
Optimizing MMM
& ATLAS Library Generator

Recall: MMM miss ratios
L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300
– 16KB 32B/Block 4-way 8-byte elements

IJK version (large cache)

DO I = 1, N//row-major storage
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

 Large cache scenario:
 Matrices are small enough to fit into cache
 Only cold misses, no capacity misses
 Miss ratio:

 Data size = 3 N2

 Each miss brings in b floating-point numbers
 Miss ratio = 3 N2 /b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)

C

B
A

K

K

IJK version (small cache)

DO I = 1, N
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

 Small cache scenario:
 Matrices are large compared to cache

 reuse distance is not O(1) => miss
 Cold and capacity misses
 Miss ratio:

 C: N2/b misses (good temporal locality)
 A: N3 /b misses (good spatial locality)
 B: N3 misses (poor temporal and spatial locality)
 Miss ratio 0.25 (b+1)/b = 0.3125 (for b = 4)

C

B
A

K

K

MMM experiments
L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300
– 16KB 32B/Block 4-way 8-byte elements

Can we predict this?

How large can matrices be and still
not suffer capacity misses?

DO I = 1, M
DO J = 1, N

DO K = 1, P
C(I,J) = C(I,J) + A(I,K)*B(K,J)

 How large can these matrices be without suffering capacity
misses?
 Each iteration of outermost loop walks over entire B matrix, so all

of B must be in cache
 We walk over rows of A and successive iterations of middle loop

touch same row of A, so one row of A must be in cache
 We walk over elements of C one at a time.
 So inequality is NP + P + 1 <= C

C

B

A
K

K

M

N

P

Check with experiment

 For our machine, capacity of L1 cache is
16KB/8 doubles = 211 doubles

 If matrices are square, we must solve
N^2 + N + 1 = 211

which gives us N = 45
 This agrees well with experiment.

High-level picture of high-performance
MMM code

 Block the code for each level of memory
hierarchy
 Registers
 L1 cache
 …..

 Choose block sizes at each level using the
theory described previously
 Useful optimization: choose block size at level

L+1 to be multiple of the block size at level L

ATLAS

 Library generator for MMM and other BLAS
 Blocks only for registers and L1 cache
 Uses search to determine block sizes, rather

than the analytical formulas we used
 Search takes more time, but we do it once when

library is produced
 Let us study structure of ATLAS in little more

detail

 Original ATLAS Infrastructure

 Model-Based ATLAS Infrastructure

Our approach

Detect
Hardware

Parameters

ATLAS Search
Engine

(MMSearch)
NR

MulAdd
L*

L1Size
ATLAS MM

Code Generator
(MMCase)

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile,
Execute,
Measure

MFLOPS

Detect
Hardware

Parameters
ModelNR

MulAdd
L*

L1I$Size ATLAS MM
Code Generator

(MMCase)
xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

BLAS

 Let us focus on MMM:
for (int i = 0; i < M; i++)
for (int j = 0; j < N; j++)

for (int k = 0; k < K; k++)
C[i][j] += A[i][k]*B[k][j]

 Properties
 Very good reuse: O(N2) data, O(N3) computation
 Many optimization opportunities

 Few “real” dependencies
 Will run poorly on modern machines

 Poor use of cache and registers
 Poor use of processor pipelines

Optimizations

 Cache-level blocking (tiling)
 Atlas blocks only for L1 cache
 NB: L1 cache time size

 Register-level blocking
 Important to hold array values in registers
 MU,NU: register tile size

 Filling the processor pipeline
 Unroll and schedule operations
 Latency, xFetch: scheduling parameters

 Versioning
 Dynamically decide which way to compute

 Back-end compiler optimizations
 Scalar Optimizations
 Instruction Scheduling

Cache-level blocking (tiling)

 Tiling in ATLAS
 Only square tiles

(NBxNBxNB)
 Working set of tile fits in L1
 Tiles are usually copied to

continuous storage
 Special “clean-up” code

generated for boundaries
 Mini-MMM

for (int j = 0; j < NB; j++)
for (int i = 0; i < NB; i++)

for (int k = 0; k < NB; k++)
C[i][j] += A[i][k] * B[k][j]

 NB: Optimization parameter

B

N

M

A C

N
B

NB

K

K

Register-level blocking

 Micro-MMM
 A: MUx1
 B: 1xNU
 C: MUxNU
 MUxNU+MU+NU registers

 Unroll loops by MU, NU, and KU
 Mini-MMM with Micro-MMM inside

for (int j = 0; j < NB; j += NU)
for (int i = 0; i < NB; i += MU)

load C[i..i+MU-1, j..j+NU-1] into registers
for (int k = 0; k < NB; k++)

load A[i..i+MU-1,k] into registers
load B[k,j..j+NU-1] into registers
multiply A’s and B’s and add to C’s

store C[i..i+MU-1, j..j+NU-1]

 Special clean-up code required if
NB is not a multiple of MU,NU,KU

 MU, NU, KU: optimization parameters

B

NB

N
B

A C

K
M

U

NU

K

KU times

Scheduling

 FMA Present?
 Schedule Computation

 Using Latency
 Schedule Memory Operations

 Using IFetch, NFetch,FFetch

 Latency, xFetch: optimization parameters

M1

M2

M3

M4

MMU*NU

…

A1

A2

A3

A4

AMU*NU

…

L1

L2

L3

LMU+NU

…

Latency=2

A1

A2

AMU*NU

…

Computation

Memory
OperationsComputation

Memory
Operations

Computation

Memory
Operations

Computation

Memory
Operations

Computation

Memory
Operations

IFetch Loads

NFetch Loads

NFetch Loads

NFetch Loads

…

Search Strategy
 Multi-dimensional optimization problem:

 Independent parameters: NB,MU,NU,KU,…
 Dependent variable: MFlops
 Function from parameters to variables is given implicitly; can be

evaluated repeatedly
 One optimization strategy: orthogonal line search

 Optimize along one dimension at a time, using reference values
for parameters not yet optimized

 Not guaranteed to find optimal point, but might come close

Find Best NB

 Search in following range
 16 <= NB <= 80
 NB2 <= L1Size

 In this search, use simple estimates for other
parameters
 (eg) KU: Test each candidate for

 Full K unrolling (KU = NB)
 No K unrolling (KU = 1)

 Original ATLAS Infrastructure

 Model-Based ATLAS Infrastructure

Model-based optimization

Detect
Hardware

Parameters

ATLAS Search
Engine

(MMSearch)
NR

MulAdd
L*

L1Size
ATLAS MM

Code Generator
(MMCase)

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile,
Execute,
Measure

MFLOPS

Detect
Hardware

Parameters
ModelNR

MulAdd
L*

L1I$Size ATLAS MM
Code Generator

(MMCase)
xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

Modeling for Optimization Parameters

 Optimization parameters
 NB

 Hierarchy of Models (later)
 MU, NU

 KU
 maximize subject to L1 Instruction Cache

 Latency
 (L* + 1)/2

 MulAdd
 hardware parameter

 xFetch
 set to 2

NRLatencyNUMUNUMU ≤+++*

Largest NB for no
capacity/conflict misses

 If tiles are copied into
contiguous memory,
condition for only cold misses:
 3*NB2 <= L1Size

A

k

B

j

k

i

NB
NB

NB
NB

Largest NB for no capacity misses

 MMM:
for (int j = 0; i < N; i++)

for (int i = 0; j < N; j++)
for (int k = 0; k < N; k++)
c[i][j] += a[i][k] * b[k][j]

 Cache model:
 Fully associative
 Line size 1 Word
 Optimal Replacement

 Bottom line:
NB2+NB+1<C
 One full matrix
 One row / column
 One element

A

M
 (I)

K

C

B

N (J)

K

Summary: Modeling for Tile Size (NB)

 Models of increasing complexity
 3*NB2 ≤ C

 Whole work-set fits in L1
 NB2 + NB + 1 ≤ C

 Fully Associative
 Optimal Replacement
 Line Size: 1 word

 or

 Line Size > 1 word

 or

 LRU Replacement

B

N

M

A C

N
B

NB

K

KB
C

B
NB

B
NB

≤+

+

 1
2

B
CNB

B
NB

≤++

 1
2

B
C

B
NB

B
NB

B
NB

≤

+

+

+

 12
2

B
CNB

B
NB

≤++

 13
2

A

M
(I)

K

C

B

N (J)

K
B

A

M
(I)

K

C

B

N (J)

K
L

Summary of model

Experiments
• Ten modern architectures
• Model did well on

•RISC architectures
•UltraSparc: did better

• Model did not do as well on
•Itanium
•CISC architectures

• Substantial gap between
ATLAS CGw/S and ATLAS
Unleashed on some
architectures

Some sensitivity graphs for Alpha 21264

Eliminating performance gaps
 Think globally, search locally
 Gap between model-based optimization and

empirical optimization can be eliminated by
 Local search:

 for small performance gaps
 in neighborhood of model-predicted values

 Model refinement:
 for large performance gaps
 must be done manually
 (future) machine learning: learn new models

automatically

 Model-based optimization and empirical
optimization are not in conflict

Small performance gap: Alpha 21264

ATLAS CGw/S:
mini-MMM: 1300 MFlops
NB = 72
(MU,NU) = (4,4)

ATLAS Model
mini-MMM: 1200 MFlops
NB = 84
(MU,NU) = (4,4)

• Local search
•Around model-predicted NB
•Hill-climbing not useful
•Search interval:[NB-lcm(MU,NU),NB+lcm(MU,NU)]

•Local search for MU,NU
•Hill-climbing OK

Large performance gap: Itanium

MMM Performance

NB Sensitivity

Performance of mini-MMM
• ATLAS CGw/S: 4000 MFlops
• ATLAS Model: 1800 MFlops

Problem with NB value
ATLAS Model: 30
ATLAS CGw/S: 80 (search space max)

Local search will not solve problem.

Itanium diagnosis and solution
 Memory hierarchy

 L1 data cache: 16 KB
 L2 cache: 256 KB
 L3 cache: 3 MB

 Diagnosis:
 Model tiles for L1 cache
 On Itanium, FP values not cached in L1 cache!
 Performance gap goes away if we model for L2 cache (NB = 105)
 Obtain even better performance if we model for L3 cache

(NB = 360, 4.6 GFlops)
 Problem:

 Tiling for L2 or L3 may be better than tiling for L1
 How do we determine which cache level to tile for??

 Our solution: model refinement + a little search
 Determine tile sizes for all cache levels
 Choose between them empirically

Large performance gap: Opteron

MMM Performance

MU,NU Sensitivity

Performance of mini-MMM
• ATLAS CGw/S: 2072 MFlops
• ATLAS Model: 1282 MFlops

Key differences in parameter values:MU/NU
• ATLAS CGw/S: (6,1)
• ATLAS Model: (2,1)

Opteron diagnosis and solution
 Opteron characteristics

 Small number of logical registers
 Out-of-order issue
 Register renaming

 For such processors, it is better to
 let hardware take care of scheduling dependent

instructions,
 use logical registers to implement a bigger register tile.

 x86 has 8 logical registers
 register tiles must be of the form (x,1) or (1,x)

Refined model

Bottom line

• Refined model is not complex.
• Refined model by itself eliminates
most performance gaps.
• Local search eliminates all
performance gaps.

Future Directions

 Repeat study with FFTW/SPIRAL
 Uses search to choose between algorithms

 Feed insights back into compilers
 Build a linear algebra compiler for generating high-

performance code for dense linear algebra codes
 Start from high-level algorithmic descriptions
 Use restructuring compiler technology

 Generalize to other problem domains

Performance of MMM code produced by
Intel’s Itanium compiler (-O3)

Goto BLAS obtains close to 99% of peak, so compiler is pretty good!

GFLOPS relative to -O2; bigger is better

0

5

10

15

20

25

30

-O
1

-O
2

+ p
ref

etc
h

+ i
nte

rch
an

ge

+ u
nro

ll-j
am

+ b
loc

kin
g =

 -O
3

gc
c -

O4

fa
ct

or
 fa

st
er

 th
an

 -O
2

92% of Peak
Performance

	Optimizing MMM� & ATLAS Library Generator
	Recall: MMM miss ratios
	IJK version (large cache)
	IJK version (small cache)
	MMM experiments
	How large can matrices be and still not suffer capacity misses?
	Check with experiment
	High-level picture of high-performance MMM code
	ATLAS
	Our approach
	BLAS
	Optimizations
	Cache-level blocking (tiling)
	Register-level blocking
	Scheduling
	Search Strategy
	Find Best NB
	Model-based optimization
	Modeling for Optimization Parameters
	Largest NB for no capacity/conflict misses
	Largest NB for no capacity misses
	Summary: Modeling for Tile Size (NB)
	Summary of model
	Experiments
	Some sensitivity graphs for Alpha 21264
	Eliminating performance gaps
	Small performance gap: Alpha 21264
	Large performance gap: Itanium
	Itanium diagnosis and solution
	Large performance gap: Opteron
	Opteron diagnosis and solution
	Refined model
	Bottom line
	Future Directions
	Performance of MMM code produced by �Intel’s Itanium compiler (-O3)

