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ATLAS Library Generator

Lecture based on these papers:
• “A comparison of empirical and model-driven optimization”

Yotov et al, PLDI 2003
• “Is search really necessary to generate high-performance BLAS?

Yotov et al, Proceedings of IEEE, 93(2), 2005
• “Think globally, search locally” 

Yotov et al., ICS 2005

Overview

 ATLAS: portable BLAS generator
 Implemented by Dongarra (UTK), Demmel(UCB) et al. 
 We will focus on MMM

 Importance: popularized the idea of auto-tuning
 Generate-and-test
 Program generator to generate program variants
 Test performance of variant by running program

 Program variants in ATLAS
 Iterative blocked kernels for different levels of memory 

hierarchy

 Auto-tuning useful for library generators
 Large upfront cost for generate-and-test

BLAS

 Let us focus on MMM: 
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++)
for (int k = 0; k < K; k++)

C[i][j] += A[i][k]*B[k][j]

 Properties
 Very good reuse: O(N2) data, O(N3) computation
 Many optimization opportunities

 Few “real” dependencies

 Will run poorly on modern machines
 Poor use of cache and registers
 Poor use of processor pipelines

Key optimization
 Blocking/tiling to improve temporal locality

Why blocking?

• Assume blocks fit in cache during block computation
• # of cache misses for block data = 3B2/L (L: line size)
• # of block computations = (N/B)3

• Total number of misses = (N/B)3 * (3B2/L) = 3N3/BL
• High-level picture: 

• number of cache misses decreases with block size
as long as working set of block computation fits in cache
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Optimal block size

for I = 1, B
for J = 1, B

for K = 1, B
C(I,J) = C(I,J) + A(I,K)*B(K,J)

 Easy computation
 Need space in cache for 3 blocks of B2

 So choose largest B for which  3B2 < C
 Careful accounting: to avoid capacity misses, need space in cache for

 block of B
 row of A
 one element (line) of C
 loop order determines which matrices 

 For our problem:
 B2 + B + L < C (with optimal replacement)
 B2 + 2B < C (with LRU replacement)
 In either case, we get B ~ sqrt(C)
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MMM experiments
L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300

– 16KB 32B/line 4-way 8-byte elements

Optimal value of B

High-level picture of high-performance 
MMM code

 Block the code for each level of memory 
hierarchy
 Registers: requires loop unrolling

 L1 cache

 …..

 Choose block sizes at each level using the 
theory described previously
 Useful optimization: choose block size at level 

L+1 to be multiple of the block size at level L

Importance of multi-level blocking

“An Experimental Comparison of Cache-oblivious and Cache-conscious programs” 
Yotov et al, SPAA 2007
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ATLAS

 Library generator for MMM and other BLAS

 Blocks only for registers and L1 cache

 Uses search to determine block sizes, rather 
than the analytical formulas we used
 Search takes more time, but we do it once when 

library is produced

 Let us study structure of ATLAS in little more 
detail

 Original ATLAS Infrastructure

 Model-Based ATLAS Infrastructure

Study in Yotov et al. paper
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Parameters in ATLAS code

 Cache-level blocking (tiling)
 Atlas blocks only for L1 cache
 NB: L1 cache time size

 Register-level blocking
 Important to hold array values in registers
 MU,NU: register tile size

 Filling the processor pipeline
 Unroll and schedule operations
 Latency, xFetch: scheduling parameters

 Versioning
 Dynamically decide which way to compute

 Back-end compiler optimizations: nothing to do with ATLAS
 Scalar Optimizations
 Instruction Scheduling

Cache-level blocking (tiling)

 Tiling in ATLAS
 Only square tiles 

(NBxNBxNB)
 Working set of tile fits in L1
 Tiles are usually copied to 

continuous storage
 Special “clean-up” code 

generated for boundaries

 Mini-MMM
for (int j = 0; j < NB; j++)

for (int i = 0; i < NB; i++)
for (int k = 0; k < NB; k++)

C[i][j] += A[i][k] * B[k][j]

 NB: Optimization parameter

B
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Register-level blocking

 Micro-MMM
 A: MUx1
 B: 1xNU
 C: MUxNU
 MUxNU+MU+NU registers

 Unroll loops by MU, NU, and KU
 Mini-MMM with Micro-MMM inside

for (int j = 0; j < NB; j += NU)
for (int i = 0; i < NB; i += MU)
load C[i..i+MU-1, j..j+NU-1] into registers
for (int k = 0; k < NB; k++)

load A[i..i+MU-1,k] into registers
load B[k,j..j+NU-1] into registers
multiply A’s and B’s and add to C’s

store C[i..i+MU-1, j..j+NU-1]

 Special clean-up code required if 
NB is not a multiple of MU,NU,KU

 MU, NU, KU: optimization parameters

N
B
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U

K

KU times

Scheduling

 FMA Present?

 Schedule Computation
 Using Latency

 Schedule Memory Operations
 Using IFetch, NFetch,FFetch

 Latency, xFetch: optimization parameters
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Search Strategy

 Multi-dimensional optimization problem:
 Independent parameters: NB,MU,NU,KU,…

 Dependent variable: GFlops

 Function from parameters to variables is given implicitly; can be 
evaluated repeatedly

 One optimization strategy: orthogonal line search
 Optimize along one dimension at a time, using reference values 

for parameters not yet optimized

 Not guaranteed to find optimal point, but might come close

Find Best NB

 Search in following range
 16 <= NB <= 80
 NB2  <= L1Size

 In this search, use simple estimates for other 
parameters
 (eg) KU: Test each candidate for

 Full K unrolling (KU = NB)
 No K unrolling (KU = 1)
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 Original ATLAS Infrastructure

 Model-Based ATLAS Infrastructure

Model-based optimization
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Modeling for Optimization Parameters

 Optimization parameters
 NB

 Hierarchy of Models (later)
 MU, NU



 KU
 maximize subject to L1 Instruction Cache

 Latency
 (L* + 1)/2

 MulAdd
 hardware parameter

 xFetch
 set to 2

NRLatencyNUMUNUMU *

Modeling for Tile Size (NB)

 Models of increasing complexity
 3*NB2 ≤ C

 Whole work-set fits in L1

 NB2 + NB + 1 ≤ C
 Fully Associative

 Optimal Replacement

 Line Size: 1 word

 or

 Line Size > 1 word 

 or   

 LRU Replacement
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Experiments
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Unleashed

Refined Model

Model

• Ten modern architectures
• Model did well on 

•RISC architectures 
•UltraSparc: did better

• Model did not do as well on 
•Itanium
•CISC architectures

• Substantial gap between     
ATLAS CGw/S and ATLAS 
Unleashed on some 
architectures

Some sensitivity graphs for Alpha 21264
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Eliminating performance gaps

 Think globally, search locally
 Gap between model-based optimization and 

empirical optimization can be eliminated by
 Local search: 

 for small performance gaps
 in neighborhood of model-predicted values

 Model refinement: 
 for large performance gaps
 must be done manually 
 (future) machine learning: learn new models 

automatically 

 Model-based optimization and empirical 
optimization are not in conflict

Small performance gap: Alpha 21264
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mini-MMM: 1300 MFlops
NB = 72
(MU,NU) = (4,4)

ATLAS Model
mini-MMM: 1200 MFlops
NB = 84
(MU,NU) = (4,4)

• Local search
•Around model-predicted NB
•Hill-climbing not useful
•Search interval:[NB-lcm(MU,NU),NB+lcm(MU,NU)]

•Local search for MU,NU
•Hill-climbing OK
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Large performance gap: Itanium 
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Performance of mini-MMM
• ATLAS CGw/S: 4000 MFlops
• ATLAS Model: 1800 MFlops

Problem with NB value
ATLAS Model: 30
ATLAS CGw/S: 80 (search space max)

Local search will not solve problem.

Itanium diagnosis and solution

 Memory hierarchy
 L1 data cache: 16 KB
 L2 cache: 256 KB
 L3 cache: 3 MB

 Diagnosis:
 Model tiles for L1 cache 
 On Itanium, FP values not cached in L1 cache!
 Performance gap goes away if we model for L2 cache (NB = 105)
 Obtain even better performance if we model for L3 cache                         

(NB = 360, 4.6 GFlops)

 Problem:
 Tiling for L2 or L3 may be better than tiling for L1
 How do we determine which cache level to tile for??

 Our solution: model refinement + a little search
 Determine tile sizes for all cache levels
 Choose between them empirically

Large performance gap: Opteron 
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Performance of mini-MMM
• ATLAS CGw/S: 2072 MFlops
• ATLAS Model:  1282 MFlops

Key differences in parameter values:MU/NU
• ATLAS CGw/S: (6,1)
• ATLAS Model:  (2,1)

Opteron diagnosis and solution

 Opteron characteristics
 Small number of logical registers

 Out-of-order issue

 Register renaming

 For such processors, it is better to 
 let hardware take care of scheduling dependent 

instructions,

 use logical registers to implement a bigger register tile.

 x86 has 8 logical registers  
  register tiles must be of the form (x,1) or (1,x)
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Refined model Bottom line
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• Refined model is not complex.
• Refined model by itself eliminates       
most performance gaps.
• Local search eliminates all 
performance gaps.

Performance of MMM code produced by 
Intel’s Itanium compiler (-O3)

Goto BLAS obtains close to 99% of peak, so compiler is pretty good!

GFLOPS relative to -O2; bigger is better
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Things to think about

 What is the space of program variants?
 Space must include the optimal point or at least points 

close to it in performance
 Question: what kinds of MMM implementations are not 

explored by ATLAS?
 What is the search strategy and is it guaranteed to 

find the optimal (or at least very good) point?
 ATLAS uses orthogonal line search
 One general problem: you spend much more time executing non-

optimal program variants than the optimal one!
 Some notion of importance sampling might be useful if search time matters

 What were the key approximations made in the 
analytical performance model?
 Need to look at model used for each parameter
 Are these approximations reasonable?


