Access Normalization: Loop Restructuring for NUMA Computers

Wei Li
Keshav Pingali
Department of Computer Science
Cornéll University
Ithaca, New York 14853

Abstract: In scalable parallel machines, processors can
make local memory accesses much faster than they can make
remote memory accesses. |In addition, when a number of
remote accesses must be made, it is usually more efficient
to use block transfers of data rather than to use many small

messages. To run well on such machines, software must
exploit these features. We believe it is too onerous for a
programmer to do this by hand, so we have been exploring
the use of restructuring compiler technology for this purpose.

In this paper, we start with alanguage like HPF-FORTRAN

with user-specified datadistributionand devel op asystematic
loop transformation strategy called access normalizationthat

restructures loop neststo exploit locality and block transfers.

We demonstrate the power of our techniques using routines
fromtheBLAS (Basic Linear Algebra Subprograms) library.
An important feature of our approach is that we model loop
transformations using invertible matrices and integer lattice
theory.

1 Introduction

Scalable parallel machines are usually organized as networks
of processor-memory pairs in which a processor can access
local data much faster than it can access remote data. For
example, in the BBN Butterfly, accesses to loca memory
take 0.6 microseconds while accesses to remote memory take
about 6.6 microseconds [8]. Distributed memory machines
like the Intel iPSC/i860 have even greater non-uniformity in

memory access times because access to remote data must be
orchestrated through the exchange of messages. If non-local

1This research was supported by an NSF Presidential Young Investigator
award CCR-8958543, NSF grant CCR-9008526, ONR grant NO0014-93-1-
0103, and by grants from the Hewlett-Packard Corporation and the Cornell
Theory Center.

1

accesses are on the critical path through a program, making
these accesses local through proper data management will
speed up program execution.

A second feature of such architecturesis that block trans-
fer of data between processorsis more efficient than sending
this data using many small messages. Data transfer between
processors can be viewed as a pipeline with a large setup
time compared to the time per stage. For example, on the
Intel iPSC/i860, it takes 70 microseconds to start up commu-
nication, but it takes only 1 microsecond to transfer a double
precision floating point number between nearest neighbors
once the communication has been setup. Therefore, when a
number of data items must be sent from one processor to an-
other, itis preferable to use asinglelong message to amortize
startup time.

Contention in the network has the effect of increasing the
expected |atency of non-local references; therefore, dataman-
agement to avoid non-local references has the added benefit
of reducing contention, thereby improving performance. In-
terestingly, some analytical studies show that long messages
can increase the latency of non-local accesses [1]. Thisis
an argument against long messages, but on current machines,
this effect seems to be of secondary importance compared
to the benefits of amortizing start-up time, as we show in
Section 8.

For the software writer, the implication of these features
of non-uniform memory access (NUMA) 2 machines is that
programs must not only exploit parallelism but must also
manage data to eliminate non-local references wherever pos-
sible; where non-local references are necessary, they should
be grouped together for block transfers. We believe that itis
too onerous for the programmer to accomplish this by hand,
so we have been exploring the use of restructuring compilers
for this purpose. Existing compiler technology is oriented
mostly towards uniform memory access machines in which
the only concernis exploitation of parallelism. Parallel code
is generated by distributing iterations of the outermost oop
in a loop nest among the processors, with synchronization

2We use this term in a broad sense to include distributed memory
machines.

instructions being inserted to take care of dependences car-
ried by thisloop. To reduce synchronization, transformations
like loop interchange are carried out to move parallel loops
outermost wherever possible [3, 7, 26, 37]. This approach
does not perform any data management, so it is not suitable
for generating good code on NUMA architectures.

An dternative approach, implemented by the Id Nou-
veau [32] and FORTRAN-D systems [14], among others,
is to give the programmer control over how data structures
are distributed across the processors. The compiler uses this
data decomposition information to determine how to assign
work to processors. One simple way to do thisis to use the
so-called ownership rule — a processor executes an assign-
ment statement if the left hand side variable of the statement
is mapped to the local memory of that processor. A pro-
cessor executes a loop iteration if it has any work to do in
the body for that iteration. Although this strategy takes data
mappings into account, it can generate inefficient code, in
which all processors execute all iterations ‘1ooking for work
todo’ if the structure of the loop nest does not match the data
distribution[39]. In many of these cases, loop restructuring
can improve code quality, but no general approach to loop
transformation has been available in this context [14].

In this paper, we present a systematic approach to loop
restructuring for parallel machines with amemory hierarchy.
As in the ownership approach, our starting point is a lan-
guage like HPF-FORTRAN with user-specified data decom-
position. However, rather than use thisinformation directly
to generate code, we use the data distribution information to
drive access normalization, which transforms loop nests so
that code can be generated by distributing iterations of the
outermost |oop among the processors without compromising
locality. The structure of inner loops is chosen so that data
can be transferred using block transfers wherever possible.

Our work makes two contributions.

o We describe a new loop transformation strategy called
access normalization that is useful for compiling pro-
grams for parallel machines with non-uniform memory
access. It has applications in other areas such as the
generation of vector code.

e Our loop transformations are expressed in the frame-
work of invertible matrices and integer lattice theory,
which is an important generalization of existing frame-
works that use unimodular matrices.

The rest of the paper is organized as follows. In Section
2, we discuss asimple example that gives an overview of our
compiling strategy. We alsointroduce the data access matrix,
which plays a key role in the development. In Section 3, we
discuss the framework of invertible matrices as a foundation
for loop transformations. For some programs, the data ac-
cess matrix isinvertibleand can be used directly to transform

the loop nest, as we show in Section 4. In general, how-
ever, this matrix may not be invertible, and the techniques
of Section 5 must be used to produce an invertible matrix
for the transformation. The fina problem is guaranteeing
that the transformation respects program dependences; this
isdone in Section 6. In Section 7, we discuss how code can
be generated after loops have been restructured according to
our methods. We present experimental resultsin Section 8
that demonstrate that our methods work well on programs
of practical interest such as routines from the BLAS (Basic
Linear AlgebraSubroutines) library [10]. Finally, we discuss
related work in Section 9.

2 Overview of NUMA Compilation

In this section, we give an overview of our compilation strat-
egy for NUMA architectures. We also introduce a key data
structure called the data access matrix.

21 NUMA Compilation

Our compiler accepts programswrittenin FORTRAN-77 ex-
tended with data distribution declarations that specify how
arrays are to be distributed across the local memories of the
machine. We support most of the data distributions com-
monly used by programmers of NUMA machines, such as
wrapped and blocked column and row distributions. In a
wrapped column distribution, the columns of an array are
distributed in a round-robin manner to the processors: if Pis
the number of processors, then processor 0 getscolumnsO, P,
2P and so on, while processor 1 getscolumns 1, P+1, 2P+1,
etc. Most of the examplesin thispaper use awrapped column
distribution. Blocked column distributionis similar, except
that a processor gets a contiguous set of columns. We aso
support so-called 2-D blocks in which rectangular subblocks
of thearray are distributedto the processors [14], but for lack
of space, we will not consider them any further in this paper.

Datadistributions can be specified precisely using a distri-
bution function.

Definition 2.1 A distributionfunction is a function from ar-
ray indices to integers between 0 and P-1, where P is the
number of processors in the machine. An array dimension
is a distribution dimension, if that dimension is used in the
distribution function for the array.

For example, thedistributionfunctionfor the wrapped col-
umn distribution of a two dimensional array is Wy(i, j) =
J mod P, and the second dimension of the array is a distri-
bution dimension.

To understand the need for loop restructuring, consider the
program in Figure 1(a), which is a simplified version of the

fori=0, Ny -1

forj=1i,i+b-1
fork=0,N, -1
B[i, j-i] = BJ[i, j-i] + A[i, j+K]
@
foru=0, b-1

forv=u,u+ N1+ N, —2
forw=0,N; -1
B[w, u] = B[w, u] + Alw, V]

(©)

fori=p, N1 —1,stepP
forj=1i,i+b-1
fork=0,N, -1
B[i, j-i] = BJ[i, j-i] + A[i, j+K]
(b)

foru=p, b-1, step P
forv=u,u+ N1+ Np,—2
read Al *,v];
forw=0,N, -1
B[w, u] = B[w, u] + A[w, V]

(d)

Figure 1: Transformation and Code Generation for a Simple Example

SYR2K code discussed in Section 8. Assume that both A
and B have a wrapped column distribution. Distributing it-
erations of the outer |oop among the processors (Figure 1(b))
resultsin processor p executing iterationsp, p + P, etc. Con-
sider accesses to elements of array B. Each iteration of the
outer loop makes N,(b — b/ P) non-local accesses, and the
total number of non-local accesses is N1N,b(1 — 1/ P).

The ownership rule uses data decomposition information
to generate code. A processor isinvolved in the execution of
aniteration (4, j, k) if it owns any of the elements referenced
in the body of theloopin that iteration. Therefore, processor
p haswork to do initeration (¢, j, k) if (j — i) mod P = p
(itmust update an element of B) or if (j + k) mod P = p (it
must send an element of A to whichever processor isupdating
B in that iteration). Thisis accomplished by placing these
conditional tests in front of the statement, and having all
the processors execute al iterations ‘looking for work to
do' [32, 9]. Insimple programs, these conditional tests can
be optimized away, but in general they must be executed at
runtime, which isinefficient. Moreover, in our program, the
code cannot make use of block transfers of elements of A
sincethe elements of A referenced during oneiteration of the
j loop are mapped to different processors.

Now, consider the program of Figure 1(c). This program
computes the same function as Figure 1(a), but if we dis-
tribute the outermost loop among the processors as before
(Figure 1(d)), there are no non-local accesses to B. There
are non-local accesses to A but these can be performed using
block transfers since the subscript in the distribution dimen-
sion of A isinvariant in the innermost loop. The loop trans-
formations described in this paper transform the program of
Figure 1(a) to that of Figure 1(c). Given thetransformed pro-
gram, the code generation techniques described in Section 7
generate the parallel code shownin Figure 1(d).

2.2 Data Access Matrix

Since the transformations are driven by the data access pat-
terns, it is convenient to define a data structure to represent
array subscriptsin aloop nest in a convenient way. Thisdata
structure is called the data access matrix. It isused by our
loop restructuring system as the starting point for determin-
ing what transformations to apply to the loop nest. For the
loop nest in Figure 1(a), the data access matrix is

-1 10
0O 1 1].
1 00

This matrix represents the subscripts in the sense that the
product of the data access matrix with the column vector
[i, 7, k)T yields a column vector in which each element is a
subscript from the program. For our example, this product
is the column vector [j — i, j + k,]” which corresponds to
the three subscripts of the program. Constantsin a subscript
are omitted from the corresponding entry in the data access
matrix.

The order in which these subscripts are represented in the
data access matrix is important and corresponds to an esti-
mate of their relative importance for achieving good perfor-
mance. A reasonable heuristic isto give highest importance
to subscriptsin the distributiondimension(s) of arrays; in our
example, the subscriptsj — ¢ and j + & dominate the subscript
i since they occur in the distribution dimensions of arrays B
and A. Noticethat j — ¢ occurstwice, but j + & occursonly
once. Therefore, welet j — i dominate j + k. Thisyieldsthe
data access matrix shown above.

The technical development in the rest of the paper is in-
dependent of how subscripts were ordered to obtain the data
access matrix. In addition, a subscript that is ‘overly com-
plex’ for any reason (such as a non-linear function of loop
indices) may be omitted from the data access matrix without

affecting correctness.

3 Loop Transformationsand Invertible
Matrices

In this section, we show how invertible matrices can be
used to model the loop transformations of interest in the
NUMA context. Consider a simple loop nest

fori=1,3
forj=1,3
A[2i+4j, i+5] = j;

It isto be restructured to the form

foru= 6,18 step 2
for v= u/2 + max(3[(u-6)/4], 3),
u/2 + min(3[(u-2)/4],9)
step 3
Alu, V] = (2v-u)/6;

To determine how to perform the transformation, consider
theiteration spaces of thetwoloops, showninFigure2. Since
the bodies of both loops have the same statement, we must
ensure that thework donein any iteration of the original loop
nest is done in exactly one iteration of the new loop nest.
Therefore, we must construct a one-to-one mapping from the
old iteration space to the new one. Moreover, every iteration
of the new loop nest must correspond to some point in the
old iteration space, so the mapping must be an onto mapping.
In other words, we must construct an invertible mapping
between the two iteration spaces. One such mapping can be
described concisely by the following set of equations, written
in matrix form:

(13)0)-(0)

This mapping can be represented using an invertibleinte-
ger matrix because it isalinear, integral, invertible mapping
between the two iteration spaces.

The use of invertible matrices to model loop transforma-
tionsis a generalization of the unimodular approach which
can be used to model loop interchange, skewing and rever-
sal [7, 37]. Invertible matrices include unimodular matrices
asaspecial case, and permit usto model loop scaling aswell.
An example of this transformation, which replaces a loop
index with an integer multiple of the loop index, is shown
bel ow.

fori=1,3
A[2*i] =i

foru= 2,6,2
Alu] = u/2

(a) original code (b) loop scaling

Loop scaling may introduce integer divisions, asis shown
in the example, but these operations can be strength reduced
and replaced with additions. Like skewing or reversal, loop
scaling is not particularly interesting in isolation, but com-
bined with the other transformations, it lets us do wholesale
loop restructuring for NUMA architectures.

The algorithm for generating a restructured program start-
ing from a loop nest and an invertible mapping is given in
the technical report[24]. This agorithmis non-trivial since
the new loop nest must traverse points in the new iteration
space in lexicographic order, and the starting point, ending
point and step size of aloop in the restructured loop nest can
depend on only the loop indices of outer loops (for instance,
these values for the outermost loop must be constant). Itis
not immediately obvious that this can be done for any in-
vertible matrix 7. Fortunately, the iteration space of a loop
nest formswhat is called an integer lattice; by applying some
resultsfrom integer lattice theory, we can easily construct the
required loop nest.

Since invertible matrices are closed under matrix product,
it follows that any sequence of these loop transformations
(permutation, reversal, skewing and scaling) can also bemod-
eled as an invertible matrix. This means that the problem of
performing the right sequence of loop transformations now
reducesto that of finding an appropriateinvertiblematrix that
models the desired sequence of transformations. We show
how to do this next.

4 Invertible Data Access M atrices

In this section, we consider the simple case where the data
access matrix isinvertible. Consider the program of Figure 1
again. The data access matrix for the programis X

-1 10
X = 0O 11
1 00

Itiseasy to verify that X isinvertible; the result of trans-
forming the source program using X' as the transformation
matrix was shown in Figure 1(c).

Consider what happens when code is generated for the
new loop nest by distributing iterations of the outermost loop
among the processorsinaround-robinmanner. Sincethe out-
ermost loop index is also the the subscript of the distribution

(i,7) — (w,v)

(L,1) — (6,6

(1,2) — (10,11)

_ (1,3) — (14,16)
J (2,1) — (87)
31 o o o 2,2) — (12,12)
2 o o o (2,3) — (16,17)
1 S e o (3,1) — (10,8)
(3,2) — (14,13)

L 9 3 S| B3y — 819

18 o
17 o

16 o

15
14
13 o
12 o

11 o

o

67 89 101112131415161718 u

Figure 2: Mapping between Iteration Spaces

dimension of array B, all referencesto B will be purely local.
We cannot accomplish thisfor both A and B simultaneously
since the subscripts in the distribution dimensions of A and
B are different; therefore, there will be non-local accesses to
A. However, since the subscriptin thedistributiondimension
of the reference to A was placed second in the data access
matrix, thissubscript in the new loop nest correspondsto the
second loop index and we can perform block transfers for
accesses to A, aswas shown in Figure 1(d).

For future reference, we define the following notion.

Definition 4.1 Given an array reference, an array subscript
isnormal withrespect toloop, if itisequal to theloopindex
variable .

In this example, the data access matrix yielded the trans-
formation without any complications. Thisis not the case in
general. First, the data access matrix may not be invertible.
We handle thiscase in Section 5. Second, the transformation
suggested by the data access matrix may violate one or more
data dependences. We take care of thisproblem in Section 6.
In both cases, the goal isto produce an invertible matrix that
retains as many rows of the data access matrix as possible.

5 Non-invertible Data Access M atrices

Ingenera, thedataaccess matrix isnotinvertible, soit cannot
be used directly to transform theloop nest. The techniquesin
thissection convert suchamatrix into aninvertible matrix that
retains as many rows (subscripts) of the data access matrix
as possible. Thisis donein two stages — first, we eliminate
linearly dependent rows from the data access matrix using

Algorithm BasisMatrix, and second, we pad this reduced
matrix with additional rows using Algorithm Padding, to get
amatrix that isinvertible. The detailsof these algorithmscan
be found in the associated technical report; here we outline
what these algorithms do.

5.1 BasisMatrix

Itis easy to design an inefficient algorithm that takes a data
access matrix and selects as many linearly independent rows
as possible: we simply go down the rows of the matrix in
sequence, discarding arow if it islinearly dependent on the
rows before it, and keeping it otherwise. It is important
to traverse the rows in sequence since it ensures that less
important rows are discarded in favor of more important
ones. For future reference, let us call the resulting matrix the
basis matrix corresponding to the data access matrix.

Definition 5.1 The basis matrix of a data access matrix Ais
the first row basis of A.

The agorithm described informally above is simple, but
it is expensive to keep checking rows for independence. A
more efficient algorithm is obtained by using a variation of
computing the Hermite normal form[23]. A detailed under-
standing of this algorithm is not important for reading the
rest of the paper, so we give aninformal description of what
it does. Given a data access matrix, Algorithm BasisMatrix
in Figure 3 returns a permutation matrix P, and the rank d of
the data access matrix (the number of linearly independent
rows). The first d rows of the permutation matrix P tell us
which rows of the data access matrix are in the basis matrix.
The following example should make thisclear.

Input: An'm x n data access matrix A.
Output: Anm x m permutation matrix and the rank of A.

Algorithm BasisMatrix(A) : (PermMatrix, Rank)

begin
P = I, wherel isthem x m identity matrix.
done = falsg;
i=1

While not done do
[* Consider the submatrix A[i:m, i:n] */
Search for thefirst j > ¢ such that A[j, i:n] # 0;
If no such j exists Then

done = true;
Else
If j # i then

Exchange A[i, 1:n] with A[j, 1:n]
Exchange P[i, 1:m] with P[j, 1:m]

End-If

Apply the elementary column operations to make
Ali, i] nonzero and Ali, i+1:n] zero.

i=i+1
End-If
End-While
return (P, i-1);
end
Figure 3: Computing a Basis Matrix
Consider the data access matrix X = (2 2 Zz o)
0 0 1 -1
I

Thisdata access matrix can arise from the following program

fori= ..
forj=..
fork=...
forl=..
R[i+j-k, 2i+2j-2k, k-] = ...

Algorithm BasisMatrix(X) returns the permutation matrix
pP= (o o0 1) and rank d = 2. The first two rows of the

0 1 0
permutation matrix tell us which rows of A form alinearly
independent basis. the position of the non-zero entry inthese
rows of P indicates which row of A is in the basis. In
this example, the first and third rows form the basis matrix
B={(3 5 3+ %) Thesignificance of thisin terms
of transformations is that only the first and third subscripts
can be normalized. This is reasonable because the subscript

2i + 2j — 2k isjust amultiple of the subscripti + j — &.

5.2 Padding Matrix

To extend the basis matrix to an invertible matrix, we need
to add additional mutually independent rows which are also
independent of the rows of the basis matrix. There is some
flexibility in the choice of the padding matrix, and we will
use this flexibility to our advantage in the next section when
we discuss dependences.

Input: Anm x n basis matrix B.
Output: An(n —m) x n padding matrix H.

Algorithm Padding(B) : PadMatrix

begin
H = I,wherelisann x n identity matrix.
Fori=1,mdo
[* Consider the submatrix B[i:m, i:n] */
apply the elementary column operations to make
B[i, i] nonzero and BYi, i+1:n] zero.
If columnsi and j have been exchanged Then
exchange rowsi and j of H
End-If
End-For
return (H{m+1:n, 1:n]);
end

Figure 4: Computing a Padding Matrix

Algorithm Padding in Figure 4 constructs one possible
padding matrix as follows. It is well known that for a full
row rank matrix, there exist m columns that are linearly
independent. We simply need to pad these columns with 0
and therest of the columnswith columnsfromthe (n —m) x
(n — m) identity matrix I. For the above program, since the
first column and the third column are linearly independent,
the padding matrix is # = (§ § §). The mapping

between the old and new iteration spacesis

11 -1 0) U
00 1 -1 J _ v
01 0 O E] | w
00 O 1 l z

In the transformed program shown below, the reference
becomes R[u, 2u, V], and second index is not normalized.

foru= ...
forv= ..
forw= ...
forz= ...
Rlu, 2u, v]

6 Data Dependences

Theresultsof Section 5 showed that abasismatrix can always
be padded to yield an integer, invertible matrix. However,
there is no guarantee that the transformation corresponding
to thisfinal matrix is legal, because this transformation may
violate data dependences.

There are three kinds of data dependences between state-
ments. A data flow-dependence occurs when a value com-
puted in one statement is used in another statement. A data
anti-dependence occurs when a variable used in one state-
ment before being reassigned by another statement. A data
output-dependence occurs when a variable is computed be-
fore being recomputed by another statement. A data depen-
dence in the loop nest can be represented by distance vector
or direction vector. For example, the distance vector (o)

1

tell us that the dependence is between successive iterations
of theinnermost loop. A dependence vector has the property
that its leading non-zero is always positive; a legal trans-
formation must preserve this property for each dependence,
since the source of the dependence must be executed before
its destination. More information on data dependences and
techniques of dependence analysis can be foundin [6].

To understand the legality of transformations, consider
A=(7 1 %) abassmarix, and Dy = §) the
dependence matrix. Each column of the dependence matrix
represents the distance vector of a dependence in the loop
nest. In our example, there is just one dependence. If 7'
is an invertible matrix representing a loop transformation,
it is easily shown that 7'D is the dependence matrix of the
restructured loop nest; therefore, the leading non-zero ele-
ment in each column of 7' must be positive. By looking

at the product AD4 = _01 , We can see at once that A

cannot be padded to give us a transformation that respects
data dependences. The intuitionis that the first two rows of
A determine the two outermost |oops of the transformed loop
nest. Inthe original program, the dependence was carried by
the innermost loop, but in the new program, the dependence
is‘carried’ by the second loop. Unfortunately, the negative
value of the second dimension of A >4 means that the source
of the dependence will be executed after the sink. Clearly,
thereis nothing we can do in theinner loopsthat would rem-

edy thissituation, so itisimpossibleto pad A toyieldalegal

Input: An'm x n basis matrix B
and a dependence matrix D.
Output: A legal basis Matrix.

Algorithm LegalBasis (B, D) : BasisMatrix

begin
Let B; bethe ithrow of B
and d; be the ith column of D.
Fori=1m
fT =B;D
If each element of f is non-negative then
D =D -d;, wheref[j] >0
Elseif each element of f is non-positive then
B; = (-1) B;;
D =D -d;, wheref[j] <0
Else
B=B- B;;
End-If
End-For
return B;
end

Figure 5: Computing a Legal Basis Matrix

transformation.

To get around this problem, we proceed in two steps. We
start with the basis matrix and use Algorithm LegalBasis
to produce a new basis matrix that does not violate depen-
dences. Then, we pad this matrix using Algorithm Legal Invt
to yield the final transformation. In this paper, we discuss
only the case when dependences are represented by distances;
it is straight-forward to extend these results to dependence
directiong[23].

6.1 Generatingalegal Basis

Algorithm LegalBasis , shown in Figure 5, takes a basis
matrix and checks each row against the dependences. For
example, consider the product of thefirst row and D 4. This
givesusarow vector in which entries can be positive, zero or
negative. If an entry ispositive, it means that the correspond-
ing dependence will be carried by the new outermost loop.
Therefore, the structure of the inner loops does not matter
as far as this dependence is concerned, and we may delete
it from the D4 matrix for the rest of the algorithm. If the
entry is zero, then the dependence will not be carried by the
potential outermost loop, so we leave the dependence in the
D 4 matrix. However, if we have anegative entry, the depen-
denceis‘carried’ by the potential outer loop, but the order of

Input: Anm x n legal basis matrix B
and a dependence matrix D.
Output: Ann x n legal invertible matrix T.

Algorithm Legal Invt(B, D) : Matrix

begin
/* Let B; berow i of B, and d; be columni of D */
Fori=1,m
fT = Bi D
D= D -d;, wheref[j] >0
End-For
r=m+1;
While D is not empty do
ZT = thebasis matrix of D7,
find thefirst e, that is not orthogonal to D;
X= cZ(ZTZ)_lZTek;
where cisa positiveinteger that makes x
an integer vector.
ff=2TD;/*f[j] >0%*
D= D -d;, wheref[j] >0
B, = xT;
r=r+1,
End-While

H = Padding(B);
return(append(B, H));
end

Figure 6: Computing a Legal Invertible Matrix

theiterationsis wrong. Notice that if al of the entries of the
row vector are 0 or negative (intuitively, for all dependences,
the potential outer loop either does not carry the dependence
or the source of the dependence is executed after the sink),
we can simply reverse the direction of the loop. Problems
arise only if some entries are positive and others negative —
inthat case, we cannot keep that row of the basis matrix, and
we delete it from the basis matrix. For the above example,
LegalBasis (A) generates the basis A1 = (- 10) .

0 -1 1

6.2 Legal PaddingMatrix

To pad alegal basis matrix, we need to satisfy two constraints.
First, any row added must be linearly independent of other
rows, so that the final matrix is invertible. Second, the row
must not violate dependence constraints. Once a new row
has been added during padding, al dependences carried by
the loop corresponding to this row may be dropped from
consideration when filling in the rest of the matrix. When

there are no further dependences to be satisfied, we can apply
Algorithm Padding of Section 5.2 to complete the generation
of alegal, invertible matrix.

As an example, consider the basis matrix B =
(-1 1 o) whichislegal with respect to the dependence

matrix D = (z ?1’
the new outermost loop represented by the first row of B,
and can be dropped from consideration for the rest of the
procedure. Theinner product of thefirst row with the second
dependence is 0, meaning that this dependence is not carried
by the new outermost loop; therefore, it must be taken into
account when padding the matrix. To pad B, we need to
find a row whose inner product with the second dependence
vector is non-negative. In the geometric sense, the angle
between the two vectors must be less than or equal to 90
degrees. Thus, the general problem can be stated succinctly
as that of finding a vector that is linearly independent of the
existingrow vectorsin the basismatrix and within 90 degrees
of each dependence vector.

). The first dependence is carried by

It is not immediately clear that such a vector exists; for-
tunately, Algorithm Legallnvt in Figure 6 gives a positive
answer by computing such a vector using a standard re-
sult about projections. This vector can be written as z =
eZ(ZT 7)1 7T ¢}, for some positive scaling integer ¢ that
makes all of theentriesintegers, wheree! = [0,0, .., 1, .., 0],
with the 1 in the 7th position, and Z is a column basis from
D.

For our example, the remaining dependence to be satisfied
ises. Thenew row vector for thepaddingisz = e3. Sincethe
dependence is carried by the loop corresponding to this new
row vector, we can drop the dependence from consideration
now. The dependence matrix is empty at this point. The
new legal basis matrix is B; = (b) Then we can

0 0

use the Algorithm Padding to produce an invertible matrix.

The final matrix T = (o o 1) isa linear, invertible

1 0

meatrix and the corresponding transformation satisfies all of
the dependences.

The correctness of Algorithm Legallnvt follows from the
following theorem.

Theorem 6.1 The invertible matrix returned by Algorithm
Legallnvt is consistent with program dependences.

Proof: Notice that the dependence vectors that need to be
satisfied are orthogonal to the row vectors of the basis matrix.
If we can find avector from the subspace spanned by the de-
pendence vectors, then this vector must be orthogonal to the
basisrows, thereforelinearly independent of the existing row
vectors. The invariants of the while-loop are that AD = O;
the rows of A are linear independent; and for every column
d; of D, ef'd; > 0. Let d; = Zy for some y since Z isa
basis of the columns of D. Sincex =cZ(Z1 Z)=1Z% ¢} and
AZ =0, Az = 0. Since e d; > 0, we havethat z7d; > 0.
After each step, the rank of the column space of 1) decreases
at least by one, so the size of D is decreasing and the algo-
rithm will terminate. O

As afinal remark, we note that the choice of the padding
meatrix inthis paper isquitearbitrary. For amachineinwhich
processors have afirst-level cache, thereisthe obvious possi-
bility of selecting the padding to improve cache performance
by incorporating results on blocking of nested loopg[12, 33].
We leave thisfor future work.

6.3 Direction Vectors

Directionvectorsprovideaconservative approximation when
the distance of dependences can not be detected at compile
time. They can be represented by signs“<”, “>" "=" and
“x". “<” means that the distance is positive; “>" negative,
and “x” unknown. A direction vector can be (< > =) or (=

< %), aslong as the leading nonzero is positive.

The agorithms in this paper can be extended to handle
direction vectors. For lack of space, details can be found in
the associated technical report [23].

7 NUMA Code Generation

Once the program has been transformed by access normal-
ization, we must generate the code that will run on each pro-
cessor. We generate the same code for each processor, but
this code is parameterized by the processor number so that
each processor doesonly thework for whichitisresponsible.

The general technique for partitioning the iteration space
of the loop nest among the processors is called tiling. Here,
we will restrict ourselves to the special case of wrapped and
blocked distributionsintroduced in Section 2. For these dis-
tributions, it is sufficient to distribute the iterations of the
outermost loop of the transformed loop nest among the pro-
cessors. Consider the first row of the transformation matrix:
one of the following cases must be true.

e The row was present in the data access matrix, so it
corresponds to a subscript in the original program, and
this subscript isin a distribution dimension.

e The row was present in the data access matrix, butitis
not a distribution dimension.

e The row was introduced by padding.

In cases (ii) and (iii), access normalization cannot exploit
locality, and we generate code simply by assigning iterations
to processors in a round-robin manner. This code can still
exploit block transfers. For case (i), an iteration should be
executed by a processor if the corresponding data element is
mapped toitslocal memory.

First, consider the case when the step sizeis 1. For a
wrapped distribution, processor p ownsthe data segments p,
p+ P,p+ 2P, .. etc, where a data segment is a column in
thewrapped column distributionor arow in thewrapped row
distribution. Sincetheiterationsthat accessthe datasegments
0N processor p are assigned to processor p, it iseasy to verify
that the iterationsexecuted by processor p are the ones shown
in Figure 7(b). The lower bound [‘227 % P + p is the first
iteration between [and « that belongs to process p.

When the step sizeis not 1 (Figure 7)(d), we must solve
a linear congruence for the wrapped distribution. Assume
that the step size is positive, since the solution can be easily
extended to handle the case when the step size is negative.
The iterations can be represented by ¢ = { + n * s where n
isaparameter with integer values. Theiterationsthat belong
to process p are these satisfying the equation ! + n * s = p
(mod P). Using results from number theory, we know that
the when the g.c.d of s and P (written as (s, P)) divides
(I — p), thereisan infinite number of solutionsin the form of
n = no+1¢* P/(s, P) for some integer solution 0 < ng <
P/(s, P) and integer free variable t. However, only certain
t'sare solutionsfor iterations within the loop bounds. Since
[<i<wandi=1[+ (no+1t*P/(s, P))*s,therangeof ¢
is [7%y | = 0 <t < | j7i- 3% |- Therefore the loop for
processor p isin Figure 7(e).

Given this assignment of iterationsto processors, we must
generate synchronization instructions to take care of depen-
dences carried by the outermost loop, and insert block trans-
fers wherever possible. Inserting block transfers is similar
to message vectorization in distributed memory machines
or block-invalidates for software cache coherent schemes.
These steps are routine [13, 26, 31], and are omitted from
this paper.

I—

fori=1,u fori=[Z5] « P +p,
u,
step P
(a) unit step (b) task p for wrapped distribution
fori=1,u,steps fori=1+ ng*s,

u

step P/(P, s) s

(d) non-unit step

(e) task p for wrapped distribution

for i = max(l, p * 5),

min(u, (p + 1)« .S — 1)
(c) task p for blocked distribution
for i = max(l, p * 5),

min(u, (p + 1) * .S — 1),
step s

(f) task p for blocked distribution

Figure 7: Distributing loops among processors

8 Empirical Results and Performance
Analysis

In this section, we report the performance of our techniques
on routines from the BLAS (Basic Linear Algebra Subpro-
grams) library. The target machine is a BBN Butterfly GP-
1000. On this machine, a processor can access its local
memory in about 0.6 microsecond, but a non-local access
takes about 6.6 microseconds even in the absence of con-
tention in the network. For block transfers, the startup time
is about 8 microseconds, and after that, a byteis transferred
every 0.31 microseconds [8]. Our compiler takes as input
FORTRAN-77 programs with data distribution information,
and it generates C code for each processor; this node pro-
gram is compiled into native code using the Green Hills C
compiler (Release 1.8.4). The C compiler performsonly con-
ventional code optimizations, so our experimental resultsare
not skewed by any restructuring performed by this compiler.
We will use pseudo-code in discussing examples.

For the GEMM code, our techniques are successful in
eliminating non-local accesses significantly, so block trans-
ferscontributejust asmall amount to overall performance. In
the SYR2K code, the reduction of non-local accesses isless
significant, so block transfers of non-local data are important
for good performance.

81 GEMM

Genera matrix multiplication (GEMM) is one of the central
subroutinesin BLAS.

fori=1,N
forj=1,N
fork=1,N
Cli, jl = C[i, j] + Ali, K * B[k,]

10

All arrays are of size 400 by 400 and are distributed in
wrapped column manner. By distributing the outermost loop
among the processors without doing any transformations, we
obtain the graph labeled gemm in Figure 8(a).

The data access matrix is (o o 1
1 0

0

) , and dependence

matrix is(o) Theinvertible matrix for the transformation
1

s(ti)
The transformed loop nest yields the following parallel

code with the performance labeled gemmB(Figure 8(a)). The
curve labeled gemmT isthe speedup without block transfers.

foru=p, N, stepP
forv=1N
read A, V];
forw=1,N
Clw, u] = C[w, u] + A[w, V] * B[V, U]

After access normalization, accesses to C and B are local,
but there are non-local accesses to A. Since three out of four
data structure accesses in each iteration have become local,
the effect of block transfersisrelatively small.

8.2 SYRZ2K

When remote accesses are necessary dueto the problem struc-
ture, itisbeneficial to use block datatransfersto amortize the
cost of the startup time. Consider therank 2k update SY R2K
from BLAS (Basic Linear Algebra Subroutines) [10]. The
subroutine computes C' = « A” B + o BT A 4+ C. Suppose
A and B are banded matrices with band width b, then C is
symmetric and banded with band width 26 — 1. The banded
matrices A, B are stored inn x 2b — 1 arrays Ay, By such

20 T T T T T
15 gemm B
gemmT
Speedup10 + 7]
5 gemm

0 1 1 1 1 1 1
0 4 8 12 16 20 24 28

Processors
(8 GEMM

20 T T T T T
15 -
syr2kB
Speedup 10 - syr2kT]
syr2k
5 I -
0 L L L L L L
0 4 8 12 16 20 24 28
Processors

(b) banded SY R2K

Figure 8: Speedups of GEMM and banded SY R2K

that the elements A[:, j], Bli, j] arein Ag[i,j — i + b — 1]
and By[i,j — i+ b — 1]. C' issymmetric so only the upper
triangular matrix is stored inann x (26 — 1) array C'; such
that C[i, j]isin Cy[i, j — ¢]. The program is shown below.

fori=1,N
for j = i, min(i+2b-2, N)
for k = max(i-b+1, j-b+1, 1),
min(i+b-1, j+b-1, N)
Colij-i+1] = C[ij-i+1]
+ aAy[Ki-k+b] By [k,j-k+b]
+ aAy[kj-k+b]*By[k,i-k+b]

Assume that we are given a wrapped-column mapping for

0
-1

] If

corr

each array. The data access matrix is | o

1 -1

0 0

we apply Algorithm BasisMatrix, we get a base matrix B
consisting of thefirst three rows. However, the dependence
matrix is [0,0,1]7. The legal base mapping is Bi.ga =

_81 _:1 g , which is B with the second row negated.

Thismatrix isinvertible. Using B, ,4; as the transformation
meatrix and parallelizing the new nest, we get the parallel code

foru=p, 2b-2, step P
for v = 1-b, b-u
read Ay[*,-u-v+b]; read Ay[*,-v+b];
read By[*,-v+b]; read By[*,-u-v+b];
for w= max(1, u+v), min(N, N+v)
Cy[-u-v+tw+1, U] = C3[-u-v+w, U]
+ aAp[W, -U-v+Db]* By [w, -v+b]
+ aAp[W, -v+b]* B[W, -u-v+Db]

The experimental results are shown in Figure 8(b). The

11

problem size is 500 with a band size of 200. Block transfers
arerelatively important in thisexample, since there are many
non-local accesses left in the transformed code.

A simple performance model explaining these results can
be found in the associated technical report.

9 Summary and Related Work

This paper is a contribution to the state of the art of com-
piling programs in languages like HPF-FORTRAN that per-
mit user-defined data decomposition for parallel machines
with a memory hierarchy, which is the goal of a number of
projects including FORTRAN-D, Id Nouveau, Superb and
Crystal [32, 9, 14, 19, 22, 27, 34, 39]. The emphasisin these
projects has been on code generation mechanisms (such as
the ownership rulediscussed in Section 2) and on recognizing
and exploiting specia patterns of computation and commu-
nication such as reductions. Although it is well-known that
loop restructuring before code generation can improve per-
formance, no systematic loop restructuring mechanism using
ageneral loop transformation framework has been available.

We have attempted to exploit locality by matching code to
the data distribution across the machine. Thisis a static no-
tion of locality, and must be differentiated from the dynamic
locality that must be exploited on parallel machines with
coherent caches [17]. On such machines, the key to high
performance is data reuse, and the code must be restructured
to allow reuse of cached data wherever possible. Restruc-
turing techniques for doing this have been explored by Wolf
and Lam [36]. Their approach is complementary to the one
described here. Itislikely that scalable parallel architectures

will be organized as networks of processor-memory pairsin
which processors have an on-chip cache and perhaps a sec-
ond level cache between the processor and itslocal memory.
Thetechniquesin thispaper can be used to partitionwork and
data among the processors; techniques to enhance data reuse
can be used to optimize uniprocessor cache performance.

Our use of matrix techniques generalizes the unimodular
matrix approach [7, 37]. Unimodular matrices were used
by Kumar, Kulkarni and Basu [20] to eliminate outermost
loop-carried dependences in generating code for distributed
memory machines. In our work, we use invertible matrices,
which include unimodular matrices as a special case. This
lets us model loop scaling as well, which isimportant in the
NUMA context. Ingeneral, itiseasier towork withinvertible
matrices since there are fewer constraints to be satisfied in
generatinginvertiblematrices, as opposed to unimodul ar ma-
trices. There are anumber of other loop transformationslike
distribution, jamming and alignment that are useful in gen-
erating code for parallel machines [38]. It would be useful
to extend the matrix framework to incorporate these transfor-
mations. Related work onloop transformations can be found
in[4, 3, 12, 16, 21, 25, 28, 29, 33, 35, 37, 38].

The data access matrix isa new concept introduced in this
paper, and access normalization is useful in other contexts
such as code generation for vector machines. On many vec-
tor machines such as the CRAY-1 and CRAY-2, vector loads
and stores must have constant stride. Even on machines such
as the Fujitsu FACOM that support scatter and gather op-
erations, it is more efficient to use constant stride accesses
wherever possible since address generation for vector ele-
ments is faster. The techniques in this paper can be used to
accomplish thig[23].

We require the programmer to specify data distributions.
Automatic deduction of thisinformationfor specia programs
has been investigated by Balasundaram and others [5], by
Gannon et al [12] on CEDAR-like architectures, by Hudak
and Abraham [15] for sequentialy iterated parallel loops,
by Knobe et al [18] for SIMD machines, by Li and Chen
[22] for index domain aignment and by Ramanujam and
Sadayappan[30] who find communication-free partitioning of
arraysinfully parallel loops. These effortsfocus on deducing
good data distributionsfor particular kindsof programs such
asfully parallel loops, and no general solutionto thisproblem
isknown. We speculate that it might be possibleto start with
the dependence matrix and use our techniquesin reverse, so
to speak, to determine what a good data distribution should
be. The main difficulty in doing this is to ensure that the
resulting parallel code isload balanced.

10 Acknowledgments

We thank Radha Jagadeesan and Danny Ralph for useful
discussions, Richard Huff for proof reading the draft, and
Mark Charney, Richard Johnson, Mayan Moudgill and Paul
Stodghill for comments. The anonymous referees from both
ASPLOS’ 92 and TOCS have provided us many helpful com-
ments. In particular, we are grateful to Mary Lou Soffa for
shepherding the ASPLOS version of this paper.

References

[1] A.Agarwal. Limitson interconnection network perfor-
mance. |EEE Transactionson Parallel and Distributed
Systems, 2(4):398-412, October 1991.

[2] F Allen, J. Cocke, and K. Kennedy. Reduction of Op-
erator Srength, pages 79-101. Prentice-Hall, 1981.

[3] R. Allen and K. Kennedy. Automatic transation of
FORTRAN programs to vector form. ACM Trans-
actions on Progamming Languages and Systems,
9(4):491-542, October 1987.

[4] C. Ancourt and F. Irigoin. Scanning polyhedra with
DO loops. In Third ACM Symposiumon Principlesand
Practice of Parallel Programming, pages 39-50, April
1991.

[5] V. Baasundaram, G. Fox, K. Kennedy, and U. Kremer.
An interactive environment for data partitioning and
distribution. In Proc. 5th Distributed Memory Compuit.
Conf., April 1990.

[6] U.Banerjee. Dependence Analysisfor Supercomputing.
Kluwer Academic, 1988.

[7] U. Banerjee. Unimodular transformations of double
loops. In Proceedings of the Workshop on Advances
in Languages and Compilers for Parallel Processing,
pages 192-219, August 1990.

[8] BBN Advanced Computers Inc.
Switch Tutorial, 1989.

Butterfly GP1000

[9] D. Calahan and K. Kennedy. Compiling programs for
distributed memory multiprocessors. The Journal of
Supercomputing, 2(2), October 1988.

[10] T. Coleman and C. Van Loan. Handbook for Matrix
Computations. SIAM Publication, Phil, 1988.

[11] Digital Equipment Corporation. Alpha Architecture
Handbook, 1992.

[12] D. Gannon, W. Jalby, and K. Gallivan. Strategies for
cache and local memory management by global pro-
gram transformaions. Journal of Parallel and Dis
tributed Computing, 5:587-616, 1988.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]

H. M. Gerndt. Automatic Parallelization for
Distributed-Memory Multiprocessing Systems. PhD
thesis, Bonn University, FRG, 1989.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler
optimizationsfor FORTRAN-D on MIMD distributed-
memory machines. Technical Report TR91-156, Rice
University, April 1991.

D. Hudak and S. Abraham. Compiler techniques for
data partitioning of sequentially iterated parallel loops.
In Proc. ACM Int. Conf. Supercomputing, June 1990.

F. Irigoin and R. Triolet. Supernode partitioning. In
Proc. 15th Annual ACM Symposium on Principles of
Programming Languages, January 1988.

Kendall Square Research Corporation, 170 Tracer Lane,
Waltham, Ma 02154. Parallel Programming Manual,
1991.

K. Knobe, J. Lukas, and G. Steele. Data optimiza-
tion: Allocation of arrays to reduce communication on
SIMD machines. Journal of Parallel and Distributed
Computing, 8:102—-118, February 1990.

C. Koelbel and P. Mehrotra. Compiling global names-
pace parallel loops for distributed execution. |EEE
Transactions on Parallel and Distributed Systems, 2,
October 1991.

K. G. Kumar, D. Kulkarni, and A. Basu. General-
ized unimodular loop transformations for distributed
memory multiprocessors. Technical Report FG-TR-
014, Center for Development of Advanced Computing,
Bangalore, INDIA, January 1991.

L. Lamport. The parallel execution of do loops. Com-
munications of the ACM, pages 83-93, February 1974.

J. Li and M. Chen. Index domain alignment: Minimiz-
ing cost of cross-referencing between distributedarrays.
Technical report, Yale University, 1989.

W. Li and K. Pingali. Access normalization: loop re-
structuringfor NUMA compilers. Technical Report 92-
1278, Department of Computer Science, Cornell Uni-
versity, 1992.

W. Li and K. Pingali. A singular loop transformation
framework based on non-singular matrices. Techni-
cal Report 92-1294, Department of Computer Science,
Cornell University, July 1992.

L.Lu. A unifiedframework for systematiclooptransfor-
mations. In 3rd ACM SGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pages
28-38, April 1991.

13

[26] S. P. Midkiff and D. A. Padua. Compiler agorithms
for synchronization. |EEE Transactions on computers,
C-36:1485-1495, December 1987.

[27] R. Mirchandaney, J. Sdltz, R. Smith, D. Nicol, and
K. Crowley. Principles of runtime support for parallel
processors. In Proc. of the 2nd Int. Conf. on Supercom-

puting, July 1988.

[28] D. Paduaand M. Wolfe. Advanced compiler optimiza-
tions for supercomputers. Communications of ACM,

29(12):1184-1201, December 1986.

[29] A. Porterfield. Software Methords for Improvement of
Cache Performance on Supercomputer Applications.
PhD thesis, Rice University, May 1989.

[30] J. Ramanujam and P. Sadayappan. Compile-time tech-
niques for data distributionin distributed memory ma-
chines. |[EEE Transactionson Parallel and Distributed
Systems, 2, October 1991.

[31] A. Rogers. Compiling for Locality of Reference. PhD
thesis, Cornell University, 1990.

[32] A. Rogers and K. Pingali. Process decomposition
through locality of reference. In Proc. of the 1989 S G-
PLAN Conference on Programming Language Design
and Implementation, 1989.

[33] R. Schreiber and J. Dongarra. Automatic blocking of
nested loops. Technical Report 90.38, NASA RIACS,

May 1990.

[34] P Tseng. A Paralldlizing Compiler For Distributed
Memory Parallel Computers. PhD thesis, Carnegie

Méellon University, 1989.

[35] D. Whitfieldand M. L. Soffa. Automatic generation of
global optimizers. In Proc. of the SSGPLAN’ 91 Conf. on
Programming Language Design and Implementation,

SIGPLAN Notices, June 1991.

[36] M. Wolf and M. Lam. A data locality optimizing al-
gorithm. In Proc. ACM SIGPLAN 91 Conference on
Programming Language Design and Implementation,

pages 3044, June 1991.

[37] M. Wolf and M. Lam. A loop transformation theory
and an algorithm to maximize parallelism. IEEE Trans-
actions on Parallel and Distributed Systems, October

1991.

[38] M. Wolfe. Optimizing Supercompilers for Supercom-

puters. Pitman Publishing, London, 1989.

[39] H. Zimaand B. Chapman. Supercompilersfor Parallel
and Vector Computers. ACM Press Frontier Series,

New York, New York, 1990.

