
SaM I Am 



What is SaM?

• SaM is a simple stack machine designed to 
introduce you to compilers in a few lectures

• SaM I: written by Dr. Keshav Pingali around 2000
– modeled vaguely after JVM 

• SaM II: complete reimplementation and major 
extensions by Ivan Gyurdiev and David Levitan 
(Cornell undergrads) around 2003

• Course homepage has
– SaM jar file (interpreter)
– SaM instruction set manual
– SaM examples and source code



SaM Screenshot



Stack machine
• All data is stored in stack (or heap)

– no data registers although there might be control 
registers

• Stack also contains addresses

• Stack pointer (SP) points to the first free location on stack

• In SaM, stack addresses start at 0 and go up

• Int/float values take one stack location
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Stack machine

• Stack machine is sometimes called a 0-
address machine
– arithmetic operations take operands from top of 

stack and push result(s) on stack
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Program area in SaM

• Program area:
–  contains SaM code
– one instruction per location

• Program Counter (PC): 
– address of instruction to be executed
– initialized to 0 when SaM is booted up

• HALT:
– Initialized to false (0) when SaM is booted up
– Set to true (1) by the STOP command
– Program execution terminates when HALT is set to true (1)
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Program Execution

SaM
HALT

Command interpreter:
      PC = 0;
       while (HALT == 0) //STOP command sets HALT to 1

            Execute command Program[PC]; //ADD etc increment PC 

Program area
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Loader

• How do commands get into the Program 
area of SaM?

• Loader: a program that can open an input 
file of SaM commands, and read them into 
the Program area.



Interpreter and Loader

Program area
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Interpreter:

      PC = 0;

       while (HALT == 0) 

            Execute command Program[PC]; 

Loader (command-file):
         Loc = 0;
         Open command-file for input;
         while (! EOF) {
                Read a command from command-file;
                Store command in Program[Loc];
                Loc++;
         }
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Labels

• SaM assembly instructions in program file 
can be given labels
  foo: PUSHIMM 1

          …….

          JUMP foo

• SaM loader resolves labels and replaces 
jump targets with addresses



Other SaM areas

•  FBR: Frame Base Register (see later)
•  Heap: for dynamic storage allocation (malloc and free)
            SaM uses a version of Doug Lea’s allocator
   



Some SaM commands



Classification of SaM commands

• Arithmetic/logic commands: 
– ADD,SUB,..

• Load/store commands:
– PUSHIMM,PUSHIND,STOREIND,…

• RegisterStack commands:
– PUSHFBR,POPFBR, LINK,PUSHSP,…

• Control commands: 
– JUMP, JUMPC, JSR, JUMPIND,…



• ADD,SUB,TIMES,…: pop two values Vt and Vb from stack;

– Vb op Vt 
• DUP: duplicate top of stack (TOS) 
• ISPOS: 

– Pop stack; let popped value be Vt
– If Vt is positive, push true (1);otherwise push false (0)

• ISNEG: same as above but tests for negative value on top of stack
• ISNIL: same as above but tests for zero value on top of stack
• CMP: pop two values Vt and Vb from stack;

– If (Vb < Vt) push 1
– If (Vb = Vt) push 0
– If (Vb > Vt) push -1

ALU commands
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Pushing values on stack

• PUSHIMM c
– “push immediate”: value to be pushed is in the 

instruction itself

– will push c on the stack

(eg) PUSHIMM 4

        PUSHIMM -7



Example

SaM code to compute (2 + 3)

PUSHIMM 2

PUSHIMM 3

ADD

SaM code to compute (2 – 3) * (4 + 7)

PUSHIMM 2
PUSHIMM 3
SUB
PUSHIMM 4
PUSHIMM 7
ADD
TIMES

 Compare with postfix notation (reverse Polish)



Load/store commands 

• SaM ALU commands operate with values on top of 
stack.

• What if values we want to compute with are 
somewhere inside the stack?

• Need to copy these values to top of stack, and store 
them back inside stack when we are done.

• Specifying address of location: two ways
– address specified in command as some offset from FBR 

(offset mode)
– address on top of stack (indirect mode)



• PUSHOFF n: push value contained in 
location Stack[FBR+n]

• v = Stack[FBR + n] 

• Push v on Stack

33

-9

SP 33

-9

SP

Stack[FBR –1] contains -9

FBR

 -9

PUSHOFF -1

FBR



• STOREOFF n: Pop TOS and write value 
into location Stack[FBR+n]

• TOS has a value v

• Pop it and write v into Stack[FBR + n].

-9

SP
333

SP

FBR

STOREOFF 2

FBR
333

Store 333 into Stack[FBR+2] 



• PUSHIND:
– TOS has an address

– Pop that address, read contents of that address 
and push contents on stack

52

52 -9

SP -9

52 -9

SP

.

.
.
.

TOS is 52
Contents of location 52 is -9

PUSHIND



• STOREIND:
– TOS has a value v; below it is address s

– Pop both and write v into Stack[s].

52

52 -9

SP
.
.

TOS is value 333.
Below it is address 52.
Contents of location 52 is -9

333

52 333

SP
.
.

Value 333 is written
 into location 52

STOREIND



Using PUSHOFF/STOREOFF

• Consider simple language SL
– only one method called main
– only assignment statements

     main( ){
        int x,y;
        x = 5;
        y = (x + 6);
        return (x*y);
}

We need to assign stack locations for “x” and “y” 
and read/write from/to these locations to/from TOS



Stack frame

• Sequence of stack locations for 
holding local variables of 
procedure
– “x” and “y”

• In addition, frame will have a 
location for return value

• Code for procedure must leave 
return value in return value slot

• Use offsets from FBR to 
address “x” and “y”

• Where should FBR point to
– let’s make it point to “return 

value” slot
– we’ll change this later

return value
x

y

frame for main

FBR



SaM code (attempt 1)
PUSHIMM 0 //allocate space for return value

PUSHIMM 0//allocate space for x

PUSHIMM 0//allocate space for y

//code for x = 5;

PUSHIMM 5

STOREOFF 1

//code for y = (x+6);

PUSHOFF 1

PUSHIMM 6

ADD

STOREOFF 2

//compute (x*y) and store in rv

PUSHOFF 1

PUSHOFF 2

TIMES

STOREOFF 0

ADDSP -2   //pop x and y

STOP

main:

ADDSP  3

return value
x

y

frame for main

FBR



Problem with SaM code

• How do we know FBR is pointing to the 
base of the frame when we start execution?

• Need commands to save FBR, set it to base 
of frame for execution, and restore FBR 
when method execution is done.

• Where do we save FBR?
– Save it in a special location in the frame

saved FBR
return value

x
y

FBR



RegisterStack Commands

• Commands for moving contents of SP, FBR 
to stack, and vice versa.

• Used mainly in invoking/returning from 
methods

• Convenient to custom-craft some commands 
to make method invocation/return easier to 
implement.



– PUSHFBR: push contents of FBR on stack
• Stack[SP] = FBR;
• SP++;

– POPFBR: inverse of PUSHFBR
• SP--;
• FBR = Stack[SP];

– LINK : convenient for method invocation
• Similar to PUSHFBR but also updates FBR so it points to 

location where FBR was saved
• Stack[SP] = FBR;
• FBR = SP;
• SP++;

FBR Stack commands
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FBR FBR
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saved FBR
return value

x
y

FBR

frame for main

PUSHIMM 0//space for rv

LINK//save and update FBR

ADDSP 2//space for x and y

//code for x = 5;

PUSHIMM 5

STOREOFF 1

//code for y = (x+6);

PUSHOFF 1

PUSHIMM 6

ADD

STOREOFF 2

//compute (x+y) and store in rv

PUSHOFF 1

PUSHOFF 2

TIMES

STOREOFF –1

ADDSP –2//pop locals

POPFBR//restore FBR

STOP

main:



SP  Stack commands

– PUSHSP: push value of SP on stack
• Stack[SP] = SP;
• SP++

– POPSP: inverse of POPSP
• SP--;
• SP = Stack[SP];

– ADDSP n: convenient for method invocation
• SP = SP + n
• For example, ADDSP –5 will subtract 5 from SP.
• ADDSP n can be implemented as follows:

– PUSHSP
– PUSHIMM n
– ADD
– POPSP



Control Commands
• So far, command execution is sequential

– execute command in Program[0]
– execute command in Program[1]
– …..

• For implementing conditionals and loops, we need the ability to
– skip over some commands
– execute some commands repeatedly

• In SaM, this is done using
–  JUMP: unconditional jump
–  JUMPC: conditional jump

• JUMP/JUMPC: like GOTO in PASCAL



• JUMP t:  //t is an integer
– Jump to command at Program[t] and execute commands from 

there on. 
– Implementation: PC  t

• JUMPC t: 
– same as JUMP except that JUMP is taken only if the topmost 

value on stack is true; otherwise, execution continues with 
command after this one. 

– note: in either case, stack is popped.
– Implementation: 

• pop top of stack (Vt); 
• if  Vt is true, PC  t else PC++



Example

Program to find absolute value of TOS:
   0:    DUP
   1:    ISPOS
   2:    JUMPC   5
   3:    PUSHIMM –1
   4:    TIMES
   5:    STOP
   

-5

SP

-5

SP

-5

SP

-5

SP

-5

SP

5

SP-5 0 -1

PC PC PC PC PC PC0 1 2 3 4 5

If jump is taken, sequence of PC values
is 0,1,2,5



Symbolic Labels
• It is tedious to figure out the location/line numbers of commands 

that are jump targets (such as STOP in example).
• SaM loader allows you to specify jump targets using a symbolic 

label such as DONE in example above.
• When loading program, SaM figures out the addresses of all jump 

targets and replaces symbolic names with those addresses.

      DUP

      ISPOS

      JUMPC   5

      PUSHIMM –1

      TIMES

      STOP

   

                   DUP

                   ISPOS

                   JUMPC   DONE

                   PUSHIMM –1

                   TIMES

   DONE:    STOP

   



Using JUMPC for conditionals

• Translating if e then B1 else B2

     code for e
     JUMPC newLabel1
     code for B2
     JUMP newLabel2
newLabel1:
     code for B1
newLabel2:
     ……



PC  Stack Commands
• Obvious solution: something like

– PUSHPC: save PC on stack // not a SaM command
• Stack[SP] = PC;
• SP++;

• Better solution for method call/return:
– JSR xxx: save value of PC + 1 on stack and jump to xxx

• Stack[SP] = PC +1;
• SP++;
• PC = xxx;

– JUMPIND: like “POPPC” (use for return from method call)
• SP--;
• PC = Stack[SP];

– JSRIND: like JSR but address of method is on stack
• temp = Stack[SP];
• Stack[SP] = PC + 1;
• SP++;
• PC = temp;



Example

         …….
         JSR foo //suppose this command is in Program[32]
         ADD
         …..
foo: ADDSP 5 //suppose this command is in Program[98]
        …….
         JUMPIND//suppose this command is in Program[200]
         …..

Sequence of PC values:  ….,32,98,99,…,200,33,34,….., 
assuming stack just before JUMPIND is executed is same 
as it was just after JSR was executed



SaM stack frame for CS 380C

power(b,p){
            if (p = = 0) return 1;
            else return b*power(b,p-1);
}

return value

p

saved FBR
saved PC

b

return value

p

saved FBR
saved PC

b
return value

first parameter

nth parameter
saved FBR
saved PC
first local 

…………..

mth local
………….

FBR

stack grows

one frame for power



Protocol for call/return
• Caller:

– creates return value slot 
– evaluates parameters from first 

to last, leaving values on stack
– LINK
– JSR to callee
– POPFBR //executed on return
– pop parameters

• Callee:
– create space for local variables
– execute code of callee

• Return from callee:
– Evaluate return value and write 

into rv slot
– Pop off local variables
– JUMPIND //return to caller

return value
first parameter

nth parameter
saved FBR
saved PC
first local 

…………..

mth local
………….

FBR

stack grows



Writing SaM code

• Start by drawing stack frames for each method in 
your code.

• Write down the FBR offsets for each variable and 
return value slot for that method. 

• Translate Bali code into SaM code in a 
compositional way. Think mechanically.



Recursive code generation

Construct Code

integer  PUSHIMM xxx

x PUSHOFF yy //yy is offset for x

(e1 + e2) code for e1
code for e2
ADD

x = e; code for e
STOREOFF yy

{S1 S2 … Sn} code for S1
code for S2
….
code of Sn



Recursive code generation(contd)

Construct Code

if e then B1 else B2      code for e
     JUMPC newLabel1
     code for B2
     JUMP newLabel2
newLabel1:
     code for B1
newLabel2:

while e do B;
newLabel1:
     code for e
     ISNIL
     JUMPC newLabel2
     code for B
     JUMP newLabel1
newLabel2:

JUMP newLabel1
newLabel2:
     code for B
newLabel1:
     code for e
     JUMPC newLabel2

Better code



Recursive code generation(contd)

Construct Code

f(e1,e2,…en)
PUSHIMM 0//return value slot
Code for e1
…
Code for en
LINK//save FBR and update it
JSR f
POPFBR//restore FBR
ADDSP –n//pop parameters



Recursive code generation(contd)

f(p1,p2,…,pn){
  int x,…,z;//locals
  B}

   ADDSP c // c is number of locals
   code for B
fEnd:
   STOREOFF r//r is offset of rv slot
   ADDSP –c//pop locals off
   JUMPIND//return to callee

return e; code for e 
JUMP fEnd//go to end of method

Construct Code



OS code for SaM

• On a real machine
– OS would transfer control 

to main procedure

– control returns to OS when 
main terminates

• In SaM, it is convenient to 
begin execution with code 
that sets up stack frame 
for main and calls main
– this allows us to treat main 

like any other procedure

//OS code to set up call to main

PUSHIMM 0 //rv slot for main
LINK  //save FBR
JSR main //call main
POPFBR 
STOP



Symbol tables

• When generating code for a procedure, it is 
convenient to have a map from variable names to 
frame offsets

• This is called a “symbol table”
• For now, we will have

– one symbol table per procedure
– each table is a map from variable names to offsets

• Symbol tables will also contain information like 
types from type declarations (see later)



Example

Variable Offset

n -1

rv -2

Let us write a program to compute absolute value of an integer.

Bali:

   main() {
       return abs(-5);
   }

   abs (n) {
       if ((n > 0)) return n;
       else return (n*-1);
   }

return value

return value

n

saved FBR

saved PC

FBR

FBR saved FBR

saved PC

Symbol Table

Symbol Table

Variable Offset

rv -1



main() {             
                           
                           
      
 return abs(-5);
   }

main:
     ADDSP 0 // 0 is number of locals
      code for  “abs(-5)”
      JUMP mainEnd
mainEnd:
      STOREOFF -1//-1 is offset of rv  
     ADDSP -0  //pop locals off
     JUMPIND//return to callee
                   (2)

main:
     ADDSP 0 // 0 is number of locals
      PUSHIMM 0
      code for “-5”
      LINK
      JSR abs
      POPFBR
      ADDSP -1
      JUMP mainEnd
mainEnd:
     STOREOFF -1//-1 is offset of rv slot
     ADDSP -0  //pop locals off
     JUMPIND//return to callee
                       (3)

main:
     ADDSP 0 // 0 is number of locals
      code for  “return abs(-5)”
mainEnd:
     STOREOFF -1//-1 is offset of rv slot
     ADDSP -0  //pop locals off
     JUMPIND//return to callee
                    (1)

main:
     ADDSP 0 // 0 is number of locals
      PUSHIMM 0
      PUSHIMM -5
      LINK
      JSR abs
      POPFBR
      ADDSP -1
      JUMP mainEnd
mainEnd:
     STOREOFF -1//-1 is offset of rv slot
     ADDSP -0  //pop locals off
     JUMPIND//return to callee
                           (4)



main:
          //set up call to abs
          PUSHIMM 0//return value slot for abs
          PUSHIMM –5//parameter to abs
          LINK//save FBR and update FBR
          JSR abs//call abs
          POPFBR //restore FBR
          ADDSP –1//pop off parameter
          //from code for return
          JUMP mainEnd
mainEnd:
          STOREOFF -1//store result of call
          JUMPIND

PUSHOFF –1//get n
ISPOS //is it positive
JUMPC pos//if so, jump to pos
PUSHOFF –1//get n
PUSHIMM –1//push -1
TIMES//compute -n
JUMP absEnd//go to end
PUSHOFF –1//get n
JUMP absEnd

STOREOFF –2//store into r.v.
JUMPIND//return

abs:

pos:

absEnd:

//OS code to set up call to main
PUSHIMM 0 //rv slot for main
LINK  //save FBR
JSR main //call main
POPFBR 
STOP

Complete code



Factorial

main() {
    return fact(5);
}

fact(n) {
  if ((n ==0) return 1;
  else return (n*fact(n-1));
}

FBR

FBR
Saved PC

Saved FBR
n
rv

rv

Saved PC
Saved FBR

Symbol Table

Variable Offset

n -1

rv -2

Symbol Table

Variable Offset

rv -1



//OS code to set up call to main
PUSHIMM 0 //rv slot for main
LINK  //save FBR
JSR main //call main
POPFBR 
STOP

main: 
     //code for call to fact(10)
      PUSHIMM 0  
      PUSHIMM 10
      LINK
      JSR fact
      POPFBR
      ADDSP -1
      //from code for return
      JUMP mainEnd
      //from code for function def
mainEnd:
      STOREOFF -1
      JUMPIND
    

fact: 
      PUSHOFF -1 //get n
      PUSHIMM 0
      EQUAL
      JUMPC zer
      PUSHOFF -1  //get n
      PUSHIMM 0 // fact(n-1)
      PUSHOFF -1
      PUSHIMM 1
      SUB
      LINK
      JSR fact
      POPFBR
      ADDSP -1
      TIMES          //n*fact(n-1)
      JUMP factEnd
zer: PUSHIMM 1
       JUMP factEnd
 factEnd:
      STOREOFF -2
      JUMPIND



Running SaM code

• Download the SaM interpreter and run 
these examples.

• Step through each command and see how 
the computations are done.

• Write a method with some local variables, 
generate code by hand for it, and run it.



Introduction to Parsing

• Please read the lecture notes titled 
“Parsing” on the course website  before 
next class (prerequisite):

http://www.cs.utexas.edu/%7Epingali/CS380C/2016/lectures/parsingIntro.pdf

http://www.cs.utexas.edu/~pingali/CS380C/2016/lectures/parsingIntro.pdf
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