
SaM I Am

What is SaM?

• SaM is a simple stack machine designed to
introduce you to compilers in a few lectures

• SaM I: written by Dr. Keshav Pingali around 2000
– modeled vaguely after JVM

• SaM II: complete reimplementation and major
extensions by Ivan Gyurdiev and David Levitan
(Cornell undergrads) around 2003

• Course homepage has
– SaM jar file (interpreter)
– SaM instruction set manual
– SaM examples and source code

SaM Screenshot

Stack machine
• All data is stored in stack (or heap)

– no data registers although there might be control
registers

• Stack also contains addresses

• Stack pointer (SP) points to the first free location on stack

• In SaM, stack addresses start at 0 and go up

• Int/float values take one stack location

…...
4
5

SP

100
101
102

….

0

…...

.

.

.

.

.

Stack machine

• Stack machine is sometimes called a 0-
address machine
– arithmetic operations take operands from top of

stack and push result(s) on stack

…...
4
5

SP

…...
9

SP

100
101
102

….

100
101
102ADD

Program area in SaM

• Program area:
– contains SaM code
– one instruction per location

• Program Counter (PC):
– address of instruction to be executed
– initialized to 0 when SaM is booted up

• HALT:
– Initialized to false (0) when SaM is booted up
– Set to true (1) by the STOP command
– Program execution terminates when HALT is set to true (1)

Program area

PC

SaM
HALT

PUSHIMM 7

PUSHIMM 8

0

1
2 …….

……..

Program Execution

SaM
HALT

Command interpreter:
 PC = 0;
 while (HALT == 0) //STOP command sets HALT to 1

 Execute command Program[PC]; //ADD etc increment PC

Program area

PUSHIMM 7

PUSHIMM 8

0

1
2 …….

……..

PC

Loader

• How do commands get into the Program
area of SaM?

• Loader: a program that can open an input
file of SaM commands, and read them into
the Program area.

Interpreter and Loader

Program area
……..

0 1 2 ……..

PC

HALT

P
U

S
H

IM
M

 2

A
D

D

P
U

S
H

IM
M

 3

Interpreter:

 PC = 0;

 while (HALT == 0)

 Execute command Program[PC];

Loader (command-file):
 Loc = 0;
 Open command-file for input;
 while (! EOF) {
 Read a command from command-file;
 Store command in Program[Loc];
 Loc++;
 }

P
U

S
H

IM
M

 2
P

U
S

H
IM

M
 3

A
D

D
…

…
..

File

Labels

• SaM assembly instructions in program file
can be given labels
 foo: PUSHIMM 1

 …….

 JUMP foo

• SaM loader resolves labels and replaces
jump targets with addresses

Other SaM areas

• FBR: Frame Base Register (see later)
• Heap: for dynamic storage allocation (malloc and free)
 SaM uses a version of Doug Lea’s allocator

Some SaM commands

Classification of SaM commands

• Arithmetic/logic commands:
– ADD,SUB,..

• Load/store commands:
– PUSHIMM,PUSHIND,STOREIND,…

• RegisterStack commands:
– PUSHFBR,POPFBR, LINK,PUSHSP,…

• Control commands:
– JUMP, JUMPC, JSR, JUMPIND,…

• ADD,SUB,TIMES,…: pop two values Vt and Vb from stack;

– Vb op Vt
• DUP: duplicate top of stack (TOS)
• ISPOS:

– Pop stack; let popped value be Vt
– If Vt is positive, push true (1);otherwise push false (0)

• ISNEG: same as above but tests for negative value on top of stack
• ISNIL: same as above but tests for zero value on top of stack
• CMP: pop two values Vt and Vb from stack;

– If (Vb < Vt) push 1
– If (Vb = Vt) push 0
– If (Vb > Vt) push -1

ALU commands

…...
Vb
Vt

SP

100
101
102

….

0

…...

.

.

.

.

.

Pushing values on stack

• PUSHIMM c
– “push immediate”: value to be pushed is in the

instruction itself

– will push c on the stack

(eg) PUSHIMM 4

 PUSHIMM -7

Example

SaM code to compute (2 + 3)

PUSHIMM 2

PUSHIMM 3

ADD

SaM code to compute (2 – 3) * (4 + 7)

PUSHIMM 2
PUSHIMM 3
SUB
PUSHIMM 4
PUSHIMM 7
ADD
TIMES

 Compare with postfix notation (reverse Polish)

Load/store commands

• SaM ALU commands operate with values on top of
stack.

• What if values we want to compute with are
somewhere inside the stack?

• Need to copy these values to top of stack, and store
them back inside stack when we are done.

• Specifying address of location: two ways
– address specified in command as some offset from FBR

(offset mode)
– address on top of stack (indirect mode)

• PUSHOFF n: push value contained in
location Stack[FBR+n]

• v = Stack[FBR + n]

• Push v on Stack

33

-9

SP 33

-9

SP

Stack[FBR –1] contains -9

FBR

 -9

PUSHOFF -1

FBR

• STOREOFF n: Pop TOS and write value
into location Stack[FBR+n]

• TOS has a value v

• Pop it and write v into Stack[FBR + n].

-9

SP
333

SP

FBR

STOREOFF 2

FBR
333

Store 333 into Stack[FBR+2]

• PUSHIND:
– TOS has an address

– Pop that address, read contents of that address
and push contents on stack

52

52 -9

SP -9

52 -9

SP

.

.
.
.

TOS is 52
Contents of location 52 is -9

PUSHIND

• STOREIND:
– TOS has a value v; below it is address s

– Pop both and write v into Stack[s].

52

52 -9

SP
.
.

TOS is value 333.
Below it is address 52.
Contents of location 52 is -9

333

52 333

SP
.
.

Value 333 is written
 into location 52

STOREIND

Using PUSHOFF/STOREOFF

• Consider simple language SL
– only one method called main
– only assignment statements

 main(){
 int x,y;
 x = 5;
 y = (x + 6);
 return (x*y);
}

We need to assign stack locations for “x” and “y”
and read/write from/to these locations to/from TOS

Stack frame

• Sequence of stack locations for
holding local variables of
procedure
– “x” and “y”

• In addition, frame will have a
location for return value

• Code for procedure must leave
return value in return value slot

• Use offsets from FBR to
address “x” and “y”

• Where should FBR point to
– let’s make it point to “return

value” slot
– we’ll change this later

return value
x

y

frame for main

FBR

SaM code (attempt 1)
PUSHIMM 0 //allocate space for return value

PUSHIMM 0//allocate space for x

PUSHIMM 0//allocate space for y

//code for x = 5;

PUSHIMM 5

STOREOFF 1

//code for y = (x+6);

PUSHOFF 1

PUSHIMM 6

ADD

STOREOFF 2

//compute (x*y) and store in rv

PUSHOFF 1

PUSHOFF 2

TIMES

STOREOFF 0

ADDSP -2 //pop x and y

STOP

main:

ADDSP 3

return value
x

y

frame for main

FBR

Problem with SaM code

• How do we know FBR is pointing to the
base of the frame when we start execution?

• Need commands to save FBR, set it to base
of frame for execution, and restore FBR
when method execution is done.

• Where do we save FBR?
– Save it in a special location in the frame

saved FBR
return value

x
y

FBR

RegisterStack Commands

• Commands for moving contents of SP, FBR
to stack, and vice versa.

• Used mainly in invoking/returning from
methods

• Convenient to custom-craft some commands
to make method invocation/return easier to
implement.

– PUSHFBR: push contents of FBR on stack
• Stack[SP] = FBR;
• SP++;

– POPFBR: inverse of PUSHFBR
• SP--;
• FBR = Stack[SP];

– LINK : convenient for method invocation
• Similar to PUSHFBR but also updates FBR so it points to

location where FBR was saved
• Stack[SP] = FBR;
• FBR = SP;
• SP++;

FBR Stack commands

-1
34

88 89
89
88
87 -1

34

88

SP

FBR FBR

SP

LINK

saved FBR
return value

x
y

FBR

frame for main

PUSHIMM 0//space for rv

LINK//save and update FBR

ADDSP 2//space for x and y

//code for x = 5;

PUSHIMM 5

STOREOFF 1

//code for y = (x+6);

PUSHOFF 1

PUSHIMM 6

ADD

STOREOFF 2

//compute (x+y) and store in rv

PUSHOFF 1

PUSHOFF 2

TIMES

STOREOFF –1

ADDSP –2//pop locals

POPFBR//restore FBR

STOP

main:

SP  Stack commands

– PUSHSP: push value of SP on stack
• Stack[SP] = SP;
• SP++

– POPSP: inverse of POPSP
• SP--;
• SP = Stack[SP];

– ADDSP n: convenient for method invocation
• SP = SP + n
• For example, ADDSP –5 will subtract 5 from SP.
• ADDSP n can be implemented as follows:

– PUSHSP
– PUSHIMM n
– ADD
– POPSP

Control Commands
• So far, command execution is sequential

– execute command in Program[0]
– execute command in Program[1]
– …..

• For implementing conditionals and loops, we need the ability to
– skip over some commands
– execute some commands repeatedly

• In SaM, this is done using
– JUMP: unconditional jump
– JUMPC: conditional jump

• JUMP/JUMPC: like GOTO in PASCAL

• JUMP t: //t is an integer
– Jump to command at Program[t] and execute commands from

there on.
– Implementation: PC  t

• JUMPC t:
– same as JUMP except that JUMP is taken only if the topmost

value on stack is true; otherwise, execution continues with
command after this one.

– note: in either case, stack is popped.
– Implementation:

• pop top of stack (Vt);
• if Vt is true, PC  t else PC++

Example

Program to find absolute value of TOS:
 0: DUP
 1: ISPOS
 2: JUMPC 5
 3: PUSHIMM –1
 4: TIMES
 5: STOP

-5

SP

-5

SP

-5

SP

-5

SP

-5

SP

5

SP-5 0 -1

PC PC PC PC PC PC0 1 2 3 4 5

If jump is taken, sequence of PC values
is 0,1,2,5

Symbolic Labels
• It is tedious to figure out the location/line numbers of commands

that are jump targets (such as STOP in example).
• SaM loader allows you to specify jump targets using a symbolic

label such as DONE in example above.
• When loading program, SaM figures out the addresses of all jump

targets and replaces symbolic names with those addresses.

 DUP

 ISPOS

 JUMPC 5

 PUSHIMM –1

 TIMES

 STOP

 DUP

 ISPOS

 JUMPC DONE

 PUSHIMM –1

 TIMES

 DONE: STOP

Using JUMPC for conditionals

• Translating if e then B1 else B2

 code for e
 JUMPC newLabel1
 code for B2
 JUMP newLabel2
newLabel1:
 code for B1
newLabel2:
 ……

PC  Stack Commands
• Obvious solution: something like

– PUSHPC: save PC on stack // not a SaM command
• Stack[SP] = PC;
• SP++;

• Better solution for method call/return:
– JSR xxx: save value of PC + 1 on stack and jump to xxx

• Stack[SP] = PC +1;
• SP++;
• PC = xxx;

– JUMPIND: like “POPPC” (use for return from method call)
• SP--;
• PC = Stack[SP];

– JSRIND: like JSR but address of method is on stack
• temp = Stack[SP];
• Stack[SP] = PC + 1;
• SP++;
• PC = temp;

Example

 …….
 JSR foo //suppose this command is in Program[32]
 ADD
 …..
foo: ADDSP 5 //suppose this command is in Program[98]
 …….
 JUMPIND//suppose this command is in Program[200]
 …..

Sequence of PC values: ….,32,98,99,…,200,33,34,…..,
assuming stack just before JUMPIND is executed is same
as it was just after JSR was executed

SaM stack frame for CS 380C

power(b,p){
 if (p = = 0) return 1;
 else return b*power(b,p-1);
}

return value

p

saved FBR
saved PC

b

return value

p

saved FBR
saved PC

b
return value

first parameter

nth parameter
saved FBR
saved PC
first local

…………..

mth local
………….

FBR

stack grows

one frame for power

Protocol for call/return
• Caller:

– creates return value slot
– evaluates parameters from first

to last, leaving values on stack
– LINK
– JSR to callee
– POPFBR //executed on return
– pop parameters

• Callee:
– create space for local variables
– execute code of callee

• Return from callee:
– Evaluate return value and write

into rv slot
– Pop off local variables
– JUMPIND //return to caller

return value
first parameter

nth parameter
saved FBR
saved PC
first local

…………..

mth local
………….

FBR

stack grows

Writing SaM code

• Start by drawing stack frames for each method in
your code.

• Write down the FBR offsets for each variable and
return value slot for that method.

• Translate Bali code into SaM code in a
compositional way. Think mechanically.

Recursive code generation

Construct Code

integer PUSHIMM xxx

x PUSHOFF yy //yy is offset for x

(e1 + e2) code for e1
code for e2
ADD

x = e; code for e
STOREOFF yy

{S1 S2 … Sn} code for S1
code for S2
….
code of Sn

Recursive code generation(contd)

Construct Code

if e then B1 else B2 code for e
 JUMPC newLabel1
 code for B2
 JUMP newLabel2
newLabel1:
 code for B1
newLabel2:

while e do B;
newLabel1:
 code for e
 ISNIL
 JUMPC newLabel2
 code for B
 JUMP newLabel1
newLabel2:

JUMP newLabel1
newLabel2:
 code for B
newLabel1:
 code for e
 JUMPC newLabel2

Better code

Recursive code generation(contd)

Construct Code

f(e1,e2,…en)
PUSHIMM 0//return value slot
Code for e1
…
Code for en
LINK//save FBR and update it
JSR f
POPFBR//restore FBR
ADDSP –n//pop parameters

Recursive code generation(contd)

f(p1,p2,…,pn){
 int x,…,z;//locals
 B}

 ADDSP c // c is number of locals
 code for B
fEnd:
 STOREOFF r//r is offset of rv slot
 ADDSP –c//pop locals off
 JUMPIND//return to callee

return e; code for e
JUMP fEnd//go to end of method

Construct Code

OS code for SaM

• On a real machine
– OS would transfer control

to main procedure

– control returns to OS when
main terminates

• In SaM, it is convenient to
begin execution with code
that sets up stack frame
for main and calls main
– this allows us to treat main

like any other procedure

//OS code to set up call to main

PUSHIMM 0 //rv slot for main
LINK //save FBR
JSR main //call main
POPFBR
STOP

Symbol tables

• When generating code for a procedure, it is
convenient to have a map from variable names to
frame offsets

• This is called a “symbol table”
• For now, we will have

– one symbol table per procedure
– each table is a map from variable names to offsets

• Symbol tables will also contain information like
types from type declarations (see later)

Example

Variable Offset

n -1

rv -2

Let us write a program to compute absolute value of an integer.

Bali:

 main() {
 return abs(-5);
 }

 abs (n) {
 if ((n > 0)) return n;
 else return (n*-1);
 }

return value

return value

n

saved FBR

saved PC

FBR

FBR saved FBR

saved PC

Symbol Table

Symbol Table

Variable Offset

rv -1

main() {

 return abs(-5);
 }

main:
 ADDSP 0 // 0 is number of locals
 code for “abs(-5)”
 JUMP mainEnd
mainEnd:
 STOREOFF -1//-1 is offset of rv
 ADDSP -0 //pop locals off
 JUMPIND//return to callee
 (2)

main:
 ADDSP 0 // 0 is number of locals
 PUSHIMM 0
 code for “-5”
 LINK
 JSR abs
 POPFBR
 ADDSP -1
 JUMP mainEnd
mainEnd:
 STOREOFF -1//-1 is offset of rv slot
 ADDSP -0 //pop locals off
 JUMPIND//return to callee
 (3)

main:
 ADDSP 0 // 0 is number of locals
 code for “return abs(-5)”
mainEnd:
 STOREOFF -1//-1 is offset of rv slot
 ADDSP -0 //pop locals off
 JUMPIND//return to callee
 (1)

main:
 ADDSP 0 // 0 is number of locals
 PUSHIMM 0
 PUSHIMM -5
 LINK
 JSR abs
 POPFBR
 ADDSP -1
 JUMP mainEnd
mainEnd:
 STOREOFF -1//-1 is offset of rv slot
 ADDSP -0 //pop locals off
 JUMPIND//return to callee
 (4)

main:
 //set up call to abs
 PUSHIMM 0//return value slot for abs
 PUSHIMM –5//parameter to abs
 LINK//save FBR and update FBR
 JSR abs//call abs
 POPFBR //restore FBR
 ADDSP –1//pop off parameter
 //from code for return
 JUMP mainEnd
mainEnd:
 STOREOFF -1//store result of call
 JUMPIND

PUSHOFF –1//get n
ISPOS //is it positive
JUMPC pos//if so, jump to pos
PUSHOFF –1//get n
PUSHIMM –1//push -1
TIMES//compute -n
JUMP absEnd//go to end
PUSHOFF –1//get n
JUMP absEnd

STOREOFF –2//store into r.v.
JUMPIND//return

abs:

pos:

absEnd:

//OS code to set up call to main
PUSHIMM 0 //rv slot for main
LINK //save FBR
JSR main //call main
POPFBR
STOP

Complete code

Factorial

main() {
 return fact(5);
}

fact(n) {
 if ((n ==0) return 1;
 else return (n*fact(n-1));
}

FBR

FBR
Saved PC

Saved FBR
n
rv

rv

Saved PC
Saved FBR

Symbol Table

Variable Offset

n -1

rv -2

Symbol Table

Variable Offset

rv -1

//OS code to set up call to main
PUSHIMM 0 //rv slot for main
LINK //save FBR
JSR main //call main
POPFBR
STOP

main:
 //code for call to fact(10)
 PUSHIMM 0
 PUSHIMM 10
 LINK
 JSR fact
 POPFBR
 ADDSP -1
 //from code for return
 JUMP mainEnd
 //from code for function def
mainEnd:
 STOREOFF -1
 JUMPIND

fact:
 PUSHOFF -1 //get n
 PUSHIMM 0
 EQUAL
 JUMPC zer
 PUSHOFF -1 //get n
 PUSHIMM 0 // fact(n-1)
 PUSHOFF -1
 PUSHIMM 1
 SUB
 LINK
 JSR fact
 POPFBR
 ADDSP -1
 TIMES //n*fact(n-1)
 JUMP factEnd
zer: PUSHIMM 1
 JUMP factEnd
 factEnd:
 STOREOFF -2
 JUMPIND

Running SaM code

• Download the SaM interpreter and run
these examples.

• Step through each command and see how
the computations are done.

• Write a method with some local variables,
generate code by hand for it, and run it.

Introduction to Parsing

• Please read the lecture notes titled
“Parsing” on the course website before
next class (prerequisite):

http://www.cs.utexas.edu/%7Epingali/CS380C/2016/lectures/parsingIntro.pdf

http://www.cs.utexas.edu/~pingali/CS380C/2016/lectures/parsingIntro.pdf

	SaM I Am
	What is SaM?
	SaM Screen-shot
	Stack machine
	Slide 5
	Program area in SaM
	Program Execution
	Loader
	Interpreter and Loader
	Labels
	Other SaM areas
	Some SaM commands
	Classification of SaM commands
	ALU commands
	Pushing values on stack
	Example
	Load/store commands
	PowerPoint Presentation
	Slide 19
	Slide 20
	Slide 21
	Using PUSHOFF/STOREOFF
	Stack frame
	SaM code (attempt 1)
	Problem with SaM code
	RegisterStack Commands
	FBR Stack commands
	Slide 28
	SP  Stack commands
	Control Commands
	Slide 31
	Slide 32
	Symbolic Labels
	Using JUMPC for conditionals
	PC  Stack Commands
	Slide 36
	SaM stack frame for CS 375
	Protocol for call/return
	Writing SaM code
	Recursive code generation
	Recursive code generation(contd)
	Slide 42
	Slide 43
	OS code for SaM
	Symbol tables
	Slide 46
	Slide 47
	Complete code
	Factorial
	Slide 50
	Running SaM code
	Slide 52

