Cache Models and Program Transformations

Keshav Pingali
University of Texas at Austin

Memory wall problem

• Optimization focus so far:
 – reducing the amount of computation
 – (eg) constant folding, common sub-expression elimination, …
• On modern machines, most programs that access a lot of data are memory bound
 – latency of DRAM access is roughly 100-1000 cycles
• Caches can reduce effective latency of memory accesses
 – but programs may need to be rewritten to take full advantage of caches

Do cache optimizations matter?

Vendor BLAS
(multiple levels of blocking)

3 nested loops MMM
(no blocking)
6 MFlops

MMM for square matrices of various sizes
UltraSPARC III: peak 2 GFlops

Goal of lecture

• Develop abstractions of real caches for understanding program performance
• Study the cache performance of matrix-vector multiplication (MVM)
 – simple but important computational science kernel
• Understand MVM program transformations for improving performance
• Extend this to MMM
 – aka Level-3 Basic Linear Algebra Subroutines (BLAS)
 – most important kernel in dense linear algebra
Matrix-vector product

- Code:
 for $i = 1, N$
 for $j = 1, N$
 $y(i) = y(i) + A(i,j) * x(j)$
- Total number of references = $4N^2$
 - This assumes that all elements of A, x, y are stored in memory
 - Smart compilers nowadays can register-allocate $y(i)$ in the inner loop
 - You can get this effect manually for $i = 1, N$
 temp = $y(i)$
 for $j = 1, N$
 temp = temp + $A(i,j) * x(j)$
 $y(i) =$ temp
 - To keep things simple, we will not do this but our approach applies to this optimized code as well

Cache abstractions

- Real caches are very complex
- Science is all about tractable and useful abstractions (models) of complex phenomena
 - models are usually approximations
- Can we come up with cache abstractions that are both tractable and useful?
- Focus:
 - two-level memory model: cache + memory

Stack distance

- r_1, r_2: two memory references
 - r_1 occurs earlier than r_2
- stackDistance(r_1, r_2): number of distinct cache lines referenced between r_1 and r_2
- Stack distance was defined by Mattson et al (IBM Systems Journal paper)

Modeling approach

- First approximation:
 - Ignore conflict misses
 - Only cold and capacity misses
- Most problems have some notion of “problem size”
 - (eg) in MVM, the size of the matrix (N) is a natural measure of problem size
- Question: how does the miss ratio change as we increase the problem size?
- Even this is hard, but we can often estimate miss ratios at two extremes
 - Large cache model: problem size is small compared to cache capacity
 - Small cache model: problem size is large compared to cache capacity
 - We will define these more precisely in the next slide.
Large and small cache models

- **Large cache model**
 - no capacity misses
 - only cold misses

- **Small cache model**
 - cold misses: first reference to a line
 - capacity misses: possible for succeeding references to a line
 - let \(r_1 \) and \(r_2 \) be two successive references to a line
 - assume \(r_1 \) will be a capacity miss if \(\text{stackDistance}(r_1, r_2) \) is some function of problem size
 - argument: as we increase problem size, the second reference will become a miss sooner or later
 - For many problems, we can compute
 - miss ratios for small and large cache models
 - problem size transition point from large cache model to small cache model

MVM study

- We will study five scenarios
 - Scenario I
 - i,j loop order, line size = 1 number
 - Scenario II
 - j,i loop order, line size = 1 number
 - Scenario III
 - i,j loop order, line size = b numbers
 - Scenario IV
 - j,i loop order, line size = b numbers
 - Scenario V
 - blocked code, line size = b numbers

Scenario I

- Code:

  ```
  for i = 1,N
  for j = 1,N
  y(i) = y(i) + A(i,j)*x(j)
  ```

 - Inner loop is known as DDOT in NA literature if working on doubles:
 - Double-precision DOT product

 - Cache line size
 - 1 number

- Large cache model:
 - Misses:
 - \(A \): \(N^2 \) misses
 - \(x \): \(N \) misses
 - \(y \): \(N \) misses
 - Total = \(N^2+2N \)
 - Miss ratio = \(\frac{N^2+2N}{4N^2} \)
 - \(\approx 0.25 + 0.5/N \)

- Small cache model:
 - \(A \): \(N^2 \) misses
 - \(x \): \(N + N(N-1) \) misses (reuse distance=\(O(N) \))
 - \(y \): \(N \) misses (reuse distance=\(O(1) \))
 - Total = \(2N^2+N \)
 - Miss ratio = \(\frac{2N^2+N}{4N^2} \)
 - \(\approx 0.5 + 0.25/N \)

- Transition from large cache model to small cache model
 - As problem size increases, when do capacity misses begin to occur?
 - Subtle issue: depends on replacement policy (see next slide)
Scenario I (contd.)

Address stream:

- Question: as problem size increases, when do capacity misses begin to occur?
- Depends on replacement policy:
 - Optimal replacement:
 - do the best job you can, knowing everything about the computation
 - only x needs to be cache-resident
 - elements of A can be "streamed in" and tossed out of cache after use
 - So we need room for (N+2) numbers
 - Transition: N+2 > C
 - LRU replacement:
 - by the time we get to end of a row of A, first few elements of x are "cold" but we do not want them to be replaced
 - Transition: (2N+2) > C
- Note:
 - optimal replacement requires perfect knowledge about future
 - most real caches use LRU or something close to it
 - some architectures support "streaming" in hardware
 - in software: hints to tell processor not to cache certain references

Scenario II

- Code:
 for j = 1,N
 for i = 1,N
 y(i) = y(i) + A(i,j)*x(j)
 Inner loop is known as AXPY in NA literature
 y = a·x + y
- Miss ratio picture exactly the same as Scenario I
 - roles of x and y are interchanged

Scenario III

- Code:
 for i = 1,N
 for j = 1,N
 y(i) = y(i) + A(i,j)*x(j)
 Inner loop is known as AXPY in NA literature
 y = a·x + y
- Cache line size
 - b numbers
- Large cache model:
 - Misses:
 - A: N^2/b misses
 - x: Nb misses
 - y: Nb misses
 - Total = (N^2+2N)/b
 - Miss ratio = (N^2+2N)/4bN^2
 ~ 0.25/b + 0.5/bN
(assume row-major storage order for A)
Scenario III (contd.)

Address stream:

- Small cache model:
 - A: N^2/b misses
 - x: $N/b + N(N-1)/b$ misses (reuse distance $=O(N)$)
 - y: N/b misses (reuse distance $=O(1)$)
 - Total $= (2N^2 + N)/b$
 - Miss ratio $= (2N^2 + N)/4bN^2$

- Miss ratio $= 0.5/b + 0.25/bN$

- Transition from large cache model to small cache model
 - As problem size increases, when do capacity misses begin to occur?
 - LRU: roughly when $(2N + 2b) = C$
 - $N \approx C/2$
 - Optimal: roughly when $(N + 2b) \approx C$

- So miss ratio picture for Scenario III is similar to that of Scenario I but the y-axis is scaled down by b
- Typical value of $b = 4$ (SGI Octane)

Miss ratio graph

- Jump from large cache model to small cache model will be more gradual in reality because of conflict misses

Scenario IV

- Code:
 for $j = 1$ to N
 for $i = 1$ to N
 $y(i) = y(i) + A(i,j)*x(j)$

- Large cache model:
 - Same as Scenario III

- Small cache model:
 - Misses:
 - A: N^2
 - x: N/b
 - y: $N/b + N(N-1)/b = N^2/b$
 - Total $= N^2(1 + 1/b) + N/b$
 - Miss ratio $= 0.25(1 + 1/b) + 0.25/bN$

- Transition from large cache to small cache model
 - LRU: $Nb + N + b = C$

- Optimal: same as LRU

- Transition happens much sooner than in Scenario III (with LRU replacement)
Scenario V

- Intuition: perform blocked MVM so that data for each blocked MVM fits in cache
 - One estimate for B: all data for block MVM must fit in cache
 - \(B^2 + 2B \approx C \)
 - Actually we can do better than this

 Code: blocked code
 for \(b = 1, N \)
 for \(b = 1, N \)
 for \(j = b, \min(b+B-1, N) \)
 for \(i = b, \min(b+B-1, N) \)
 \[y(i) = y(i) + A(i,j) \times x(j) \]

- Choose block size \(B \) so
 - you have large cache model while executing block
 - \(B \) is as large as possible to reduce loop overhead
 - for our example, this means \(B = \frac{c}{2} \) for row-major order of storage and LRU replacement

- Since entire MVM computation is a sequence of block MVMs, this means miss ratio will be \(0.25/b \) independent of \(N \)

Scenario V (contd.)

- Better code: interchange the two outermost loops and fuse \(bi \) and \(i \) loops
 for \(b = 1, N \)
 for \(j = 1, N \)
 for \(i = b, \min(b+B-1, N) \)
 \[y(i) = y(i) + A(i,j) \times x(j) \]
 This has almost the same memory behavior as doubly-blocked loop but less loop overhead.

Miss ratios

Key transformations

- Loop permutation
 for \(i = 1, N \)
 for \(j = 1, N \)
 for \(i = 1, N \)
 for \(j = 1, N \)

- Strip-mining
 for \(i = 1, N \)
 for \(i = bi, \min(bi+B-1, N) \)
 for \(bi = 1, N+B \)
 for \(i = 1, N \)

- Loop tiling = strip-mine and interchange
 for \(i = 1, N \)
 for \(j = 1, N \)
 for \(i = bj, \min(bj+B-1, N) \)
Notes

- Strip-mining does not change the order in which loop body instances are executed
 - so it is always legal
- Loop permutation and tiling do change the order in which loop body instances are executed
 - so they are not always legal
- For MVM and MMM, they are legal, so there are many variations of these kernels that can be generated by using these transformations
 - different versions have different memory behavior as we have seen

Matrix multiplication

- We have studied MVM in detail.
- In dense linear algebra, matrix-matrix multiplication is more important.
- Everything we have learnt about MVM carries over to MMM fortunately, but there are more variations to consider since there are three matrices and three loops.

MMM

\[
\begin{align*}
\text{DO } I &= 1, N/\text{row-major storage} \\
\text{DO } J &= 1, N \\
\text{DO } K &= 1, N \\
C(I,J) &= C(I,J) + A(I,K) \cdot B(K,J)
\end{align*}
\]

- Three loops: I, J, K
- You can show that all six permutations of these three loops compute the same values.
- As in MVM, the cache behavior of the six versions is different

MMM

\[
\begin{align*}
\text{DO } I &= 1, N/\text{row-major storage} \\
\text{DO } J &= 1, N \\
\text{DO } K &= 1, N \\
C(I,J) &= C(I,J) + A(I,K) \cdot B(K,J)
\end{align*}
\]

- K loop innermost
 - A: good spatial locality
 - C: good temporal locality
- I loop innermost
 - B: good temporal locality
- J loop innermost
 - B: good spatial locality
 - A: good temporal locality
- So we would expect IKJKJU versions to perform best, followed by UKJK, followed by KJKKJ
MMM miss ratios (simulated)

L1 Cache Miss Ratio for Intel Pentium III
- MMM with N = 1…1300
 - 16KB 32B Block 4-way 8-byte elements

Observations
- Miss ratios depend on which loop is in innermost position
 - so there are three distinct miss ratio graphs
- Large cache behavior can be seen very clearly and all six version perform similarly in that region
- Big spikes are due to conflict misses for particular matrix sizes
 - notice that versions with J loop innermost have few conflict misses (why?)

IJK version

DO I = 1, N/row-major storage
DO J = 1, N
DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

- Large cache scenario:
 - Matrices are small enough to fit into cache
 - Only cold misses, no capacity misses
- Miss ratio:
 - Data size = 3 N^2
 - Each miss brings in b floating-point numbers
 - Miss ratio = 3 N^2*b^4N^1 = 0.75bN (eg) 0.019 (b = 4, N=10)

IJK version (large cache)

DO I = 1, N/row-major storage
DO J = 1, N
DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

- Large cache scenario:
 - Matrices are small enough to fit into cache
 - Only cold misses, no capacity misses
- Miss ratio:
 - Data size = 3 N^2
 - Each miss brings in b floating-point numbers
 - Miss ratio = 3 N^2*b^4N^1 = 0.75bN = 0.019 (b = 4, N=10)
IJK version (small cache)

DO I = 1, N
DO J = 1, N
DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Small cache scenario:
 – Cold and capacity misses
 – Miss ratio:
 • C: N^2/b misses (good temporal locality)
 • A: N^3/b misses (good spatial locality)
 • B: N^3 misses (poor temporal and spatial locality)
 – Miss ratio → $0.25(b+1)/b = 0.3125$ (for $b = 4$)

 – Simple calculation:
 • ignore everything but innermost loop
 • reference has
 – temporal locality: no misses
 – spatial locality: $1/b$ references is a miss
 – neither: all references are misses
 • In this example, there are $4N$ references in innermost loop and $N + Nb$ are misses

Miss ratios for other versions

DO I = 1, N/row-major storage
DO J = 1, N
DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

IKJ version of matrix multiplication

• IJK,JKI (K loop innermost)
 – A: good spatial locality
 – C: good temporal locality
 – Miss ratio $0.25(b+1)/b$

• JKI,KJI (I loop innermost)
 – B: good temporal locality
 – $C/IKB + N^3 + N^3 + N^3/4N^3 \rightarrow 0.5$

• IKJ,KIJ (J loop innermost)
 – B,C: good spatial locality
 – A: good temporal locality
 – $B/C = N^3/b + N^3/b + N^2/b \rightarrow 0.5/b$

So we would expect IKJ/KIJ versions to perform best, followed by IJK,JKI, followed by JKI/KJI

MMM experiments

L1 Cache Miss Ratio for Intel Pentium III
– MMM with $N = 1...1300$
– 16KB 32B Block 4-way 8-byte elements

Can we predict this?

Transition out of large cache

DO I = 1, N/row-major storage
DO J = 1, N
DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Find the data element(s) that are reused with the largest stack distance
• Determine the condition on N for that to be less than C
• For our problem:
 – $N^2 + N + b < C$ (with optimal replacement)
 – $N^2 + 2N < C$ (with LRU replacement)
 – In either case, we get $N \sim \sqrt{C}$
 – For our cache, we get $N \sim 45$ which agrees quite well with data
As in blocked MVM, we actually need to stripmine only two loops

```c
for hi = 1:R,B
for hj = 1:R,B
    for i = hi, min(hi+B-1,R)
        for j = hj, min(hj+B-1,R)
            x = hi, max(hj+B-1,R)
            y(i) = y(i) + x(i,j)*z(j)
```