

Control Flow Graphs

- Control Flow Graph (CFG) = graph representation of computation and control flow in the program
- framework to statically analyze program control-flow
- In a CFG:
- Nodes are basic blocks; they represent computation
- Edges characterize control flow between basic blocks
- Can build the CFG representation either from the high IR or from the low IR

Using CFGs

- Next: use CFG representation to statically extract information about the program
- Reason at compile-time
- About the run-time values of variables and expressions in all program executions
- Extracted information example: live variables
- Idea:
- Define program points in the CFG
- Reason statically about how the information flows between these program points

Program Points: Example

- Multiple successor blocks means that point at the end of a block has multiple successor program points
- Depending on the execution, control flows from a program point to one of its successors
- Also multiple predecessors
- How does information propagate between program points?

Flow of Extracted Information

- Question 1: how does information flow between the program points before and after an instruction?
- Question 2: how does information flow between successor and predecessor basic blocks?
- ... in other words:

Q1: what is the effect of instructions? Q2: what is the effect of control flow?

Using CFGs

- To extract information: reason about how it propagates between program points
- Rest of this lecture: how to use CFGs to compute information at each program point for:
- Live variable analysis, which computes which variables are live at each program point
- Copy propagation analysis, which computes the variable copies available at each program point

Live variables

- A statement is a definition of a variable v if it may write to v .
- A statement is a use of variable v if it may read from v.
- A variable v is live at a point p in a CFG if
- there is a path from p to a use of v, and
- that path does not contain a definition of v

Part 1: Analyze Instructions

- Question: what is the relation between in[I] sets of reaching definitions before and । after an instruction?
out[I]
- Examples:

conclude	$\operatorname{in}[I]=\{y, z\}$	$\operatorname{in}[I]=\{y, z, t\}$	$\operatorname{in}[I]=\{x, t\}$
	$x=y+z ;$	$x=y+z ;$	$x=x+1 ;$
assume	out $[I]=\{z\}$	out $[I]=\{x, t\}$	$\operatorname{out}[I]=\{x, t\}$

- ... is there a general rule?

Live Variable Analysis

- Computes live variables at each program point
- Computes live variables at each program point
- I.e., variables holding values that may be used later (in some execution of the program)
- For an instruction I, consider:
- in $[I]=$ live variables at program point before I
- out[I] = live variables at program point after I
- For a basic block B, consider:
$-\operatorname{in}[B]=$ live variables at beginning of B
- out[B] = live variables at end of B
- If $I=$ first instruction in B, then in $[B]=\operatorname{in}[I]$
- If I' = last instruction in B, then out[B] = out[I']
- Answer question 1: for each instruction I, what is the relation between in[I] and out[I] ?
in[1]
I
- Answer question 2: for each basic block B with successor blocks B_{1}, \ldots, B_{n}, what is the relation between out $[B]$ and $\operatorname{in}\left[B_{1}\right], \ldots, \operatorname{in}\left[B_{n}\right]$?

Part 1: Analyze Instructions

- Question: what is the relation between in[1] sets of live variables before and after an instruction?

I
out[I]

- Examples:

conclude	in $[I]=\{y, z\}$	in $[I]=\{y, z, t\}$	in $[I]=\{x, t\}$
	$x=y+z ;$	$x=y+z ;$	$x=x+1 ;$
assume	out $[I]=\{z\}$	out $[I]=\{x, t\}$	out $[I]=\{x, t\}$

- ... is there a general rule?

Analyze Instructions

- Yes: knowing variables live after I, can compute variables live before I: in[I]
- Each variable live after I is also live before I, unless I defines (writes) it
- Each variable that I uses (reads) is also live before instruction I
- Mathematically:

$$
\operatorname{in}[1]=(\operatorname{out}[I]-\operatorname{def}[1]) \cup \text { use }[1]
$$

where:

- def[I] = variables defined (written) by instruction I
- use[I] = variables used (read) by instruction I

Backward Flow	
- Relation:	
in[I] = (out[I] - def[I]) \cup use[I]	in[I] out[I]
- The information flows backward!	
- Instructions: can compute in[I] if we know out[I] - Basic blocks: information about live variables flows from out[B] to in[B] In[B] $x=y+1$ $y=2^{*} z$ if (d) out[B]	

Part 2: Analyze Control Flow

- Question: for each basic block B with successor blocks $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}$, what is the relation between out $[B]$ and in $\left[B_{1}\right], \ldots$, in $\left[B_{n}\right]$?
- Examples:

- What is the general rule?

Analyze Control Flow

- Rule: A variables is live at end of block B if it is live at the beginning of one (or more) successor blocks
- Characterizes all possible program executions
- Mathematically:

$$
\operatorname{out}[B] \underset{B^{\prime} \in \operatorname{succ}(B)}{=} \operatorname{in}\left[B^{\prime}\right]
$$

- Again, information flows backward: from successors B' of B to basic block B

Constraint System

- Put parts together: start with CFG and derive a system of constraints between live variable sets:
$\begin{cases}\operatorname{in}[I]=(\text { out }[I]-\operatorname{def}[I]) \cup \text { use[I] } & \text { for each instruction I } \\ \operatorname{out}[B] \underset{B^{\prime} \in \operatorname{succ}(B)}{\cup \operatorname{in}\left[B^{\prime}\right]} & \text { for each basic block } B\end{cases}$
- Solve constraints:
- Start with empty sets of live variables
- Iteratively apply constraints
- Stop when we reach a fixed point

Live variables

L10 $=\{ \}$
$\mathrm{L} 3=\{x\} \cup(\mathrm{L} 10-\{z\})$
$\mathrm{L} 9=\mathrm{L} 2 \cup \mathrm{~L} 3 \cup\{c\}$
$\mathrm{L} 8=\mathrm{L} 9-\{\mathrm{z}\}$
$\mathrm{L} 7=\mathrm{L} 9-\{\mathrm{z}\}$
$\mathrm{L} 6=\{\mathrm{y}, \mathrm{z}\} \mathrm{U}(\mathrm{L} 8-\{\mathrm{x}\})$
L5 = L6 U L7 U \{d\}
$\mathrm{L} 4=\{\mathrm{z}\} \mathrm{U}(\mathrm{L} 5-\{\mathrm{y}\})$
$\mathrm{L} 2=\{y\} \mathrm{U}(\mathrm{L} 4-\{x\})$
$\mathrm{L} 1=\mathrm{L} 2 \mathrm{U} \mathrm{L} 3 \mathrm{U}\{\mathrm{c}\}$

Constraint Solving Algorithm

for all instructions I do in $[1]=$ out $[1]=\varnothing$;
repeat
select an instuction I (or a basic block B) such that $\operatorname{in}[1] \neq(\operatorname{out}[1]-\operatorname{def}[1]) \cup$ use[I]
or (respectively)
$\operatorname{out}[B] \underset{B^{\prime} \in \operatorname{succ}(B)}{\cup} \operatorname{in}^{\prime}\left[B^{\prime}\right]$
and update in[I] (or out[B]) accordingly
until no such change is possible

37

45

Fixed Point Reached

General questions

- Do systems of equations of this sort always have solutions?
- If so, do they have unique solutions?
- If there are multiple solutions, which one is the "right" one?
- How do we solve such systems of equations in general?
- If we use the iterative method, does it always terminate and if so, does it always produce a unique answer?

Copy Propagation

- Goal: determine copies available at each program point
- Information: set of copies $\langle x=y>$ at each point
- For each instruction I:
- in[I] = copies available at program point before I
- out[I] = copies available at program point after I
- For each basic block B:
- in $[B]=$ copies available at beginning of B
- out $[B]=$ copies available at end of B
- $\operatorname{If} \mathrm{I}=$ first instruction in B , then in $[B]=$ in[I]
- If $I^{\prime}=$ last instruction in B, then out $[B]=$ out $[1 ']$

Same Methodology

1. Express flow of information (i.e., available copies):

- For points before and after each instruction (in[I], out[I])
- For points at exit and entry of basic blocks (in[B], out[B])

2. Build constraint system using the relations between available copies
3. Solve constraints to determine available copies at each point in the program

Analyze Instructions

- Knowing in[I], can compute out[I]:
- Remove from in[I] all copies <u=v> if in[I] variable u or v is written by l
- Keep all other copies from in[1]
- If I is of the form $x=y$, add it to out[I]
- Mathematically:

$$
\text { out }[I]=(\operatorname{in}[I]-\text { kill }[I]) \cup \text { gen }[I]
$$

where:

- kill[1] = copies "killed" by instruction I
- gen[I] = copies "generated" by instruction I

Computing Kill/Gen

- Compute kill[I] and gen[I] for each instruction I:

```
if I is x = y OP z : gen[I] = {} kill[I] = {u=v|u or v is x}
if }I\mathrm{ is }x=OPy: gen[I]={}\quad\mathrm{ kill[I]= {u=v|u or v is }x
if I is }x=y: gen[I]={x=y} kill[I]={u=v|u or v is x
if I is }x=\operatorname{addr y : gen[I] = {} kill[I] = {u=v|u or v is x}
if I is if (x) : gen[I] = {} kill[I] = {}
if I is return }x\mathrm{ : gen[I] = {} kill[I] = {}
if I is }x=f(\mp@subsup{y}{1}{},\ldots,\mp@subsup{y}{n}{\prime}): gen[I]={} kill[I] = {u=v| u or v is x
    (again, ignore load and store instructions)
```


Forward Flow

- Relation:
out [I] $=(\operatorname{in}[1]-\operatorname{kill}[I]) \cup$ gen[I]
- The information flows forward!
- Instructions: can compute out[I] if we know in[I]
- Basic blocks: information about available copies flows from in[B] to out[B]

Analyze Control Flow

- Rule: A copy is available at beginning of block B if it is available at the end of all predecessor blocks
- Characterizes all possible program executions
- Mathematically:

$$
\text { in }[B]=\underset{B^{\prime} \in \underset{\operatorname{pred}(B)}{\cap} \text { out }\left[\mathrm{B}^{\prime}\right]}{ }
$$

- Information flows forward: from predecessors B' of B to basic block B

Constraint System

- Build constraints: start with CFG and derive a system of constraints between sets of available copies:
$\begin{cases}\text { out }[I]=(\text { in }[I]-\operatorname{kill}[I]) \cup \text { gen }[I] & \text { for each instruction I } \\ \text { in }[B]=\underset{B^{\prime} \in \operatorname{Pred}(B)}{\text { out }\left[B^{\prime}\right]} & \text { for each basic block } B\end{cases}$
- Solve constraints:
- Start with empty set of available copies at start and universal set of available copies everywhere else
- Iteratively apply constraints
- Stop when we reach a fixed point

Summary

- Extracting information about live variables and available copies is similar
- Define the required information
- Define information before/after instructions
- Define information at entry/exit of blocks
- Build constraints for instructions/control flow
- Solve constraints to get needed information
- ...is there a general framework?
- Yes: dataflow analysis!

