Constant propagation is an example of the FORWARD/FALL/PATHS problem. Intuitively, data is propagated forward in CFG, and value is constant at a point p only if it is the same constant for all paths from start to p.

General classification of dataflow problems:

<table>
<thead>
<tr>
<th>BACKWARD</th>
<th>FORWARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANY PATH</td>
<td>ALL PATHS</td>
</tr>
<tr>
<td>Live variables</td>
<td>Very busy expressions</td>
</tr>
<tr>
<td>Reaching definitions</td>
<td>Available expressions</td>
</tr>
<tr>
<td>Constant propagation</td>
<td></td>
</tr>
</tbody>
</table>

Constant propagation is an example of the BACKWARD/FALL/PATHS problem.
Available expressions: FORWARDED FLOW, ALL PATHS

Definition: An expression \(x \) of \(y \) is available at every point \(p \) if every path from START to \(p \) contains an evaluation of \(p \) after which there are no assignments to \(x \) or \(y \).

Lattice: Powerset of all expressions in program ordered by containment.

There are no assignments to \(x \) or \(y \).
compute greatest solution

confluence operator: meet (intersection)

\(E_0 \) = { }

\(E_1 = \{ y \ op \ x \} \ U (E_0 - E_0) \)

\(E_0 \)

\(x := y \ op \ z \)

\(\exists x \ op \ y \) = \(\{ \} = E_0 \)

EQUATIONS:
Lattice: powerset of all expressions in procedure

merge

\[I + x =: z \]
\[I + x =: y \]
Reaching Definitions: Forward Flow

Any path from START to p which contains d (and which does not contain any definitions of a variable v) is said to reach a point p if there is a definition d of a variable v as defined in procedure.

Lattice: powerset of definitions in procedure.
Many intermediate representations record reaching definitions in graphical form. Def-use chain: edge whose source is a definition of variable \(v \), and whose destination is a use reached by that definition. Use-def chain: reverse of def-use chain whose destination is a use of \(v \) that definition reached. Def-use chains represent information in graphical form.
A variable \(x \) is said to be live at a point \(p \) if \(x \) is used before being assigned on some path from \(p \) to END (used in register allocation).

Live variable analysis: Backward flow, Any Path
Very busy expressions: FORWARD FLOW, ALL PATHS

Lattice: powerset of expressions ordered by containment

\[\text{Equations:} \]

\[
\begin{align*}
\text{END} & = \{\} \\
\{x := y \text{ op } z\} & \cup (\text{END} - \text{Ex})
\end{align*}
\]

Confluence operator: meet (intersection)

\[
\begin{align*}
\text{Ex} & \text{ is set of expressions containing } x \\
\{z \text{ op } y\} & \cup (\text{END} - \text{Ex})
\end{align*}
\]

Compute greatest solution

Very busy expression \(e \) is said to be \(\text{very busy} \) at a point \(p \) if it is evaluated on every path from \(p \) to \(\text{END} \) before an assignment to \(y \) or \(z \).
Pragmatics of data flow analysis

Two approaches:

- Exploit sparsity
- Exploit structure in control flow graph

Question: Can we speed up data flow analysis?

- Use bit vectors to represent sets.
- Compute and store information at basic block level.

Pragmatics of data flow analysis
Optimizing Data Analysis
Two approaches to speeding up dataflow analysis:

\[\exists V \forall E : O \text{ available expressions on CFG} \]
\[\exists V \forall E : O \text{ reaching definitions on CFG} \]
\[\exists V \forall E : O \text{ constant propagation on CFG} \]
Exploiting program structure

- Work-list algorithm did not enforce any particular order for processing equations.

- Should exploit program structure to avoid revisiting equations unnecessarily.

- If this is within a loop nest, can be a big win.

- Otherwise, e_2 will have to be done twice.

- We should schedule e_2 after we have processed e_1 and e_3.

$$x = 2 \quad x = 3$$

$$\cdots y = \ldots$$
Structured Programs: Limit in which no iteration is required

- ...•
- Intervals
- basic-blocks, if-then-else, loops
- basic-blocks
- ...

What should be a region?

Interpolate dataflow solution into collapsed regions.
Solve dataflow equations iteratively on the collapsed graph.

as region

region into a single node with the same input-output behavior

Identity regions of CFG that can be preprocessed by collapsing

General approach to exploiting structure elimination
Example: reaching definitions in structured language

To summarize the effect of a region, compute gen and kill for each region,

$$\text{out} = \text{gen}[R] \cup (\text{in} - \text{kill}[R])$$

exit or not even if they reach the beginning of R

$\text{Kill}[R]$: set of definitions in program that do not reach exit of R even if they reach the beginning of the same variable R

$\text{gen}[R]$: set of definitions in R from which there is a path to exit, i.e., if other definitions of the same variable exit of R, even if they reach the beginning of R

Dataflow equation for region can be written using gen and kill for each region.

$\text{out} = \text{gen}[R] \cup (\text{in} - \text{kill}[R])$
\[\text{gen}[R] = \{ d \} \]

\[\text{kill}[R] = \text{Da} \text{ (all definitions of } a) \]

\[\text{out}[R] = \text{gen}[R] \cup (\text{in}[R] - \text{kill}[R]) \]

\[\text{in}[R2] = \text{gen}[R1] \cup (\text{in}[R] - \text{kill}[R1]) \]

\[\text{in}[R1] = \text{in}[R] = \text{in}[R2] = \text{in}[R] \]

\[\text{in}[R1] = \text{in}[R] \cup \text{gen}[R] \]

\[a = b + c \]

\[d \]
For structured programs (%like reducible programs%), we can even solve the dataflow problem directly on the abstract syntax tree (no need to build the control flow graph). We don't need to iterate.

For less structured programs (%like reducible programs%), we must build the control flow graph to identify regions like intervals, but there is still no need to iterate.

Any reaching definitions purely by elimination (without any iteration) has complexity $\mathcal{O}(\Sigma \Sigma)$.

For structured programs, we can solve dataflow problems like

Observations:
Exploiting sparsity to speed up dataflow analysis

Subtle point: In what order should we process variables?

Skipping over irrelevant portions of control flow graph

- Propagate information directly from definitions to uses.
- Do constant propagation for each variable separately.

Solution:

used only at bottom (consider a variable that is defined at top of procedure and not at bottom).

- Propagate information for all variables in lock-step forces a graph to propagate state vectors.
- CGC algorithm for constant propagation used control flow

Example: constant propagation