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Modern compilers restructure programs to improve their efficiency. Dependence analysis is the
most widely used technique for proving the correctness of such transformations, but it suffers from
the limitation that it considers only the memory locations read and written by a statement without
considering what is being computed by that statement. Exploiting the semantics of program state-
ments permits more transformations to be proved correct, and is critical for automatic restructuring
of codes such as LU with partial pivoting.

One approach to exploiting the semantics of program statements is symbolic analysis and com-
parison of programs. In principle, this technique is very powerful, but in practice, it is intractable
for all but the simplest programs.

In this paper, we propose a new form of symbolic analysis and comparison of programs which is
appropriate for use in restructuring compilers. Fractal symbolic analysis is an approximate symbolic
analysis that compares a program and its transformed version by repeatedly simplifying these
programs until symbolic analysis becomes tractable while ensuring that equality of the simplified
programs is sufficient to guarantee equality of the original programs.

Fractal symbolic analysis combines some of the power of symbolic analysis with the tractability
of dependence analysis. We discuss a prototype implementation of fractal symbolic analysis, and
show how it can be used to solve the long-open problem of verifying the correctness of transforma-
tions required to improve the cache performance of LU factorization with partial pivoting.
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1. INTRODUCTION

All exact science is dominated by the idea of approximation.
—Bertrand Russell

Modern compilers perform source-level transformations of programs to en-
hance locality and parallelism. Before a program is transformed, it is analyzed
to ensure that the transformation does not change the input-output behavior of
that program. The most commonly used analysis technique is dependence anal-
ysis which computes the following partial order between execution instances
of statements: a dependence is said to exist from a statement instance S1 to
a statement instance S2 if (i) S1 is executed before S2, and (ii) one of these
instances writes to a memory location that is read or written by the other
one [Wolfe 1995]. Any reordering of statements consistent with this partial
order is permitted since it obviously leaves the input-output behavior of the
program unchanged.

Dependence analysis has been the focus of much research in the past two
decades. In early work, program transformation was carried out manually by
the programmer, and dependence analysis was used only to verify the legality of
the transformation [Cooper et al. 1986]. More recently, the research community
has invented powerful algorithms for automatically synthesizing performance-
enhancing transformations for a program from representations of its depen-
dences, such as dependence matrices, cones, and polyhedra [Banerjee 1989;
Feautrier 1992; Wolf and Lam 1991; Li and Pingali 1994]. These techniques
are sufficiently well understood that they have been incorporated into produc-
tion compilers such as the SGI MIPSPro [Wolf et al. 1996].

Dependence analysis provides sufficient but not necessary conditions for the
legality of restructuring transformations. In his seminal 1966 paper, Bernstein
pointed out that if f1 and f2 are commutative functions, the composition f1 ◦ f2
can be restructured to f2 ◦ f1 even though the restructuring violates depen-
dences [Bernstein 1966]. The somewhat contrived example of Figure 1 provides
a concrete illustration of this point. There is a dependence from statement S1
to statement S2 because S1 writes to y and S2 reads from y; similarly, there is a
dependence from S1 to S3 because S1 reads from x which is later written to by
S3. There are only two statement reorderings consistent with this partial order:
the original statement sequence, and the sequence obtained by permuting S2
and S3. In particular, the statement sequence of Figure 1(b) is not consistent
with this partial order. However, it is easy to see that if xin and yin are the values
of x and y before execution of the statement sequences in Figure 1(a) and (b),
the final values contained in variables x and y are xin ∗2 for both statement se-
quences; therefore, these two statement sequences are semantically equal. The
statement reordering of Figure 1 is therefore legal, but a compiler that relies
on dependence analysis alone will declare that this transformation is illegal.
Note that the transformation in Figure 1 is legal even if the function symbol
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S1: y = x

S2: y = y*2

S3: x = x*2

=>

S3: x = x*2

S2: y = y*2

S1: y = x

(a) Original program (b) Transformed program

Fig. 1. Simple reordering of statements.

* is left uninterpreted. In practice, this means that the transformed program
will produce the same output as the original program inspite of inaccuracies
introduced by finite-precision arithmetic.

In conventional dependence analysis, a dependence is assumed to exist from
a statement instance that writes to a variable x to a statement instance that
reads from x even if there are intermediate statement instances that write to
this variable. For some applications such as array privatization, it is necessary
to identify the last write to a location that occured before that location is read
by a particular statement instance. Value-based dependence analysis is a more
precise variation of dependence analysis which computes this last-write-before-
read information [Feautrier 1991]. It is easy to verify that the value-based
dependence analysis computes the same partial order as standard dependence
analysis for our example, so even a compiler that uses value-based dependence
analysis will rule that the transformation is illegal.

Dependence analysis is limited because it considers only the sets of locations
read and written by statements, not what is being computed on the right-hand
sides of statements. Notice that the dependences in Figure 1(a) do not change
even if statement S1 is changed to y = x*x, although statement reordering
is not legal in the new program. Consideration of what is being computed by
program statements can lead to a richer space of program transformations as is
shown by our simple example, and is critical for restructuring important codes
like LU with partial pivoting, as we discuss later in this paper.

Symbolic analysis [Gunter 1992] is the usual way of exploiting the seman-
tics of program statements. To compare two programs for semantic equality,
we derive symbolic expressions for the outputs of these programs as func-
tions of their inputs, and attempt to prove that these expressions are equal.
If an algebraic law such as the distributive, associative, or commutative law
of addition and multiplication can be assumed by the compiler, operator sym-
bols are interpreted appropriately and the corresponding laws may be used
when proving expression equality. Symbolic analysis and comparison of pro-
grams is an extremely powerful technique for proving equality of programs;
not only can it be used to verify the legality of program restructuring, but
in principle, it can also be used to prove equality of programs that imple-
ment very different algorithms, such as sorting programs that implement
quicksort and mergesort. In particular, the effect of the statement reordering
shown in Figure 1 can be obtained by using techniques such as value num-
bering [Aho et al. 1986] which implicitly rely on symbolic evaluation. How-
ever, for all but the simplest programs, symbolic analysis and comparison is
intractable.

In many areas of computer science, the barrier of intractability can be cir-
cumvented through the use of approximation. In this spirit, we have invented

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.



Fractal Symbolic Analysis • 779

Fig. 2. Overview of fractal symbolic analysis.

an approximate symbolic analysis which we call fractal symbolic analysis, and
which is shown pictorially in Figure 2. We assume that we are given a symbolic
analyzer that can symbolically analyze programs that are “simple enough.” De-
pending on the power of the analyzer, these may be programs without loops,
or programs with only DO-ALL loops, etc. Let S be a program that is to be re-
structured to a program T. If these programs are simple enough, we invoke the
symbolic analyzer on these programs and either prove or disprove their equality.
If these programs are too complex to be analyzed symbolically, we generate two
simpler programs S1 and T1 which have a very important property: equality of
these programs is sufficient (although not necessary) for equality of the original
programs.1 Analysis of the simpler programs is performed in a manner similar
to that of the original programs: if the programs are simple enough, they are
analyzed symbolically; otherwise, they in turn are simplified to produce new
programs and so on (this is why we call our approach fractal symbolic analysis).

It is guaranteed that at some point, we will end up with programs Sn and
Tn that are simple enough to be analyzed even by a symbolic analyzer that can
only handle loop-free code. If we can prove that these programs are equal, we
can conclude that S and T are equal; otherwise, we conservatively assume that
S and T are not equal, and disallow the transformation.

A more abstract description of this method is the following. Let p be the
predicate asserting semantic equality of the source and transformed programs.
If we cannot prove p directly, we generate a simpler predicate q such that q
implies p. If we can prove q, we conclude that p is true; if not, we assume
conservatively that p is false and disallow the transformation. To prove the
simpler predicate q, we apply this strategy recursively.

It should be clear from this description how the notion of approximation has
been introduced into symbolic analysis.

1A small technical detail is that this step may produce a number of simpler programs from each of
the original programs, in which case it is necessary to establish equality of that number of pairs of
programs.
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do i = 1,M

do j = 1,N

B(i,j):

k = k + A(i,j)

do j = 1,N

do i = 1,M

B(i,j):

k = k + A(i,j)

(a) Original program (b) Transformed program

Fig. 3. Loop interchange of reduction code.

Three important points should be noted.

(1) The rules for generating simpler programs are derived from the transfor-
mation that relates the two programs whose equality is to be established.
Therefore, our approach cannot be used to prove that quicksort and merge-
sort are equal, for example, since these programs are not related by a re-
structuring transformation.

(2) Since equality of the simplified programs is a sufficient but not necessary
condition for equality of the original programs, successive simplification
steps produce programs that are less likely to be equal even if the original
programs are equal. It is desirable therefore that the base symbolic analyzer
be powerful so that recursive simplification can be applied sparingly.

(3) Fractal symbolic analysis is useful even if operators like + and * are left un-
interpreted (that is, even if these operations cannot be assumed to obey the
usual algebraic laws such as associativity and distributivity). For example,
we use fractal symbolic analysis in this paper to show that the transfor-
mations required to block LU with pivoting are legal even if addition and
multiplication do not obey algebraic laws.

The rest of this paper is organized as follows. In Section 2, we propose two
challenge problems which cannot be solved using either dependence analysis or
standard symbolic analysis. In Section 3, we introduce fractal symbolic analysis
informally and show that it solves the two challenge problems. In Sections 4
and 5, we give a formal description of fractal symbolic analysis. Fractal sym-
bolic analysis was invented for use in an ongoing project on automatic code
restructuring for locality enhancement. In Section 6, we use fractal symbolic
analysis to verify the correctness of transformations that are used to block LU
with pivoting; we show that the resulting blocked code performs comparably to
code in the LAPACK library [Anderson et al. 1995] on the SGI Octane. Finally,
in Section 8, we discuss open problems and related work.

2. TWO CHALLENGE PROBLEMS

In this section, we discuss two challenge problems which we use to motivate
fractal symbolic analysis. The first problem is concerned with restructuring
reductions, and is relatively simple. The second problem is distilled from LU
with pivoting, and is much harder than the first.

2.1 First Challenge Problem

The program shown in Figure 3(a) adds the elements of an array A by traversing
the array by rows. Loop permutation results in the version shown in Figure 3(b)
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do i = 1,M
do j = 1,N

B(i,j)://update on k
t1 = k
t2 = t1 + A(i,j)
k = t2

Fig. 4. Introducing temporaries into program of Figure 3(a).

in which the sum is computed by traversing the array by columns. We use the
metavariable B(i,j) to refer to instance (i,j) of the assignment statement in
the loop body. If addition is assumed to be commutative and associative, these
two loop nests are semantically equal, but if arrays are stored in column-major
order, the version in Figure 3(b) will exhibit better spatial locality.

Each iteration of the loop nest reads and writes variable k, so there is a
dependence from instance B(i,j) to all instances that follow it in execution
order. Therefore, a compiler that relies on dependence analysis alone will rule
that this transformation is illegal.

Restructuring reductions is important for obtaining good performance in
scientific codes, so most restructuring compilers use some form of pattern-
matching to recognize reductions, and to eliminate from consideration those
dependences that arise from reductions. For example, the SGI MIPSPro com-
piler uses dependence analysis, but it is nevertheless capable of performing the
loop interchange in Figure 3 because it appears to use some form of pattern-
matching to identify reductions. However, pattern-matching is very fragile. For
example, if temporaries are introduced into the program of Figure 3(a), as is
shown in Figure 4, the SGI compiler fails to permute the loops even if t1 and
t2 are not live after the loop nest.

In principle, symbolic analysis and comparison can be used to prove the
validity of the transformation shown in Figure 3, provided the analysis engine
can reason about summations. Assuming that addition is associative, the output
of the program of Figure 3(a) can be written as

kin +
M∑

i=1

N∑
j=1

A(i, j )

while the output of the program of Figure 3(b) can be written as

kin +
N∑

j=1

M∑
i=1

A(i, j ).

If addition is commutative as well, the summations can be permuted, thereby
proving the equivalence of the programs of Figure 3(a) and (b). However, as is
the case with pattern-matching, the introduction of temporaries complicates
symbolic analysis, and this approach may fail.

In Section 3, we show how fractal symbolic analysis solves this problem
elegantly.
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Fig. 5. Second challenge problem.

2.2 Second Challenge Problem

The second problem is a distillation of LU with partial pivoting, and is far more
challenging than the first one. The source program of Figure 5(a) traverses an
array A; at the jth iteration, it swaps elements A(j) and A(p(j)) (where p(j) ≥
j), and updates all the elements from A(j+1) through A(N) using the new value
in A(j). We assume that p is an array in which each entry p(j) is an integer
between j and N.

This code is a much simplified version of LU factorization with partial piv-
oting in which entire rows of a matrix are swapped and entire submatrices are
updated at each step. In our discussion, metavariables B1 and B2 are used to
refer to the swap and update statement blocks, respectively. Figure 5(c) shows
a pictorial representation of this program.

Loop distribution transforms this program into the one shown in Figure 5(b).
In this program, all the swaps are done first, and then all the updates are done
together. Are these programs equal?

Dependence analysis will assert that the transformation is legal if there
is no dependence from an instance B2(j2) to an instance B1(j1) where j1 >
j2. Unfortunately, this condition is violated: for any j0 between 1 and (N-2),
instance B2(j0) writes to location A(j0+1), and instance B1(j0+1) reads from
it. Therefore, a compiler that relies on dependence analysis alone will disallow
this transformation. Symbolic analysis of these programs, on the other hand,
is too difficult.
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Fig. 6. Incremental loop interchange.

In Section 3, we show how fractal symbolic analysis can be used to prove that
the programs of Figure 5(a) and (b) are equal.

3. INFORMAL INTRODUCTION TO FRACTAL SYMBOLIC ANALYSIS

Although commutative subprograms do not
seem to be an important class at this time, they
will be treated briefly because of their relation-
ship to the parallel situation.—A. J. Bernstein
(1966).

In this section, we introduce informally the key ideas behind fractal symbolic
analysis, using the two challenge problems to motivate the development.

3.1 Incremental Transformation of Programs

A program transformation such as loop interchange or distribution is usually
thought of as a metamorphosis that occurs in a single step. The insight behind
fractal symbolic analysis is that it can be advantageous to view such a pro-
gram transformation not as a single step but as the end result of a sequence of
smaller transformations, each of which reorders only a small part of the entire
computation. The advantage stems from the possibility that the smaller trans-
formations may be easier to verify than the loop transformation itself. The idea
therefore is similar to induction—if it is too difficult to prove a given predicate
directly, induction may permit us to prove it “incrementally” by viewing the
predicate as the end result of a sequence of simpler predicates which are easier
to prove than the predicate itself.

To understand this, let us consider the loop interchange shown in Figure 6(a)
and (b). For convenience, instances of the loop body have been labeled with
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integers. In the original program, these instances are executed in the order [1 2
3 4 5 6], while in the transformed program, they are executed in the permuted
order [1 3 5 2 4 6]. It is convenient to view such a permutation as a function p
such that if S = [S1, S2, . . . , Sn] is the initial order of elements, the permuted
order is T = [Sp(1), Sp(2), . . . , Sp(n)].

One way to decompose the transformation in Figure 6 into smaller trans-
formations is to view it as the composition of a sequence of smaller trans-
formations each of which reorders just two adjacent instances of the loop
body (these are called adjacent transpositions in algebra [Johnson 1963]). Fig-
ure 6(c) shows two sequences of adjacent transpositions that convert the ini-
tial order of loop iterations to the final order. If every transposition along any
one path from the initial order to the final order preserves program seman-
tics, the loop interchange is obviously legal. In general, there are many se-
quences of adjacent transpositions that accomplish a given transformation, as
the running example of Figure 6 shows, and our proof strategy may work for
some of these sequences, and fail for others. This is similar to what happens
in induction: some inductive proof strategies may succeed while others may
fail.

To find a sequence of adjacent transpositions that accomplishes a given per-
mutation p, we exploit a standard result in combinatorial algebra. If S is a
sequence of objects that is permuted to a sequence T by a permutation p, let
R(p) to be the set of pairs of elements in S that are reordered by that permuta-
tion; that is, (Si, Sj ) ∈ R(p) if (i < j ) ∧ (p(i) > p( j )). In our running example,
R(p) = {(2,3),(2,5),(4,5)}. Figure 6(c) shows how these reordered pairs can be
interpreted as adjacent transpositions to effect the loop interchange. More gen-
erally, we have the following result, many variations of which have appeared
in the literature [Johnson 1963].

THEOREM 3.1. Let S = [S1, S2, . . . , Sn] be a sequence of n objects and let
T = p(S) be a permutation of these objects where T = [Sp(1), Sp(2), . . . , Sp(n)].
Define R(p), the set of reordered pairs, as R(p) = {(Si, Sj ) : (1 ≤ i < j ≤
n) ∧ (p(i) > p( j ))}.

Sequence S can be transformed incrementally to sequence T by using the
pairs in the set R(p) as adjacent transpositions.

PROOF. The proof is an induction on the size of set R(p).

—If R(p) = φ, the result follows trivially.
—Assume inductively that for any sequence S′ such that T = p′(S′) and
‖R(p′)‖ < m, the inductive hypothesis is true. Consider a sequence S such
that T = p(S) and ‖R(p)‖ = m. There must be a pair (Sk , Sk+1) ∈ R(p) such
that p(k) > p(k+1) (intuitively, this says that there must be at least one pair
of adjacent elements in S that occur in the opposite order in T ). Transposing
Sk and Sk+1 in S gives a sequence S′ where T = p′(S′) for some permuta-
tion p′, and R(p′) = R(p)− {(Sk , Sk+1)}. By inductive hypothesis, S′ can be
transformed incrementally to T using only adjacent transpositions from the
set R(p′).
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B(i1,j1):

k = k + A(i1,j1)

B(i2,j2):

k = k + A(i2,j2)

B(i2,j2):

k = k + A(i2,j2)

B(i1,j1):

k = k + A(i1,j1)

(a) {B(i1,j1); B(i2,j2)} (b) {B(i2,j2); B(i1,j1)}
Fig. 7. Loop interchange of reduction code.

The fact that a sequence of adjacent transpositions can accomplish any de-
sired permutation is not surprising since it is well known that the bubble-sort
algorithm [Cormen et al. 1992] can sort any sequence by performing only adja-
cent transpositions. The significance of Theorem 3.1 is that it gives a closed-form
characterization of such transpositions.

To verify the legality of a program transformation, we see that it is sufficient
to show that for all pairs of statement instances (Sm, Sn) that are reordered
by the transformation, the statement sequence {Sm; Sn} is semantically equal
to the statement sequence {Sn; Sm} (that is, Sn and Sm commute). Intuitively,
this guarantees that all sequences of adjacent transpositions which accomplish
the program transformation will preserve program semantics. Although this is
a stronger condition than we need, it is adequate for our purpose. For future
reference, we state this result formally.

THEOREM 2. Given a program G, let p be a program transformation, and let
R(G, p) be the set of statement instances in G that are reordered by p. Transfor-
mation p is legal if {Sm; Sn} is equal to {Sn; Sm} for all pairs (Sm, Sn) ∈ R(G, p).

PROOF. Follows immediately from Theorem 3.1.

3.2 First Challenge Problem

Let us apply these ideas to verify the loop interchange in Figure 3. If the
symbolic analyzer cannot analyze these programs, we generate simpler pro-
grams by considering the pairs of loop body instances that are reordered by
the transformation. It is obvious that these are all pairs {B(i1,j1),B(i2,j2):
(1≤i1<i2≤M)∧(1≤j2<j1≤N)}. Therefore, we need to show that the two state-
ment sequences in Figure 7 are semantically equal.

Even a symbolic analyzer that is capable of analyzing only straight-line
code can determine that the value of k after execution of the two state-
ment sequences of Figure 7(a) and (b) is ((kin + A(i1, j 1)) + A(i2, j 2)), and
((kin + A(i2, j 2))+ A(i1, j 1)), respectively. If addition is assumed to be com-
mutative and associative, these two expressions are equal (independent of the
bounds on i1,j1,i2, and j2), and the two programs of Figure 7 are semantically
equal. Therefore, we deduce that the loop interchange in Figure 3 is legal. If
addition is not commutative and associative, the two expressions are not equal,
and we disallow the transformation.

Since fractal symbolic analysis is not based on pattern matching, more com-
plex reductions such as the one in Figure 4 do not confuse the analysis. To
verify that loop interchange is legal in Figure 4, the fractal symbolic analyzer
generates the two programs shown in Figure 8. If k is the only variable live
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B(i1,j1):

t1 = k

t2 = t1 + A(i1,j1)

k = t2

B(i2,j2):

t1 = k

t2 = t1 + A(i2,j2)

k = t2

B(i2,j2):

t1 = k

t2 = t1 + A(i2,j2)

k = t2

B(i1,j1):

t1 = k

t2 = t1 + A(i1,j1)

k = t2

(a) {B(i1,j1); B(i2,j2)} (b) {B(i2,j2); B(i1,j1)}
Fig. 8. Verifying loop interchange.

B1(j1): //swap

tmp = A(j1);

A(j1) = A(p(j1))

A(p(j1)) = tmp;

B2(j2): //update

do i = j2+1,N

A(i) = A(i)/A(j2)

B2(j2)://update

do i = j2+1,N

A(i) = A(i)/A(j2)

B1(j1)://swap

tmp = A(j1)

A(j1) = A(p(j1))

A(p(j1)) = tmp

(a) {B1(j1);B2(j2)} (b) {B2(j2);B1(j1)}
Fig. 9. Simplified programs for second challenge problem.

after the loop nest, the symbolic analyzer can easily deduce that both programs
are equal, assuming that addition is commutative and associative.

3.3 Second Challenge Problem

Fractal symbolic analysis of the second challenge program (Figure 5) re-
veals a few additional subtleties that are worth observing. The set of loop
body instances that are reordered by the transformation is {(B2(j2),B1(j1)):
1≤j2<j1≤N}. Therefore, the transformation is legal if the statement sequence
{B1(j1);B2(j2)} (shown in Figure 9(a)) is semantically equal to the statement
sequence {B2(j2);B1(j1)} (shown in Figure 9(b)) for 1≤j2<j1≤N. Notice that
(i) these programs are simpler than the ones in Figure 5(a) and (b) since each
one has one less loop, and (ii) their equality implies equality of the original
programs, as required by Figure 2.

The symbolic analyzer we use in our implementation can analyze programs
with straight-line code and DO-ALL loops, so it can perform analysis and com-
parison of the programs in Figure 9(a) and (b) without any further simplifica-
tion. Let Ain and Aout be the values in array A before and after the execution of
the program in Figure 5(a). It is easy to see that Aout can be expressed in terms
of Ain as a guarded symbolic expression (GSE for short), shown in Figure 10, con-
sisting of a sequence of guards defining array regions and symbolic expressions
for the values in the array in those regions. Each guard consists of conjunctions
and disjunctions of affine function of loop variables and constants. Note that
the array region defined by such a guard is not necessarily convex (for example,
the last guard can be written as ( j 2 < k ≤ N ) ∧ (k 6= j 1) ∧ (k 6= p( j 1)) and the
corresponding array region is obviously not convex).

An identical GSE expresses the result of executing the program of
Figure 5(b). If A is assumed to be the only live variable after execution of the
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Aout(k) =


1 ≤ k ≤ j 2 → Ain(k)

k = j 1 → Ain(p( j 1))/Ain( j 2)
k = p( j 1) → Ain( j 1)/Ain( j 2)

else → Ain(k)/Ain( j 2)

Fig. 10. Guarded symbolic expression for Aout.

B1(j1)://swap

tmp = A(j1);

A(j1) = A(p(j1));

A(p(j1)) = tmp;

B2(j2,i)://update body

A(i) = A(i)/A(j2);

B2(j2,i)://update body

A(i) = A(i)/A(j2);

B1(j1)://swap

temp = A(j1);

A(j1) = A(p(j1));

A(p(j1)) = tmp;

(a) {B1(j1);B2(j2,i)} (b) {B2(j2,i);B1(j1)}
Fig. 11. Another step of simplification.

two programs, we conclude that the programs of Figure 9(a) and (b) are equal,
so the programs of Figure 5(a) and (b) are also equal. Moreover, since the two
GSEs are syntactically equal, the programs of Figure 5(a) and (b) are equal
even if the division operator is left uninterpreted.

3.4 Discussion

It is useful to understand what happens if we apply another step of simplifi-
cation to the programs of Figure 9(a) and (b). The reordering of block B1(j1)
over the iterations of loop B2(j2) can be viewed incrementally as a process
in which block B1(j1) is moved over the iterations of loop B2(j2) one itera-
tion at a time. If each move is legal, the entire reordering is clearly legal. The
simplified programs are shown in Figure 11(a) and (b); we must verify that
{B1(j1);B2(j2,i)} is equal to {B2(j2,i);B1(j1)}, assuming that N>j1>j2≥1
and that N≥i>j2.

However, it is easy to verify that these programs are not equal. For example,
for k = i = j 1, the final values in Aout(k) are different. This illustrates the point
discussed in Section 1. Equality of the simplified programs is a sufficient but
not in general necessary condition for equality of the original programs, so the
simplification process that is at the heart of fractal symbolic analysis should be
applied sparingly. In particular, had our base symbolic analyzer been able to
analyze only straight-line code, we would have concluded conservatively that
the loop distribution of Figure 5(a) and (b) is not legal.

To formalize the intuitive ideas presented in this section, we need to answer
two questions:

(1) How do we simplify programs?
(2) What base symbolic analyzer is both powerful and practical?

We answer these questions next.

4. SIMPLIFICATION RULES

In this section, we describe how programs are simplified when they are too
complex to be analyzed symbolically.
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We assume that input programs consist of assignment statements, do-loops,
and conditionals. No unstructured control flow is allowed. It is straight-forward
to add other control-flow constructs such as case statements, but we will not do
so to keep the discussion simple. The only data structures are multidimensional,
flat arrays whose elements can be modified using assignment statements.

The simplification rules we present in this section are independent of the
underlying symbolic analysis engine in the sense that the power of the sym-
bolic analyzer only determines whether or not a program is simplified; if the
program must be simplified, the rule for generating the simplified program is
independent of the symbolic analyzer. To emphasize this point, we will describe
the simplification process abstractly, assuming only that each symbolic analysis
engine e has a corresponding predicate Simplee(p) associated with it such that
Simplee(p) is true iff p can be analyzed by symbolic engine e. To keep notation
simple, we will usually drop the subscript e if it is clear from the context. The
technical results in this section depend only on three assumptions about such
a predicate.

Definition 1. A symbolic analysis engine is said to be adequate if the fol-
lowing statements are true:

(1) A program consisting of a single assignment statement is Simple.
(2) If a program pgm is not Simple, any program that contains pgm as a sub-

program is itself not Simple.
(3) If pgm1 and pgm2 are Simple, and there are no dependences between pgm1

and pgm2, then {pgm1; pgm2} and {pgm2; pgm1} are Simple and provably
equal.

The first two conditions are intuitively reasonable. Any symbolic analyzer
should at least be able to analyze a program consisting of a single assignment
statement. Moreover, if a program cannot be analyzed symbolically, a more com-
plex program that contains that program within it is unlikely to be amenable
to symbolic analysis.

The third condition is somewhat more subtle. Some symbolic analysis en-
gines may be able to analyze programs pgm1 and pgm2, but complex pat-
terns of dependences between the two programs may prevent the symbolic
analyzer from symbolically analyzing compositions of these programs such as
{pgm1; pgm2}. However, if there are no dependences between these two pro-
grams, this interference does not arise, and it is reasonable to require that the
symbolic analyzer be able to analyze {pgm1; pgm2} and {pgm2; pgm1}, and prove
that they are equal.

We will see later in this section that these three reasonable conditions make
fractal symbolic analysis more powerful than dependence analysis.

4.1 Simplification Rules for Common Transformations

Table I(a) shows the rules used by the compiler to determine the legality of a few
common transformations. To verify legality of a transformation shown in the
first column, the Commute function is invoked on two simplified programs, as
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Table I. Simplification Rules

Transformation Legality Condition

Statement Reordering
S1; S2; <-> S2; S1; Commute(〈S1, S2〉)
Loop Distribution/Jamming
do i = 1,n do i = 1,n

S1(i); <-> S1(i);

S2(i); do i = 1,n Commute(〈S1(i1), S2(i2)〉 : 1 <= i2 < i1 <= n)
S2(i);

Loop Interchange
do i = 1,n do j = 1,m

do j = 1,m <-> do i = 1,n Commute(〈S(i1, j1), S(i2, j2)〉 :
S(i,j); S(i,j); 1 <= i1 < i2 <= n∧ 1 <= j2 < j1 <= m)

Linear Loop Transformation T

Commute(〈S(Ei), S(Ej )〉 : Ei ≺ Ej ∧ T(Ei) Â T(Ej ))a

do (i1,i2, . . . ,ik) do (i1’,i2’, . . . ,ik’)

S(i1,i2, . . . ,ik); <-> S’(i1’,i2’, . . . ,ik’) ————————
where (i1’,i2’, . . . ,ik’) = T(i1,i2, . . . ,ik) aThe ≺ and Â denote the lexicographic ordering relation.

Imperfectly nested Loop Interchange
Commute(〈S1(t), S2(r, s)〉 :

do k = 1,n do j = 1,n 1 <= r < t < s <= n)∧
S1(k); do k = 1,j-1 Commute(〈S2(p, q), S2(r, s)〉 :
do j = k+1,n <-> S2(k,j); 1 <= p < r < s < q <= n)
S2(k,j); S1(j);

(a) Simplification rules for common loop transformations

Commute Condition Recursive Condition

Statement Sequence
Commute(〈S1, pgm2〉 : cond )∧
Commute(〈S2, pgm2〉 : cond )∧

Commute(〈 S1; S2; . . . ; SN,pgm2 〉 : cond ) . . .

Commute(〈SN , pgm2〉 : cond )
Loop

Commute(〈tmp1 = l , pgm2〉 : cond )∧
Commute(〈 do i = l,u

S1(i);
, pgm2〉 : cond ) Commute(〈tmp2 = u, pgm2〉 : cond )∧

Commute(〈S1(i), pgm2〉 : cond ∧ l <= i <= u)
Conditional Statement

Commute(〈
if (pred) then

S1;

else

S2;

, pgm2〉 : cond ) Commute(〈tmp = pred , pgm2〉 : cond )∧
Commute(〈S1, pgm2〉 : cond ∧ pred )∧
Commute(〈S2, pgm2〉 : cond ∧ ¬pred )

(b) Recursive simplification rules

shown in the second column of this table. Constraints known to be satisfied by
free variables of the simplified programs are also passed to this function. If the
two simplified programs can be proved to commute given these constraints, the
function returns true, and the transformation is legal; otherwise, the function
returns false, and the compiler assumes conservatively that the transformation
is not legal.

Of the transformations listed in this table, only imperfectly nested loop
interchange is somewhat nonstandard. It is useful for converting so-called
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do k = 1,n
S1(k);
do j = k+1,n

S2(k,j);

do k = 1,n
do j = k,n

if (j==k) S1(k);
if (j!=k) S2(k,j);

(a) Source Program (b) After code-sinking: perfectly-nested loop

do j = 1,n
do k = 1,j

if (j==k) S1(k);
if (j!=k) S2(k,j);

do j = 1,n
do k = 1,j-1

S2(k,j);
S1(j);

(c) After perfectly nested loop interchange (d) After loop-peeling

Fig. 12. Decomposition of imperfectly nested loop interchange.

right-looking numerical codes such triangular solve and LU with pivoting to
the corresponding left-looking versions, and vice versa [Mateev et al. 2000].
The effect of this transformation can be obtained by a combination of code-
sinking, perfectly nested loop interchange, and loop peeling, as shown in
Figure 12. Only perfectly nested loop interchange reorders computations, and
it is easy to see that it reorders precisely the computations shown in the sec-
ond column in Table I. Considering imperfectly nested loop interchange to be a
single transformation is therefore only a matter of convenience.

The intuition behind the legality conditions in Table I(a) has been described
in Section 3—the transformation is viewed as a composition of adjacent trans-
positions derived from the set of pairs of statement instances reordered by that
transformation, so proving legality of the transformation is reduced to proving
legality of each of the adjacent transpositions. Legality conditions for transfor-
mations not shown in Table I can be derived easily from this general principle.

4.2 Recursive Simplification

Given two programs pgm1 and pgm2 as input, the Commute function returns
true if it can show that the program {pgm1; pgm2} is equal to the program
{pgm2; pgm1} given the constraints specified on the free variables of pgm1 and
pgm2. It first checks to see if {pgm1; pgm2} and {pgm2; pgm1} are Simple. If so,
it invokes the symbolic analysis and comparison engine directly. Otherwise, it
tries to generate simpler programs by simplifying pgm1 and pgm2 recursively.

Recursive simplification is performed in a syntax-driven fashion, using
the rules in Table I(b). To avoid clutter in Table I(b), we have omitted the
symmetric simplification rules for simplifying pgm2 when it is not simple
enough. The intuition behind the rules of Table I(b) has been described in
Section 3—we view the transformation of program {pgm1; pgm2} into program
{pgm2; pgm1} as a composition of adjacent transpositions. For example, program
{S1; S2; . . . ; SN ; pgm2} is transformed to program {pgm2; S1; S2; . . . ; SN } by
moving pgm2 over SN , . . . , S1 successively.

The first rule in Table I(b) requires elaboration. Suppose pgm1 is a sequence
of N statements. At one extreme, in a “coarse-grain” application of the rule,
pgm1 can be partitioned into exactly two statement sequences S1 and S2 where
both S1 and S2 are themselves statement sequences. At the other extreme, in a
“fine-grain” application of the rule, pgm1 may be broken into S1; S2; . . . ; SN
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Commute(〈S1; S2; . . . ; SN , do i = l , u S(i) 〉 : cond )

�
�

�
�

�
�
�
�
�
��+

Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

Commute(〈S1, do i = l , u S(i) 〉 : cond )∧
Commute(〈S2, do i = l , u S(i) 〉 : cond )∧

. . .

Commute(〈SN , do i = l , u S(i) 〉 : cond )

Commute(〈S1; S2; . . . ; SN , tmp1 = l 〉 : cond )∧
Commute(〈S1; S2; . . . ; SN , tmp2 = u〉 : cond )∧

Commute(〈S1; S2; . . . ; SN , S(i)〉 : cond ∧ (l <= i <= u))

Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs

�
�

�
�

�
�

�
�

�
�+

Commute(〈S1, tmp1 = l 〉 : cond )∧
Commute(〈S1, tmp2 = u〉 : cond )∧

Commute(〈S1, S(i)〉 : cond ∧ (l <= i <= u))∧
Commute(〈S2, tmp1 = l 〉 : cond )∧
Commute(〈S2, tmp2 = u〉 : cond )∧

Commute(〈S2, S(i)〉 : cond ∧ (l <= i <= u)) ∧
. . .

Commute(〈SN , tmp1 = l 〉 : cond )∧
Commute(〈SN , tmp2 = u〉 : cond )∧

Commute(〈SN , S(i)〉 : cond ∧ (l <= i <= u))

Fig. 13. Recursive simplification rules and the Church-Rosser property.

where none of S1, S2, . . . , or SN is a statement sequence. Coarse-grain applica-
tion of the rule is ambiguous because there are usually many different ways of
splitting a sequence of statements into two subsequences. Fine-grain applica-
tion is unambiguous, but it results in a stricter test, as we discuss later in this
section. Our implementation applies this rule in a fine-grain manner, and we
will assume this in the rest of the paper. With this caveat, the rules in Table I(b)
are unambiguous.

4.3 Properties of Recursive Simplification Rules

Before we write a program to implement the recursive simplification rules, we
must address issues such as termination, and determinacy of rule application.
For this, it is useful to view the rules in Table I(b) as rewrite rules in a term
rewriting system(TRS) [Klop 1980]. In our context, terms are conjunctions of
commute conditions, and the rewrite rules are the rules of Table I(b). Figure 13
shows examples of terms and rewriting of terms. We address the following
questions in this section:

(1) Does recursive simplification always terminate? This is called strong nor-
malization in the TRS literature [Klop 1980].

(2) Suppose we are testing commutativity of pgm1 and pgm2. If neither of these
programs is Simple, we can choose to simplify either of them first; we can
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even interleave the simplifications of pgm1 and pgm2. Is the final conjunc-
tion of commute conditions independent of these choices? This is called the
Church-Rosser property in the TRS literature [Klop 1980].

Both questions are answered affirmatively in this section. Readers willing
to take these answers on faith can omit the rest of this subsection without loss
of continuity.

Strong normalization follows from the fact that each application of the
rewrite rules produces syntactically simpler programs. Repeated application
of the rewrite rules ultimately produces programs that are single assignment
statements; by Definition 1(1), these are Simple, so rewriting always termi-
nates. This assertion is obviously true even if Simple programs can contain
larger grain structures such as some conditionals and loops; in that case, the
rewriting will simply terminate earlier.

The proof of the Church-Rosser property is straightforward if tedious, and
relies on a well-known result called Newman’s Lemma from the TRS litera-
ture [Klop 1980]. We state the formal results.

Definition 2. Let A = (C,→) be a TRS where C is the set of terms and→
is the rewrite relation. Let ∗→ be the reflexive, transitive closure of→.

A is said to be Church-Rosser if for all a, b, c ∈ C,

(a ∗→ b) ∧ (a ∗→ c)⇒ ∃d ∈ C.(b ∗→ d ) ∧ (c ∗→ d ).

A is said to be weakly Church-Rosser if for all a, b, c ∈ C,

(a→ b) ∧ (a→ c)⇒ ∃d ∈ C.(b ∗→ d ) ∧ (c ∗→ d ).

LEMMA 1 ( NEWMAN’S LEMMA). Let A= (C,→) be a TRS. If A is weakly
Church-Rosser and has the strong normalization property, then A is Church-
Rosser.

To prove that the rules of Table I(b) are weakly Church-Rosser, we have
to consider terms of the form Commute(〈pgm1, pgm2〉 : cond) where neither
pgm1 nor pgm2 is Simple, because these are the terms that can be rewritten
in multiple ways. There are nine cases to consider since pgm1 and pgm2 can
each be either a statement sequence, a do-loop, or a conditional. In each case,
we have to show that if b is the conjunction of commute conditions that re-
sult from rewriting pgm1 first, and c is the conjunction of commute conditions
that result from rewriting pgm2 first, we can always rewrite b and c to reach
the same conjunction of commute conditions d . The proof is straightforward;
Figure 13 shows the proof for the case when pgm1 is a statement sequence and
pgm2 is a do-loop. The only subtle point is that, by assumption, the statement se-
quence S1; S2; . . . , SN and the do-loop do i = l , u S(i) are not Simple; therefore,
from Definition 1(2), a program such as {S1; do i = l , u S(i)} is not Simple, so
commutativity conditions such as Commute(〈S1, do i = l , u S(i)〉 : cond ) can
legitimately be rewritten by using the rule for simplifying do-loops.

From Newman’s Lemma, it follows that the rewrite rules of Table I(b) are
Church-Rosser.
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Commute(pgm1, pgm2, bindings, liveVars) {
if (Simple({pgm1; pgm2}) ∧ Simple({pgm2; pgm1})) then

return SymbolicallyEqual?({pgm1; pgm2}, {pgm2; pgm1}, bindings, liveVars)
elseif (! Simple(pgm1)) then

//implementation of Table 1(b)
case (pgm1)
{

//statement composition
〈pgm′1; pgm′′1〉 →

return{ Commute(pgm′1, pgm2, bindings, liveVars)
∧ Commute(pgm′′1, pgm2, bindings, liveVars)}

//conditional
〈if pred then pgm′1 else pgm′′1〉 →

return {Commute(pgm′1, pgm2, bindings‖pred, liveVars)
∧ Commute(pgm′′1, pgm2, bindings‖¬pred, liveVars)
∧ Commute(tmp = pred , pgm2, bindings‖¬pred, liveVars)}

//loop
〈do i = l , u pgm′1(i)〉 →

return {Commute(pgm′1(i), pgm2, bindings‖∀i.l ≤ i ≤ u, liveVars)
∧ Commute(tmp = l , pgm2, bindings, liveVars)
∧ Commute(tmp = u, pgm2, bindings, liveVars)}

}
elseif (! Simple(pgm2)) then

Commute(pgm2, pgm1, bindings, liveVars)
else return false;

}

Fig. 14. The Commute function.

4.4 Implementation of Recursive Simplification

In our compiler, the Commute function is implemented by a recursive function
as shown in Figure 14. It is passed two programs pgm1 and pgm2, some optional
bindings which are constraints on free variables in the programs2, and a list of
variables that are live at the end of execution of the programs.

If the programs {pgm1; pgm2} and {pgm2; pgm1} are Simple, it invokes the
symbolic analysis and comparison engine. Otherwise, if pgm1 is not Simple, it
is simplified using the rules shown in Table I(b). If pgm1 is Simple, pgm2 is
simplified (to keep the code short, we accomplish this by invoking Commute
recursively with the argument order reversed). If both pgm1 and pgm2 are
Simple but their composition is not, we give up and return false conservatively.
It is possible to handle this last case in a more elaborate fashion, but we have
not needed this for our applications.

4.5 Relationship with Dependence Analysis

We now show that fractal symbolic analysis is strictly more powerful than
dependence analysis, provided that the symbolic analysis engine is adequate.
It is obvious that if there are no dependences between programs pgm1 and
pgm2, these programs must commute in the sense that {pgm1; pgm2} must be
equal to {pgm2; pgm1}. What is not obvious is that a fractal symbolic analyzer
can actually prove this equality. We show that any adequate symbolic analysis
engine can accomplish this.

2See Table I for examples of constraints on free variables.
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4.5.1 The Independent Predicate. First, we establish an analog of the re-
cursive simplification rules of Table I(b) for dependence analysis. Let pgm1 and
pgm2 be programs. We will say that these programs are Independent if there
are no flow/anti/output dependences between these programs. More formally,
we have the following definition:

Definition 3. Let pgm1 and pgm2 be programs, and C be a set of constraints
on the free variables of these programs. Let R1,W1,R2, and W2 be the set of
locations read and written by pgm1 and pgm2 respectively, given C. We will
write Independent(〈pgm1, pgm2〉 : C) if, given C, we can show that

—W1 ∩ R2 = φ (no flow dependence),
—R1 ∩W2 = φ (no antidependence), and
—W1 ∩W2 = φ (no output dependence).

Lemma 2 establishes an analog of the recursive simplification rules of
Table I(b) for the Independent predicate. Note that unlike the rules for the
Commute predicate, the left- and right-hand sides of these rules are related by
the if and only if operator.

LEMMA 2. The Independent predicate satisfies the following properties:

(a) Independent(〈S1; S2; . . . ; SN, pgm2〉 : cond )⇔
Independent(〈S1, pgm2〉 : cond ) ∧
Independent(〈S2, pgm2〉 : cond ) ∧
. . .

Independent(〈SN , pgm2〉 : cond )

(b) Independent(〈do i = l,u
S1(i); , pgm2〉 : cond )⇔

Independent(〈tmp1 = l , pgm2〉 : cond) ∧
Independent(〈tmp2 = u, pgm2〉 : cond) ∧
Independent(〈S1(i), pgm2〉 : cond ∧ l <= i <= u)

(c) Independent(〈if (pred)
then S1;
else S2;

, pgm2〉 : cond)⇔
Independent(〈tmp = pred , pgm2〉 : cond) ∧
Independent(〈S1, pgm2〉 : cond ∧ pred ) ∧
Independent(〈S2, pgm2〉 : cond ∧ ¬pred )

PROOF. Follows trivially from the definition of the Independent predicate,
and the fact that the read and write sets of a program are computed by taking
the union of the read and write sets of the assignment statements contained in
that program [Wolfe 1995].

4.5.2 Fractal Symbolic Analysis Is More Powerful Than
Dependence Analysis.
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dummy:

do i = 1,n

sum = sum + A(i)

swap:

t = x

x = y

y = t

compute:

x = x*x

y = y*y

compute:

x = x*x

y = y*y

dummy:

do i = 1,n

sum = sum + A(i)

swap:

t = x

x = y

y = t

(a) {dummy;swap;compute} (b) {compute;dummy;swap}
Fig. 15. Simplifying statement sequences.

THEOREM 3. Independent(〈pgm1, pgm2〉 : C) ⇒ Commute(〈pgm1, pgm2〉 :
C), provided the symbolic analysis engine is adequate.3

PROOF. Let C0 ≡ Commute(〈pgm1, pgm2〉 : C)→ C1 → · · · → Cn be the se-
quence of conjunctions of commute conditions generated by recursive sim-
plification. The final condition Cn is a conjunction of terms of the form
Commute(〈p1, p2〉 : C′) where p1 and p2 are Simple.

Using Lemma 2, we can generate a parallel sequence of the form

I0 ≡ Independent(〈pgm1, pgm2〉 : C)→ I1 → · · · → In.

If Cj+1 is generated from Cj by applying some rule in Table I(b), the analogue
of that rule from Lemma 2 is applied to generate I j+1 from I j . From Lemma 2,
every independence condition in In is true.

Putting Cn and In together, we see that Cn is a conjunction of terms of the
form Commute(〈p1, p2〉 : C′) where (i) p1 and p2 are Simple, and (ii) Independent
(〈p1, p2〉 : C′). By assumption, the symbolic analysis engine is adequate, so it will
return true for each invocation Commute(〈p1, p2〉 : C′). Therefore, the fractal
symbolic analyzer can deduce that Commute(〈pgm1, pgm2〉 : C) is true.

To show that fractal symbolic analysis with an adequate symbolic analysis
engine is strictly more powerful than dependence analysis, it is sufficient to
observe that the first challenge problem in Section 2 cannot be solved using
dependence analysis alone, but that it can be solved by fractal symbolic analysis
even if the symbolic analysis engine handles only straight-line code.

4.6 Discussion

The simplification rules of Table I are reasonable, but there are certainly other
possibilities. In particular, the rule for simplifying statement sequences can
be applied in a coarse-grain manner rather than in a fine-grain way, as dis-
cussed earlier. Coarse-grain application gives greater accuracy, as the program
in Figure 15 shows. The compute statement sequence in this figure clearly com-
mutes with the dummy and swap statement sequences. If we assume that do-loops

3Without loss of generality, we can assume that all variables are live at the end of {pgm1; pgm2}
and {pgm2; pgm1}.
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are not Simple, we must simplify the statement sequence consisting of the dummy
and swap statement sequences. A fine-grain application of the rule for simpli-
fying statement sequences requires us to test whether the compute statement
sequence commutes with the dummy loop and with each of the statements in the
swap sequence. Clearly, it does not, so we would disallow the transformation.
A coarse-grain application of the rule for statement sequences would succeed
in this case because the statements in the swap sequence collectively commute
with the compute sequence.

Unfortunately, the rule for simplifying statement sequences can be applied in
a coarse-grain manner in multiple ways. Fine-grain application is simpler; fur-
thermore, for our test problems, we have not needed the flexibility that coarse-
grain application affords.

The transformations listed in Table I comprise most of the transformations
used routinely in modern restructuring compilers, other than scalar or array
expansion [Wolfe 1995]. Expansion is a data transformation which does not
change the order in which computations are done; therefore, we do not know
any useful way to apply fractal symbolic analysis to proving the correctness of
expansion.

5. SYMBOLIC ANALYSIS AND COMPARISON

We now present our symbolic analysis and comparison engine, and characterize
programs which can be analyzed directly by this engine.

5.1 Simple Programs

Our symbolic analyzer can directly analyze programs that have the following
characteristics.

Definition 4. A program is simple if it has the following properties:

(1) Array indices and loop bounds are affine functions of enclosing loop vari-
ables and symbolic constants, and predicates are conjunctions and dis-
junctions of affine inequalities of enclosing loop variables and symbolic
constants.

(2) No loop nest has a loop-carried dependence.

For example, the programs of Figure 5(a) and (b) do not satisfy these condi-
tions because, among other things, the subscript p(j) in array reference A(p(j))
is neither a loop constant nor an affine function of the loop index variable j.
On the other hand, the programs of Figure 9(a) and (b) satisfy these conditions.
The array subscripts j1 and p(j1) are symbolic constants in these programs
since there are no assignments to either j1 or array p, while array subscript i
is an affine function of the surrounding loop index. Furthermore, the loop does
not have loop-carried dependences.

It is useful to understand which programs are not simple.
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A(Ek) =


guard1(Ek) → expression1(Ek)
guard2(Ek) → expression2(Ek)

...
guardn(Ek) → expressionn(Ek)

Fig. 16. Guarded symbolic expressions.

LEMMA 3. Suppose pgm is not simple. One or more of the following assertions
must be true:

—There is an array index or loop bound involving a variable which is assigned
to by an assignment statement in pgm.

—There is an array index or loop bound which is a nonaffine function of loop
variables and symbolic constants.

—There is a conditional whose predicate involves a variable which is assigned
to by an assignment statement in pgm.

—There is a conditional whose predicate is not a conjunction or disjunction of
affine inequalities of loop variables and symbolic constants.

—There is a loop with a loop-carried dependence.

PROOF. By negating the conditions in Definition 4.

The conditions in Definition 4 guarantee that at most one loop iteration will
write to any array location even if a loop nest writes to an array section that
is unbounded at compile-time. Since array subscripts are affine functions of
loop variables and constants, this ensures that array values can be expressed
by a finite expression called a guarded symbolic expression (or GSE for short),
which contains symbolic expressions that hold for affinely constrained portions
of the array as shown in Figure 16. An example of a GSE was given earlier in
Figure 10.

It is important to remember that these conditions are not required of input
programs; rather, the Commute function recursively simplifies its program pa-
rameters until these conditions are met. In other words, these conditions must
be met by programs Sn and Tn in Figure 2, not by programs S and T. Obviously,
these conditions would be different if we used a different symbolic analysis
engine, such as one that can handle reductions.

LEMMA 4. Any symbolic analysis engine that can analyze simple programs
is adequate.

PROOF. We show that such a symbolic analysis engine satisfies the three
conditions of Definition 1.

(1) Consider a program consisting of a single assignment statement. Any array
index must be a symbolic constant. Furthermore, there are no loops or
conditionals. Therefore, such a program is simple.

(2) Consider the cases in Lemma 3. In every case, it is trivial to see that a
program that contains pgm as a subprogram is itself not simple.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.



798 • V. Menon et al.

SymbolicallyEqual?(p1, p2, bindings, live vars) {
live1= set of live modified variables in p1
live2= set of live modified variables in p2
if(live1 6= l ive2)

return false

for each a(Ek) in l ive1 {
tree1=Build Expr Tree(p1, a(Ek), ∅)
tree2=Build Expr Tree(p2, a(Ek), ∅)

gse1=Build GSE(tree1, bindings)
gse2=Build GSE(tree2, bindings)

if(¬ Compare GSEs(gse1, gse2))
return false

}
return true

}
Fig. 17. Symbolic analysis and comparison of simple programs.

(3) Suppose pgm1 and pgm2 are simple, and that there is no dependence be-
tween them. Consider {pgm1; pgm2}. Since properties like affine-ness, etc.,
are preserved under composition, it is easy to see that if this program is
not simple, it must be the case that there is an array index, loop bound, or
predicate in pgm1 which involves a variable that is assigned to it in pgm2
or vice versa. However, in that case, there is a dependence from pgm1 to
pgm2, which is a contradiction. Therefore, {pgm1; pgm2} must be simple. A
similar arguments holds for {pgm2; pgm1}.

Lemma 4 ensures that the results of Section 4 are valid for our implementa-
tion of fractal symbolic analysis. In particular, our analysis technique is more
powerful than dependence analysis in the sense of Theorem 3. To get some per-
spective in our discussions, we will sometimes refer to an assertion as being
Independently true if both dependence analysis and our fractal symbolic anal-
ysis can prove that assertion; if only our fractal symbolic analysis can prove it,
we will refer to it as being Symbolically true.

Figure 17 provides a high-level overview of our symbolic analysis and com-
parison algorithm for programs that are simple. If the GSEs from the two pro-
grams for every live and modified variable are equal, the two programs are
declared to be equal. The generation of GSEs is done in two phases. First, we
build conditional expression trees for each variable as described in Section 5.2 to
represent the output value of that variable as a function of inputs. Then, these
trees are normalized by pushing arithmetic operators below predicates, and the
GSE is read off directly from these normalized expression trees, as described
in Section 5.3.

5.2 Generation of Conditional Expression Trees

Figure 18 shows the conditional expression trees for the programs of
Figure 9(a) and (b). The interior nodes of the tree are predicates and operators
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Fig. 18. Conditional expression trees for running example.

while the leaves of the tree are scalars and array references. Since sim-
plified programs have only straight-line code and DO-ALL loops, the con-
struction of these trees is straightforward, as shown in Figure 19. Procedure
Build Expr Tree processes the statements of a program in reverse order, deter-
mining at each step the tree corresponding to relevant output data in terms
of input data and linking these together to produce the final result. The first
parameter stmt is a statement, the second parameter tree is an expression
(such as an array reference), and the third parameter bindings is a set of con-
straints on variables. The procedure computes the value of the expression tree
as a function of the values of variables before statement stmt is executed, using
the constraints in parameter bindings to permit simplification of this function
by eliminating impossible cases. For example, to compute the tree shown in
Figure 18(a), this procedure is invoked with the program of Figure 9(a) as the
first parameter, the expression A(k) as the second parameter, and the constraint
j 1 > j 2 as the third parameter.

5.3 Generating Guarded Symbolic Expressions

In general, conditional expression trees contain interleaved affine constraints
and arithmetic expressions, as shown in Figure 18(a). To generate GSEs, it
is convenient to separate affine constraints from arithmetic expressions (Fig-
ure 18(b) is a conditional expression tree which exhibits this separation fortu-
itously). We accomplish this separation by repeated application of the following
transformation:

Op(op, tree1, . . . , Cond(pred, tree ti, tree fi), . . . , treen) ⇒
Cond(pred, Op(op, tree1, . . . , tree ti, . . . , treen), Op(op, tree1, . . . , tree fi, . . . , treen))

After the separation is done, guards are generated by flattening the affine
constraints at the top of the expression tree, and the corresponding arithmetic
expressions are taken from the subtrees beneath these predicates, as is shown
in Figure 20. In this code, the Normalize function is responsible for bubbling
conditionals to the top of the expression tree. It accomplishes this in a bottom-
up way—after normalizing the subtrees of the top-level node, it invokes the
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Build Expr Tree(stmt, expr, bindings) {
case (expr)
{

Op(op,expr1, . . . , exprn) :
return Op(op,

Build Expr Tree(stmt, expr1, bindings), . . . ,
Build Expr Tree(stmt, exprn, bindings))

Cond(pred, exprt , expr f ) :
return Cond(pred,

Build Expr Tree(stmt, exprt , bindings),
Build Expr Tree(stmt, expr f , bindings))

A(Ek) :
case (stmt)
{
〈A’(c)= expr1〉 : //constant subscript

if (A=A’) then
return Cond(bindings‖Ek= c,

expr1, A(Ek))
else

return A(Ek)

〈A’(T · Ei + c)= expr1(Ei)〉 : //general affine subscript
if (A=A’) then

return Cond(bindings‖Ek=T · Ei + c,
expr1(T−1 · (Ek − c)),A(Ek))

else
return A(Ek)

〈stmt1; stmt2〉 :
return Build Expr Tree(stmt1, Build Expr Tree(stmt2, expr, bindings), bindings)

〈if pred then stmt1 else stmt2〉 :
return Cond(bindings‖pred,

Build Expr Tree(stmt1, expr, bindings),
Build Expr Tree(stmt2, expr, bindings))

〈do ik = lk , uk stmt1〉 :
return Build Expr Tree(stmt1, expr, bindings‖∃ik .lk ≤ ik ≤ uk )

}
}

}

Fig. 19. Expression tree generation.

Exchange method which repeatedly applies the transformation shown above
to push the operator at the topmost level of its parameter tree past any
conditionals. Once this is done, the Flatten function generates the GSE. This
function checks that its parameter guard, which is the conjunction of affine
equalities and inequalities, defines a nonempty region; if so, it walks down the
normalized expression tree and generates the GSE.

5.4 Comparison of Guarded Symbolic Expressions

Finally, Figure 21 illustrates the comparison of two guarded symbolic expres-
sions. There are two steps to this comparison. First, we must compare each pair
of affine guards of the two guarded symbolic expressions. Second, for any two
guards that potentially intersect, we must compare the corresponding sym-
bolic expressions for equality. It is during this comparison that we use any
algebraic laws that are obeyed by the operators in the two expressions. If every
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Build GSE(tree, bindings) {
return Flatten(Normalize(tree), bindings)

}

Normalize(tree) {
case (tree) {

Op(op, tree1, . . . , treen) :
return Exchange(Op(op, Normalize(tree1), . . . , Normalize(treen)));

Cond(pred, treet , tree f ) :
return Cond(pred, Normalize(treet ), Normalize(tree f ));

default:return tree;
}

}

Exchange(tree){
case (tree){

Op(op, tree1, . . . , Cond(pred, tree ti , tree fi ), . . . , treen) :
return Cond(pred,

Exchange(Op(op, tree1, . . . , tree ti , . . . , treen)),
Exchange(Op(op, tree1, . . . , tree fi , . . . , treen)));

Op(op, tree1, . . . , treen) : //tree1 . . . treen not conditionals
return tree;

}
}

Flatten(tree, guard){
if (non-empty(guard)) then

case (tree){
Cond(pred, treet , tree f ) :

return Flatten(treet , guard ∧ pred )
⋃

Flatten(tree f , guard ∧ ¬pred );

default: return {(guard→ expr)};
}

else
return ∅;

}

Fig. 20. From expression trees to GSEs.

comparison returns true, then the guarded symbolic expressions are declared
to be equal. The validity of this conclusion follows from the following argument.
Each guard specifies some region of the index space of the array in question,
and the union of these regions in a guarded symbolic expression is equal to
the entire index space of that array. If the values in the two guarded symbolic
expressions are identical whenever their guards intersect, the two array values
are obviously equal.

For comparison of affine guards, we may employ an integer programming
tool such as the Omega Library [Pugh 1992]. If the tool proves that a pair of
affine guards do not intersect, no comparison of the corresponding arithmetic
expressions needs to be performed. On the other hand, if the guards do inter-
sect, the expressions must be compared for equality. This comparison is done
symbolically, using any algebraic laws that are obeyed by the operators in the
expressions, such as commutativity and associativity. In our current implemen-
tation, we just check for syntactic equality. This is sufficient for restructuring
LU factorization, as we will see in Section 6.
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Compare GSEs(gse1, gse2){
for each (guard1, expr1) in gse1{

for each (guard2, expr2) in gse2{
if (non-empty(guard1 ∧ guard2))

if (expr1 6= expr2) // symbolic comparison
return false

}
}

return true
}

Fig. 21. Comparison of GSEs.

i = 1

A(i) = 2

Fig. 22. A program that is not simple.

5.5 Discussion

Definition 4 of simple programs rules out many programs that are not hard to
analyze symbolically, such as the program in Figure 22. It is easy to make the
symbolic analysis engine more powerful to handle programs such as this one;
the point of the engine described here is that it is the simplest one we know of
that can address all the analysis problems that arise in restructuring LU with
pivoting.

It is important to realize that the framework of fractal symbolic analysis
does not rely in any way on the interpretation of function symbols in arithmetic
expressions. If arithmetic operators such as addition can be assumed to obey
algebraic laws such as commutativity and associativity, these laws can be used
in proving equality of expressions in Figure 21. If the use of these properties to
restructure programs may change the numerical properties of the algorithm,
only syntactic equality is used in proving expression equality. This is the only
place in the entire framework where algebraic properties of operators are used,
and the choice of whether to use these properties is under the control of the
compiler writer.

6. LU WITH PIVOTING

Fractal symbolic analysis was developed for use in an ongoing project on op-
timizing the cache behavior of dense numerical linear algebra programs. LU
factorization with partial pivoting is a key routine in this application area since
it is used to solve systems of linear equations of the form Ax = b. Figure 23(a)
shows the canonical version of LU factorization with pivoting that appears in
the literature [Golub and Loan 1996]. In iteration j of the outer loop, row j of
matrix A is swapped with some row p(j) (where p(j) ≥ j), computations are
performed on column j, and a portion of the matrix to the right of this column is
updated. This version of LU factorization with pivoting is called a right-looking
code because the updates are performed on columns to the right of the current
column j. There is also a left-looking version, shown in Figure 23(b). In this
version, the swaps and updates to a column are performed “lazily”—that is, the
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Fig. 23. LU Factorization with pivoting.

swaps and updates to column j are performed when column j becomes current,
and then the computations on that column are performed. It is known that the
two versions of LU factorization with pivoting compute identical values even if
addition and multiplication are not associative [Golub and Loan 1996].

LU factorization with pivoting poses a number of challenges for restructuring
compilers.

(1) Cache-optimized versions of LU factorization can be found in the LAPACK
library [Anderson et al. 1995]. These blocked codes are too complex to be
reproduced here, but on machines with memory hierarchies, they perform
much better than the point versions shown in Figure 23.

—Given point-wise LU factorization with pivoting, can a compiler auto-
matically generate a cache-optimized version by blocking the code? We
address this problem in Section 6.1.

—How does the performance of the compiler-optimized code compare
with that of hand-blocked code? We discuss experimental results in
Section 6.2.

(2) Right-looking and left-looking versions of LU factorization are extension-
ally equal even if addition and multiplication do not obey the usual algebraic
laws. Can a compiler transform right-looking LU with pivoting to the left-
looking version, and vice versa? This problem was addressed by us in an
earlier paper [Mateev et al. 2000].

Neither dependence analysis nor standard symbolic analysis are adequate
to address these challenges. We now show how fractal symbolic analysis solves
the problem of blocking LU with pivoting.

6.1 Automatic Blocking of LU Factorization

To obtain code competitive with LAPACK code, Carr and Lehoucq [1997] sug-
gested carrying out the following sequence of restructuring transformations.

ACM Transactions on Programming Languages and Systems, Vol. 25, No. 6, November 2003.



804 • V. Menon et al.

Descriptions of these transformations can be found in any text-book on restruc-
turing compilers, such as Wolfe [1995].

(1) Stripmine the outer loop to expose block column operations.
(2) Index-set-split the expensive update operation to separate computation out-

side the current block column from computation inside the current block-
column.

(3) Distribute the inner of the stripmined loops to isolate the update to columns
to the right of the current block column.

(4) Tile the update to the columns to the right of the current block column.

The first two steps, stripmining and index-set-splitting, are trivially legal
as they do not reorder any computation. The third step, loop distribution, is
shown in Figure 24(a) and (b), and is not necessarily legal. If legality is checked
using dependence analysis, the compiler will declare the distribution illegal if
there is a dependence from an instance B2(m) to an instance B1(l) where l > m.
In fact, such a dependence exists in our program; for example, both B2(j) and
B1(j+1) read and write to A(m+1,jB+B..N). Therefore, a compiler that relies on
dependence analysis cannot block LU with pivoting using the transformation
strategy of Carr and Lehoucq [1997]. Symbolic analysis of LU with pivoting is
too difficult. Carr and Lehoucqed suggest that a compiler may be endowed with
application-specific information to recognize that the distribution is legal. The
disadvantage of this solution is that it is not a general-purpose solution, and it
is likely that any such approach would have to be based on pattern-matching,
which is notoriously fragile.

Fractal symbolic analysis solves this problem elegantly. A high-level view
of the recursive simplification steps is shown in Figure 25. To verify the legal-
ity of the loop distribution step of Figure 24(a) and (b), our compiler consults
Table I(a) and determines that it must check if {B1(l); B2(m)} is extensionally
equal to {B2(m); B1(l)}where jB ≤ m < l ≤ jB+B-1 (these two programs are
shown in Figure 24(c) and (d)). These programs are simpler than the full code
which performs LU with factorization, but they are still not simple enough be-
cause the loop that computes the pivot in B1(l) is a recurrence and cannot be
analyzed symbolically by the analysis engine described in Section 5. Therefore,
these programs are simplified again using the rule for statement sequences in
Table I(b). In Figure 24(c) and (d), the five statements in the block B1(l) are
labeled B1.a(l). . . B1.e(l); the compiler must check whether B2(m) commutes
with each of these subblocks. None of the subblocks other than B1.c(l) touch
locations that are also touched by B2.m(l); therefore dependence analysis is ad-
equate for all subblocks other than B1.c(l) (a small detail is that the analysis of
whether {B1.b(l); B2(m)} is equal to {B2(m); B1.b(l)} requires an additional
step of simplification to eliminate the recurrence in B1.b(l)).

The remaining problem is to show that B1.c(l) commutes with B2(m). At
this point, these programs are “simple enough,” and the SymbolicallyEqual?
method in Figure 17 is invoked to establish equality of the simplified programs.
In fact, they are quite similar to the running example of Section 2. The only live,
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Fig. 24. Loop distribution in LU: fractal symbolic analysis.

altered variable in either program is the array A, and the SymbolicallyEqual?
method generates guarded symbolic expressions for A from each program. Both
GSEs generated from Figure 24(e) and (f) contain six guards, as shown in
Figure 26(a); a pictorial representation of the GSEs is shown in Figure 26(b).
These regions correspond to the following computations:

(1) A(l, 1..jB+B-1): prefix of row l, written by the swap B1.c(l) but not by
the update B2(m)

(2) A(l, jB+B..N): suffix of row l, written by the swap B1.c(l) and by the
update B2(m)
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Fig. 25. Commute calls for LU.

(3) A(p(l), 1..jB+B-1): prefix of row p(l), written by the swap B1.c(l) but
not by the update B2(m)

(4) A(p(l), jB+B..N): suffix of row p(l), written by the swap B1.c(l) and by
the update B2(m)

(5) the submatrix A(m+1..N, jB+B..N) excluding rows l and p(l): these loca-
tions are written by the update B2(m) but are left untouched by the swap
B1.c(l)

(6) the rest of the matrix: these elements are left untouched by both the swap
and the update

The GSEs generated from the programs of Figures 24(e) and (f) are syntacti-
cally identical. In our implementation, Compare GSEs is invoked to generate the
36 pairwise intersections, and the Omega library [Pugh 1992] is used to test
nonemptiness of these regions. Only six intersections are nonempty (the six
regions shown in Figure 26), and the corresponding symbolic expressions are
syntactically identical in each case. Thus, the compiler is able to demonstrate
the equality of the simplified programs and, therefore, the equality of the pro-
grams in Figure 24(a) and (b). Since the symbolic expressions are syntactically
equal, it also follows that the restructuring does not change the output of the
program even if the arithmetic is finite-precision (that is, even if addition and
multiplication do not obey the usual algebraic laws).

One important note is that the programs of Figure 24(a) and (b) are equal
only if p( j ) ≥ j . Techniques such as value propagation [Maslov 1995; DeRose
1996] have been developed to perform this type of analysis for indirect array
accesses to compute dependences more accurately. It is clear that this informa-
tion may easily be inferred from the pivot computation in B1.a and B1.b. In our
implementation, this information is passed by the compiler as bindings to the
method Commute along with the legality conditions in Table I.

With this information, our implementation of fractal symbolic analysis is
able to automatically establish the legality of the loop distribution transforma-
tion in Figure 24. For this example, our implementation, prototyped in Caml-
Light [Leroy 1996], took slightly less than 1 second. Most of the analysis time
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Aout(s, t) =



(s = l ) ∧ (1 ≤ t ≤ j B + B − 1)
→ Ain(p(l ), t)

(s = l ) ∧ ( j B + B ≤ t ≤ N )
→ Ain(p(l ), t)− Ain(p(l ), m) ∗ Ain(m, t)

(s = p(l )) ∧ (1 ≤ t ≤ j B + B − 1)
→ Ain(l , t)

(s = p(l )) ∧ ( j B + B ≤ t ≤ N )
→ Ain(l , t)− Ain(l , m) ∗ Ain(m, t)

(m+ 1 ≤ s ≤ N ) ∧ ( j B + B ≤ t ≤ N ) ∧ (s 6= l ) ∧ (s 6= p(l ))
→ Ain(s, t)− Ain(s, m) ∗ Ain(m, t)

else
→ Ain(s, t)

(a) GSE for Aout in Figures 24(e) and (f )

Fig. 26. LU with pivoting: guarded symbolic expression for Aout.

is spent on the construction and comparison of guarded symbolic expressions
since we have not yet optimized the code for doing this.

6.2 Experimental Results

We now present experimental results that demonstrate the effectiveness of
the blocking strategy discussed above. These experiments were conducted on a
300-MHz SGI Octane with a 2-MB L2 cache.

Figure 27 shows the improvement in performance that results from block-
ing right-looking LU with pivoting as discussed above. The lowest line (labeled
Right-looking LU) was obtained by running the code generated by the SGI
MIPSPro compiler. The MIPSPro compiler uses a sophisticated blocking al-
gorithm for perfectly nested loop nests, and it uses transformations like loop
jamming to convert imperfectly nested loop nests into perfectly nested ones
where possible. Nevertheless, it uses dependence analysis, so it is not able to
block the LU code effectively. Notice that performance starts to drop when the
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Fig. 27. Experimental results.

matrix size is about 500× 500. Each element of this matrix is a double-word,
so a matrix of this size occupies 2 MB storage, which corresponds to the size of
the L2 cache as expected. Performance levels off at about 50 MFlops, which is
a small fraction of the peak performance of this machine.

To see what can be achieved with blocking, we downloaded a hand-blocked
version of LU factorization with pivoting from Netlib.4 This portable version
achieved about 450 MFlops. Even better performance (475 MFlops) is obtained
by using a version of LAPACK tuned for the SGI Octane. The top two lines in
Figure 27 show the performance of these two versions.

To see what performance the MIPSPro compiler might have achieved had it
used fractal symbolic analysis, we applied the first three Carr/Lehoucq [1997]
transformations by hand to the right-looking code of Figure 23. The resulting
code was shown in Figure 24(b). If this code is input to the MIPSPro compiler,
the compiler is able to block the right-looking update since it is a 3-deep per-
fectly nested loop nest, thereby accomplishing the last step of the Carr/Lehoucq
blocking sequence on its own. The resulting performance is shown by the line
labeled Distributed update. Notice that the performance does not drop be-
yond matrix size 500× 500, showing that we have blocked effectively for the L2
cache.

Nevertheless, this code, at 200 MFlops, is still a factor of 2 slower than the
hand-blocked codes. Further experimentation found that the remaining perfor-
mance gap was due to the SGI compiler’s suboptimal treatment of the right-
looking update computation. Although, the SGI compiler is able to block the
update, we conjectured that it might have been confused by the partially tri-
angular loop bounds of the update. When we index-set-split the i loop by hand
to separate the triangular and rectangular portions of the update, the compiler

4Available from http://www.netlib.org.
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generated substantially faster code, achieving over 300 MFlops. Finally, if we
replaced the triangular and rectangular portions of the update with the corre-
sponding BLAS-3 calls (DTRSM and DGEMM) used in LAPACK, the resulting
code achieved nearly 400 MFlops and was within 10% of Netlib LAPACK and
20% of the best code in the vendor-supplied library.

These results show that a compiler which uses fractal symbolic analysis
should, in principle, be able to restructure LU with pivoting and obtain perfor-
mance comparable to that of the LAPACK library code. However, this requires
improvements in the SGI compiler’s ability to optimize perfectly nested loop
nests so that the performance of compiler-generated code for the BLAS becomes
comparable to that of hand-written BLAS library code.

7. RELATED WORK

The use of symbolic analysis in compilers has a long history. A simple kind of
symbolic analysis called value numbering [Aho et al. 1986] and a generalization
called global value numbering [Reif and Tarjan 1982] are used in some optimiz-
ing compilers to identify opportunities for common subexpression elimination
and constant propagation, but these techniques are not useful for comparing
different programs.

Sophisticated symbolic analysis techniques for finding generalized induc-
tion variables have been developed by Haghighat and Polychronopoulos [1996]
and by Rauchwerger and Padua [1999], but their goal is to perform strength-
increasing to eliminate loop-carried dependences, thereby enhancing program
parallelism. Since this may produce DO-ALL loops from loops with loop-carried
dependences, it may be advantageous to preprocess programs in this way be-
fore applying fractal symbolic analysis with the symbolic analyzer described in
Section 5, since this may eliminate the need for recursive simplification in such
programs.

Commutativity analysis [Rinard and Diniz 1997] is a program paralleliza-
tion technique that uses symbolic analysis to determine if method invocations
can be executed concurrently. This approach is based on the insight that a se-
quence of atomic operations can be executed in parallel if each pair of operations
can be shown to commute. Both fractal symbolic analysis and commutativity
analysis use symbolic analysis and comparison of programs. However, there is
no analog of recursive simplification in commutativity analysis. In particular,
the high-level control structure of fractal symbolic analysis, shown in Figure 2,
is not present in commutativity analysis. In addition, requiring all operations
to commute with each other is too strong a condition for verifying loop trans-
formations.

The algorithm for generating conditional expression trees in Section 5 is rem-
iniscent of backward slicing [Weiser 1984], which is a technique that isolates
the portion of a program that may affect the value of a variable at some point
in the program. Our algorithm is simpler than the usual algorithms for back-
ward slicing since the programs it must deal with have been simplified before-
hand by recursive simplification, an operation that has no analog in backward
slicing.
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The logic synthesis community has considered a representation of Boolean
formulae called binary decision diagrams (BDDs) [Bryant 1986]. Conditional
expression trees resemble generalized BDDs in which nodes represent affine
constraints on variables, rather than Boolean variables. Although the manip-
ulation of conditional expression trees does not take much time in our imple-
mentation, it is conceivable that this manipulation can be speeded up using
techniques from the extensive BDD literature.

Barth and Kozen [2002] have been exploring the use of purely axiomatic tech-
niques as an alternative to fractal symbolic analysis. They have used Kleene
algebra with tests to prove that the transformations of the two challenge prob-
lems in Section 2 are legal. It remains to be seen if this technique can be scaled
up to tackle larger kernels like LU with pivoting.

There is also a large body of unrelated work that should not be confused with
fractal symbolic analysis.

Fractal symbolic analysis is not related to value-based dependence analy-
sis [Feautrier 1991], as discussed in Section 1. In conventional dependence
analysis, a dependence is assumed to exist from a statement instance that
writes to a variable x to a statement instance that reads from x even if there
are intermediate statement instances that write to this variable. For some ap-
plications such as array privatization, it is necessary to identify the last write
to a location that occured before that location is read by a particular statement
instance. Value-based dependence analysis is a more precise variation of de-
pendence analysis which computes this last-write-before-read information. It
can be shown that value-based dependence analysis is not adequate to solve
the problems with restructuring LU that were discussed in this paper.

Fractal symbolic analysis is also not related to algorithm recognition
[Metzger and Wen 2000] or pattern matching in compilers [Wolfe 1995]. We
compute symbolic expressions which represent the values of program outputs
as functions of their inputs, and determine the equality of these expressions
under relevant domain-specific algebraic laws. Therefore, we make no effort to
recognize algorithms, nor do we replace one algorithm by another. In principle,
algorithm replacement can replace one sorting method with another, which is
beyond the scope of fractal symbolic analysis. However, fractal symbolic analy-
sis is more general purpose in the sense that its applicability is not restricted to
a certain set of built-in patterns or algorithms; it is also not as easily confused
by syntactic clutter or by complex contexts.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced an approximate symbolic analysis called fractal
symbolic analysis, and used it to solve the long-open problem of restructuring
LU with pivoting. If direct symbolic analysis of a program and its transformed
version is too difficult, fractal symbolic analysis generates simpler programs
whose equality is sufficient (but not in general necessary) for equality of the
original programs. Repeated application of the simplification rules is guaran-
teed to produce programs that are simple enough to be analyzed even by a
symbolic analyzer that can only handle straight-line code. We also showed that
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under some reasonable conditions on the base symbolic analyzer, fractal sym-
bolic analysis is strictly more powerful than dependence analysis.

The work described in this paper can be extended in many ways.
The symbolic analysis engine can be extended to recognize and summarize

reductions involving associative arithmetic operations like addition and mul-
tiplication, and the symbolic comparison engine can invoke a symbolic alge-
bra tool like Maple [Char et al. 1983] to compare such expressions using the
usual algebraic laws. These enhancements might eliminate the need for recur-
sive simplification in some programs, but we do not yet have any applications
where this additional power is needed. The finite precision of computer arith-
metic means that floating-point addition and multiplication do not necessarily
obey the usual algebraic laws, so these laws must be used with care.

The intuition behind fractal symbolic analysis is to view a program transfor-
mation as a multistep process which transforms the initial program incremen-
tally to the final program. In general, there are many multistep processes that
achieve the effect of a given transformation, as discussed in Section 3. Even if
we restrict attention to sequences of adjacent transpositions, some sequences
may preserve program semantics at every step, while others may take the pro-
gram through intermediate states in which program semantics is violated. Is
it useful to explore an entire space of incremental processes for converting one
program to another? If so, how do we manage the search to keep it tractable?

The proof of correctness of the transformation for LU with pivoting discussed
in Section 6 required knowing that p( j ) ≥ j . This constraint is easy to deduce,
but how does a compiler know in general that this information is useful? One
approach is to have the compiler gather as many constraints on variables as
it can deduce, and pass them to the fractal symbolic analyzer. An alternative,
lazy strategy is to gather only facts that are required for proving the validity
of transformations, but it is not clear how such facts can be identified.

Finally, we note that dependence information for loops can be represented ab-
stractly using dependence vectors, cones, polyhedra, etc. These representations
have been exploited to synthesize transformations to optimize performance. At
present, we do not know suitable representations for the results of fractal sym-
bolic analysis, nor do we know how to synthesize transformation sequences
from such information.

The obvious solution is to compute dependence information, eliminate some
of the apparent dependences by performing symbolic analysis, and then use
the remaining dependences to synthesize program transformations. Unfortu-
nately, dependences may be too fine-grain for this strategy to be effective. In
dependence analysis, granularity of analysis is not an issue because two blocks
cannot be independent if they have subblocks that are dependent. Therefore, we
can choose as low a level of granularity as we want, so we usually compute de-
pendences between statement instances. In symbolic analysis, two blocks may
commute even though they have individual subblocks that do not. Figure 15
shows a simple program that illustrates the problem. The swap and compute
blocks commute, but an analysis that starts with statement-level dependences
will not be able to determine this. A nontrivial example is provided by LU
with pivoting: the pivot block and the update block must be considered in
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their entirety to establish the legality of the loop distribution discussed in
Section 6.

Another possibility is to use an approach like data shackling [Kodukula et al.
1997] to generate transformations heuristically, and verify correctness using
fractal symbolic analysis.

We leave these problems for future work.
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