CS 380C: Advanced Topics in Compilers
Assignment 7: Fast matrix multiply
Due: April 26th

April 12, 2016

Late submission policy: Submission can be at the most 2 days late. There
will be a 10% penalty for each day after the due date (cumulative).

In class, we described the structure of the optimized MMM code produced
by ATLAS. The “computational heart” of this code is the mini-kernel that
multiplies an NBxNB block of matrix A with an NBxNB block of matrix B into
an NBxNB block of matrix C, where NB is chosen so that the working set of this
computation fits in the cache. The mini-kernel itself is performed by repeatedly
calling a micro-kernel that multiplies an MUx1 column vector of matrix A with
a 1xNU row vector of matrix B into an MUxNU block of matrix C. The values
of MU and NU are chosen so that the micro-kernel can be performed out of the
registers. Pseudocode for the mini-kernel is shown below (note that this code
assumes that NB is a multiple of MU and NU).

//mini-kernel
for (int j = 0; j < NB; j += MU)
for(int i = 0; i < NB; i += NU)
load C[i..i+MU-1, j..j+NU-1] into registers
for (int k = 0; k < NB; k++)
//micro-kernel
load A[i..i+MU-1,k] into registers
load Blk,j..j+NU-1] into registers
multiply A’s and B’s and add to C’s
store C[i..i+MU-1, j..j+NU-1]

The data type in the matrix should be doubles.

For each optimization below:
e Compile your code in ICC with flags ‘-O3 -fp-model precise’.

e Submit your run to the job scheduler on Stampede at TACC - use the
‘serial’ queue. Since the values you obtain will depend a lot on the machine
you use, you must use Stampede for the numbers you report.



e Report the performance of your code in GFLOPS. The number of floating
point operations in matrix multiplication is 2 * N3, where NxN is the size
of each matrix and so, FLOPS is given by 2 x N3 /time (1 GFLOP = 10°
FLOPS).

e Run the code to multiply matrices of various sizes (at least 5) and plot a
graph of GFLOPS vs. matrix size. Explain your results briefly.

Note: Each optimization is cumulative, i.e., you implement one optimization on
top of another.

As a reference, for 4096x4096 size matrices, the performance of ijk matrix mul-
tiplication version on Stampede is around 0.29 GFLOPS, the peformance of
matrix multiplication using BLAS is around 22 GFLOPS.

Register-blocking 20 points

To measure the impact of register-blocking without cache-blocking, implement
register-blocking by writing a function for performing MMM, using the mini-
kernel code with NB = N (you should verify that this implements MMM cor-
rectly). You can use the results in the Yotov et al. study of the ATLAS system
to determine good values for MU and NU, or you can experiment with different
values to find good values.

Note: You will have to write some clean-up code to handle leftover pieces of the
matrices when the value of N is not a multiple of your values for MU and NU.

Cache-blocking 20 points

Modify the above code to implement both register-blocking and cache-blocking.
You will have to wrap three loops around the mini-kernel to get a full MMM.
Use any method you wish to determine a good value for NB.

Note: You will have to write some clean-up code to handle leftover pieces of the
matrices when the value of N is not a multiple of your value for NB.

Data copying 20 points

You can improve the performance of your kernel by copying blocks of data into
contiguous storage as explained in the Yotov et al. paper. Modify the above code
to implement data copying (along with register-blocking and cache-blocking).

Vectorization 20 points

Modify the above code (along with register-blocking, cache-blocking, and data
copying) to use vector registers and vector intrinsics instead of scalar registers.


http://www.cs.utexas.edu/~pingali/CS378/2015sp/papers/ieee05.pdf
http://www.cs.utexas.edu/~pingali/CS378/2015sp/papers/ieee05.pdf

Fastest 20 points

We will have a competition for the best performing matrix multiplication code.
Your code should be correct for any square matrices; the performance will be
measured only for 4096x4096 size matrices. You may use any of the techniques
described above or from the literature but your code should not call any external
library and you are not allowed to copy source code from anywhere. You will
be graded on performance. You will not get any points if we are not able to
reproduce your results.

Implementation notes

e Refer PHiPAC coding guidelines for writing “portable assembly language
programs” in the C language.

e Stampede on TACC: Use the login node only for development - do not run
or debug any executable on it. Run and debug your applications using
the job scheduler. Read this to learn how to submit jobs.

e To understand the performance of your code, use PAPI to measure per-
formance counters like L1 cache misses.
To program with PAPI on stampede, run:
module load papi
For help on using the module, run:
module help papi
For more information on using modules, check this.
To see which papi counters are available on a host, run:
papi_avail
Read the PAPI manual for more information, including example code.

Deliverables

Submit (to canvas) an archive (preferably, .tar.gz/.tgz ) of your (one) fastest
code containing all optimizations (cumulative) and a report containing all plots
and analysis. Briefly describe a way to verify correctness of your code. You will
not be given any points if we are not able to verify correctness for randomly
chosen square matrices.


http://www.cs.utexas.edu/~pingali/CS378/2015sp/papers/phipac.pdf
http://www.tacc.utexas.edu/user-services/user-guides/stampede-user-guide#running
https://portal.tacc.utexas.edu/user-guides/stampede#compenv-modules
http://icl.cs.utk.edu/projects/papi/wiki/PAPIC:EventSets

