Dominators, control-dependence and SSA form

Organization

- Dominator relation of CFGs
 - Postdominator relation
- Dominator tree
- Computing dominator relation and tree
 - Dataflow algorithm
 - Lengauer and Tarjan algorithm
- Control-dependence relation
- SSA form

Control-flow graphs

- CFG is a directed graph
- Unique node START from which all nodes in CFG are reachable
- Unique node END reachable from all nodes
- Dummy edge to simplify discussion \(\text{START} \rightarrow \text{END} \)
- Path in CFG: sequence of nodes, possibly empty, such that successive nodes in sequence are connected in CFG by edge
 - If \(x \) is first node in sequence and \(y \) is last node, we will write the path as \(x \rightarrow^* y \)
 - If path is non-empty (has at least one edge) we will write \(x \rightarrow^+ y \)

Dominators

- In a CFG \(G \), node \(a \) is said to dominate node \(b \) if every path from \(\text{START} \) to \(b \) contains \(a \).
- Dominance relation: relation on nodes
 - We will write \(a \dom b \) if \(a \) dominates \(b \)
Computing dominance relation

• Dataflow problem:

\[\text{Dom}(N) = \{N\} \cup \bigcap_{M \in \text{pred}(N)} \text{Dom}(M) \]

Find greatest solution.

Work through example on previous slide to check this.

Question: what do you get if you compute least solution?

Properties of dominance

• Dominance is
 – reflexive: \(a \text{ dom } a \)
 – anti-symmetric: \(a \text{ dom } b \) and \(b \text{ dom } a \Rightarrow a = b \)
 – transitive: \(a \text{ dom } b \) and \(b \text{ dom } c \Rightarrow a \text{ dom } c \)

 – tree-structured:
 • \(a \text{ dom } c \) and \(b \text{ dom } c \Rightarrow a \text{ dom } b \) or \(b \text{ dom } a \)
 • intuitively, this means dominators of a node are themselves ordered by dominance

Example of proof

• Let us prove that dominance is transitive.
 – Given: \(a \text{ dom } b \) and \(b \text{ dom } c \)
 – Consider any path \(P: \text{START} \rightarrow c \)
 – Since \(b \text{ dom } c \), \(P \) must contain \(b \).
 – Consider prefix of \(P = Q: \text{START} \rightarrow b \)
 – \(Q \) must contain \(a \) because \(a \text{ dom } b \).
 – Therefore \(P \) contains \(a \).
Computing dominator tree

- Inefficient way:
 - Solve dataflow equations to compute full dominance relation
 - Build tree top-down
 - Root is START
 - For every other node
 - Remove START from its dominator set
 - If node is then dominated only by itself, add node as child of START in dominator tree
 - Keep repeating this process in the obvious way

Building dominator tree directly

- Algorithm of Lengauer and Tarjan
 - Based on depth-first search of graph
 - \(O(E \alpha(E)) \) where \(E \) is number of edges in CFG
 - Essentially linear time

- Linear time algorithm due to Buchsbaum et al
 - Much more complex and probably not efficient to implement except for very large graphs

Immediate dominators

- Parent of node \(b \) in tree, if it exists, is called the immediate dominator of \(b \)
 - written as \(\text{idom}(b) \)
 - \(\text{idom} \) not defined for \(\text{START} \)

- Intuitively, all dominators of \(b \) other than \(b \) itself dominate \(\text{idom}(b) \)
 - In our example, \(\text{idom}(c) = a \)
Useful lemma

• Lemma: Given CFG G and edge $a \rightarrow b$, $\text{idom}(b)$ dominates a
• Proof: Otherwise, there is a path P: START $\rightarrow^+ a$ that does not contain $\text{idom}(b)$. Concatenating edge $a \rightarrow b$ to path P, we get a path from START to b that does not contain $\text{idom}(b)$ which is a contradiction.

Postdominators

• Given a CFG G, node b is said to postdominate node a if every path from a to END contains b.
 – we write $b \text{ pdom } a$ to say that b postdominates a
• Postdominance is dominance in reverse CFG obtained by reversing direction of all edges and interchanging roles of START and END.
• Caveat: $a \text{ dom } b$ does not necessarily imply $b \text{ pdom } a$.
 – See example: $a \text{ dom } b$ but b does not pdom a

Obvious properties

• Postdominance is a tree-structured relation
• Postdominator relation can be built using a backward dataflow analysis.
• Postdominator tree can be built using Lengauer and Tarjan algorithm on reverse CFG
• Immediate postdominator: ipdom
• Lemma: if $a \rightarrow b$ is an edge in CFG G, then $\text{ipdom}(a)$ postdominates b.

Control dependence

• Intuitive idea: node w is control-dependent on a node u if node u determines whether w is executed
• Example: $e \rightarrow S_1 \rightarrow m \rightarrow \text{START}$ $\rightarrow \ldots$ if e then S_1 else S_2 \ldots END
 We would say S_1 and S_2 are control-dependent on e
Examples (contd.)

```
while e do S1;
```

We would say node S1 is control-dependent on e.

It is also intuitive to say node e is control-dependent on itself:
- execution of node e determines whether or not e is executed again.

Example (contd.)

- S1 and S3 are control-dependent on f
- Are they control-dependent on e?
- Decision at e does not fully determine if S1 (or S3 is executed) since there is a later test that determines this
- So we will NOT say that S1 and S3 are control-dependent on e
- Intuition: control-dependence is about "last" decision point
- However, f is control-dependent on e, and S1 and S3 are transitively (iteratively) control-dependent on e

Example (contd.)

- Can a node be control-dependent on more than one node?
 - yes, see example
 - nested repeat-until loops
 - n is control-dependent on t1 and t2 (why?)
- In general, control-dependence relation can be quadratic in size of program

Example (contd.)

Formal definition of control dependence

- Formalizing these intuitions is quite tricky
- Starting around 1980, lots of proposed definitions
- Commonly accepted definition due to Ferrane, Ottenstein, Warren (1987)
- Uses idea of postdominance
- We will use a slightly modified definition due to Bilardi and Pingali which is easier to think about and work with
Control dependence definition

• First cut: given a CFG G, a node w is control-dependent on an edge \((u \rightarrow v)\) if
 – w postdominates v
 – …… w does not postdominate u
• Intuitively,
 – first condition: if control flows from u to v it is guaranteed that w will be executed
 – second condition: but from u we can reach END without encountering w
 – so there is a decision being made at u that determines whether w is executed

• Small caveat: what if \(w = u\) in previous definition?
 – See picture: is u control-dependent on edge \(u \rightarrow v\)?
 – Intuition says yes, but definition on previous slides says “u should not postdominate u” and our definition of postdominance is reflexive
• Fix: given a CFG G, a node w is control-dependent on an edge \((u \rightarrow v)\) if
 – w postdominates v
 – if w is not u, w does not strictly postdominate u

Strict postdominance

• A node w is said to strictly postdominate a node u if
 – \(w \neq u\)
 – w postdominates u
• That is, strict postdominance is the irreflexive version of the postdominance relation
• Control dependence: given a CFG G, a node w is control-dependent on an edge \((u \rightarrow v)\) if
 – w postdominates v
 – w does not strictly postdominate u

Example
Computing control-dependence relation

- Control dependence: given a CFG G, a node w is control-dependent on an edge \((u \rightarrow v)\) if
 - w postdominates v
 - w does not strictly postdominate u

- Nodes control dependent on edge \((u \rightarrow v)\) are nodes on path up the postdominator tree from v to ipdom(u), excluding ipdom(u)
 - We will write this as \([v, \text{ipdom}(u))\)
 - half-open interval in tree

Nodes control dependent on edge \((u \rightarrow v)\) are nodes on path up the postdominator tree from v to ipdom(u), excluding ipdom(u)

Computing control-dependence relation

- Compute the postdominator tree
- Overlay each edge \(u \rightarrow v\) on pdom tree and determine nodes in interval \([v, \text{ipdom}(u))\)
- Time and space complexity is \(O(EV)\).
- Faster solution: in practice, we do not want the full relation, we only make queries
 - \(cd(e)\): what are the nodes control-dependent on an edge \(e\)?
 - \(conds(w)\): what are the edges that \(w\) is control-dependent on?
 - \(cdequiv(w)\): what nodes have the same control-dependences as node \(w\)?
- It is possible to implement a simple data structure that takes \(O(E)\) time and space to build, and that answers these queries in time proportional to output of query (optimal) (Pingali and Bilardi 1997).

SSA form

- Static single assignment form
 - Intermediate representation of program in which every use of a variable is reached by exactly one definition
 - Most programs do not satisfy this condition
 - (eg) see program on next slide: use of \(Z\) in node F is reached by definitions in nodes A and C
 - Requires inserting dummy assignments called \(\Phi\)-functions at merge points in the CFG to “merge” multiple definitions
 - Simple algorithm: insert \(\Phi\)-functions for all variables at all merge points in the CFG and rename each real and dummy assignment of a variable uniquely
 - (eg) see transformed example on next slide

SSA example
Minimal SSA form

- In previous example, dummy assignment Z_3 is not really needed since there is no actual assignment to Z in nodes D and G of the original program.
- Minimal SSA form
 - SSA form of program that does not contain such “unnecessary” dummy assignments
 - See example on next slide
- Question: how do we construct minimal SSA form directly?

Minimal SSA form Example

- Compute $M: V \rightarrow P(V)$
- If node N contains an assignment to a variable x, then node Z is in $M(N)$ if:
 1. There is a non-null path $P_1 \Rightarrow N \Rightarrow Z$
 2. The value computed at X reaches Z
 3. P_1 and P_2 are disjoint except for Z
- If $S \subseteq V$ where there are assignments to variable x, then place ϕ functions for x in nodes $\bigcup_{N \in S} M(N)$
Computing Merge(v)

• If $u \in \text{Merge}(w)$, w does not strictly dominate u
 – Proof: there is a path from START to v that does not contain w
• Conversely
 – if w dominates u, $u \not\in \text{Merge}(w)$
• Idea:
 – compute nodes on the dominance frontier of w
 • w does not strictly dominate u
 but dominates some CFG predecessor of u
 – iterate

Dominance frontier

• Dominance frontier of node w
 – Node u is in dominance frontier of node w if w
 dominates a CFG predecessor v of u, but
 does not strictly dominate u
• Dominance frontier = control dependence in reverse graph

Running example:

Iterated dominance frontier

• Irreflexive closure of dominance frontier relation
• Related notion: iterated control dependence in reverse graph
• Where to place ϕ-functions for a variable Z
 – Let Assignments = {START} U {nodes with assignments to Z in original CFG}
 – Find set $I = \text{iterated dominance frontier of nodes in Assignments}$
 – Place ϕ-functions in nodes of set I
• For example
 – Assignments = {START,A,C}
 – DF(Assignments) = {B}
 – DF(DF(Assignments)) = {B}
 – DF(DF(DF(Assignments))) = {B}
 – So $I = \{E,B\}$
 – This is where we place ϕ-functions, which is correct

Why is SSA form useful?

• For many dataflow problems, SSA form enables sparse dataflow analysis that
 – yields the same precision as bit-vector CFG-based dataflow analysis
 – but is asymptotically faster since it permits the exploitation of sparsity
• SSA has two distinct features
 – factored def-use chains
 – renaming
 – you do not have to perform renaming to get advantage of SSA for many dataflow problems
Computing SSA form

- Cytron et al algorithm
 - compute DF relation (see slides on computing control-dependence relation)
 - find irreflexive transitive closure of DF relation for set of assignments for each variable
- Computing full DF relation
 - Cytron et al algorithm takes $O(|V| + |DF|)$ time
 - $|DF|$ can be quadratic in size of CFG
- Faster algorithms
 - $O(|V| + |E|)$ time per variable: see Bilardi and Pingali

Dependences

- We have seen control-dependences.
- What other kind of dependences are there in programs?
 - Data dependences: dependences that arise from reads and writes to memory locations
 - Think of these as constraints on reordering of statements

Data dependences

- Flow-dependence (read-after-write): S1 \rightarrow S2
 - Execution of S2 may follow execution of S1 in program order
 - S1 may write to a memory location that may be read by S2
 - Example:

    ```
    ...x := 3
    ...x...
    ....
    ```
 - flow-dependence

    ```
    while e do
      x := ...
      ...x...
    ....
    ```
 - flow-dependence

 This is called a loop-carried dependence

Anti-dependences

- Anti-dependence (write-after-read): S1 \rightarrow S2
 - Execution of S2 may follow execution of S1 in program order
 - S1 may read from a memory location that may be (over)written by S2
 - Example:
    ```
    x := ...
    ...x....
    x:= ...
    ```
 - anti-dependence
Output-dependence

- Output-dependence (write-after-write): S1 → S2
 - Execution of S2 may follow execution of S1 in program order
 - S1 and S2 may both write to same memory location

Summary of dependences

- Dependence
 - Data-dependence: relation between nodes
 - Flow- or read-after-write (RAW)
 - Anti- or write-after-read (WAR)
 - Output- or write-after-write (WAW)
 - Control-dependence: relation between nodes and edges