tl = *pl;
t2 = *p2;
*pl = t2;
*p2 = tl;




Two approaches

» Context-sensitive approach:
— treat each function call separately just like real
program execution would
— problem: what do we do for recursive functions?
* need to approximate
» Context-insensitive approach:
— merge information from all call sites of a particular
function
— in effect, inter-procedural analysis problem is reduced
to intra-procedural analysis problem
+ Context-sensitive approach is obviously more
accurate but also more expensive to compute

Context-insensitive approach

x1l = &a X2 = &a
vyl = &b y2 = &b
swap (x1, y1) swap (x2, y2)

swap (pl, p2) {

Context-sensitive approach

x1
vl = &b
swap (x1, y1)

x2
y2

&a
&b

[]
I
@

swap (x2, y2)

Context-insensitive/Flow-
insensitive Analysis

» For now, assume we do not have function
parameters
— this means we know all the call sites for a given
function
» Set up equations for binding of actual and formal
parameters at each call site for that function
— use same variables for formal parameters for all call
sites
* Intuition: each invocation provides a new set of
constraints to formal parameters




Swap example

xl = &a %2

= &a
vyl = &b y2 = &b
pl = x1 pl = x2
p2 = vyl p2 = y2

tl = *pl;

t2 = *p2;

*pl = t2;

*p2 = tl;

Heap allocation

» Simplest solution:
— use one node in points-to graph to represent all heap

cells

More elaborate solution:
— use a different node for each malloc site in the

program

» Even more elaborate solution: shape analysis
— goal: summarize potentially infinite data structures

— but keep around enough information so we can
disambiguate pointers from stack into the heap, if

possible

Summary

Less precise

More precise
Subset-based

Equality-based

Flow-insensitive Flow-sensitive

Context-insensitive Context-sensitive

No consensus about which technique to use
Experience: if you are context-insensitive, you might as well be flow-insensitive,

History of points-to analysis

Figure 1 A Brief History of Pointer Analysis [33] — focus

calability and pr

ecision

Equality-based

Subset-base:

Flow-sensitive

« Weihl [32]
1980: < 1 KLOC
first paper on pointer analysis

» Steensgaand [31]
1996: 1+ MLOC
first scalable pointer analysis

o Andersen 1]
1994: 5 KLOC

+ Fihndrich st sl [7]
1998: 60 KLOC

» Heintze snd Tardien [L1]
2001: 1 MLOC

o Barndl ot sl 2]
2003: 500 KLOC
first to usa BDDs

» Choi st al. [f]
1993: 30 KLOC

« Fahndrich at al. [8]
2000; 300K

» Landi and Ryder [19]
1992: 3 KLOC

& Wilson and Lam |37]
1985 30 KLOC

y and Rinard [36]
1990: 80 KLOC

from Ryder and Rayside




