
9/5/2017

1

ATLAS Library Generator

Lecture based on these papers:
• “A comparison of empirical and model-driven optimization”

Yotov et al, PLDI 2003
• “Is search really necessary to generate high-performance BLAS?

Yotov et al, Proceedings of IEEE, 93(2), 2005
• “Think globally, search locally”

Yotov et al., ICS 2005

Overview

 ATLAS: portable BLAS generator
 Implemented by Dongarra (UTK), Demmel(UCB) et al.
 We will focus on MMM

 Importance: popularized the idea of auto-tuning
 Generate-and-test
 Program generator to generate program variants
 Test performance of variant by running program

 Program variants in ATLAS
 Iterative blocked kernels for different levels of memory

hierarchy

 Auto-tuning useful for library generators
 Large upfront cost for generate-and-test

BLAS

 Let us focus on MMM:
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++)
for (int k = 0; k < K; k++)

C[i][j] += A[i][k]*B[k][j]

 Properties
 Very good reuse: O(N2) data, O(N3) computation
 Many optimization opportunities

 Few “real” dependencies

 Will run poorly on modern machines
 Poor use of cache and registers
 Poor use of processor pipelines

Key optimization
 Blocking/tiling to improve temporal locality

Why blocking?

• Assume blocks fit in cache during block computation
• # of cache misses for block data = 3B2/L (L: line size)
• # of block computations = (N/B)3

• Total number of misses = (N/B)3 * (3B2/L) = 3N3/BL
• High-level picture:

• number of cache misses decreases with block size
as long as working set of block computation fits in cache

9/5/2017

2

Optimal block size

for I = 1, B
for J = 1, B

for K = 1, B
C(I,J) = C(I,J) + A(I,K)*B(K,J)

 Easy computation
 Need space in cache for 3 blocks of B2

 So choose largest B for which 3B2 < C
 Careful accounting: to avoid capacity misses, need space in cache for

 block of B
 row of A
 one element (line) of C
 loop order determines which matrices

 For our problem:
 B2 + B + L < C (with optimal replacement)
 B2 + 2B < C (with LRU replacement)
 In either case, we get B ~ sqrt(C)

C

B

A

K

K

I

J

MMM experiments
L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300

– 16KB 32B/line 4-way 8-byte elements

Optimal value of B

High-level picture of high-performance
MMM code

 Block the code for each level of memory
hierarchy
 Registers: requires loop unrolling

 L1 cache

 …..

 Choose block sizes at each level using the
theory described previously
 Useful optimization: choose block size at level

L+1 to be multiple of the block size at level L

Importance of multi-level blocking

“An Experimental Comparison of Cache-oblivious and Cache-conscious programs”
Yotov et al, SPAA 2007

9/5/2017

3

ATLAS

 Library generator for MMM and other BLAS

 Blocks only for registers and L1 cache

 Uses search to determine block sizes, rather
than the analytical formulas we used
 Search takes more time, but we do it once when

library is produced

 Let us study structure of ATLAS in little more
detail

 Original ATLAS Infrastructure

 Model-Based ATLAS Infrastructure

Study in Yotov et al. paper

Detect
Hardware

Parameters

ATLAS Search
Engine

(MMSearch)
NR

MulAdd
L*

L1Size
ATLAS MM

Code Generator
(MMCase)

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile,
Execute,
Measure

GFLOPS

Detect
Hardware

Parameters
ModelNR

MulAdd
L*

L1I$Size ATLAS MM
Code Generator

(MMCase)
xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

Parameters in ATLAS code

 Cache-level blocking (tiling)
 Atlas blocks only for L1 cache
 NB: L1 cache time size

 Register-level blocking
 Important to hold array values in registers
 MU,NU: register tile size

 Filling the processor pipeline
 Unroll and schedule operations
 Latency, xFetch: scheduling parameters

 Versioning
 Dynamically decide which way to compute

 Back-end compiler optimizations: nothing to do with ATLAS
 Scalar Optimizations
 Instruction Scheduling

Cache-level blocking (tiling)

 Tiling in ATLAS
 Only square tiles

(NBxNBxNB)
 Working set of tile fits in L1
 Tiles are usually copied to

continuous storage
 Special “clean-up” code

generated for boundaries

 Mini-MMM
for (int j = 0; j < NB; j++)

for (int i = 0; i < NB; i++)
for (int k = 0; k < NB; k++)

C[i][j] += A[i][k] * B[k][j]

 NB: Optimization parameter

B

N

A C

NB

K

9/5/2017

4

Register-level blocking

 Micro-MMM
 A: MUx1
 B: 1xNU
 C: MUxNU
 MUxNU+MU+NU registers

 Unroll loops by MU, NU, and KU
 Mini-MMM with Micro-MMM inside

for (int j = 0; j < NB; j += NU)
for (int i = 0; i < NB; i += MU)
load C[i..i+MU-1, j..j+NU-1] into registers
for (int k = 0; k < NB; k++)

load A[i..i+MU-1,k] into registers
load B[k,j..j+NU-1] into registers
multiply A’s and B’s and add to C’s

store C[i..i+MU-1, j..j+NU-1]

 Special clean-up code required if
NB is not a multiple of MU,NU,KU

 MU, NU, KU: optimization parameters

N
B

M
U

K

KU times

Scheduling

 FMA Present?

 Schedule Computation
 Using Latency

 Schedule Memory Operations
 Using IFetch, NFetch,FFetch

 Latency, xFetch: optimization parameters

M1

M2

M3

M4

MMU*NU

…

A1

A2

A3

A4

AMU*NU

…

L1

L2

L3

LMU+NU

…

L
a

te
n

cy=
2

A1

A2

AMU*NU

…

Computation

Memory
OperationsComputation

Memory
Operations

Computation

Memory
Operations

Computation

Memory
Operations

Computation

Memory
Operations

IFetch Loads

NFetch Loads

NFetch Loads

NFetch Loads

…

Search Strategy

 Multi-dimensional optimization problem:
 Independent parameters: NB,MU,NU,KU,…

 Dependent variable: GFlops

 Function from parameters to variables is given implicitly; can be
evaluated repeatedly

 One optimization strategy: orthogonal line search
 Optimize along one dimension at a time, using reference values

for parameters not yet optimized

 Not guaranteed to find optimal point, but might come close

Find Best NB

 Search in following range
 16 <= NB <= 80
 NB2 <= L1Size

 In this search, use simple estimates for other
parameters
 (eg) KU: Test each candidate for

 Full K unrolling (KU = NB)
 No K unrolling (KU = 1)

9/5/2017

5

 Original ATLAS Infrastructure

 Model-Based ATLAS Infrastructure

Model-based optimization

Detect
Hardware

Parameters

ATLAS Search
Engine

(MMSearch)
NR

MulAdd
L*

L1Size
ATLAS MM

Code Generator
(MMCase)

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile,
Execute,
Measure

MFLOPS

Detect
Hardware

Parameters
ModelNR

MulAdd
L*

L1I$Size ATLAS MM
Code Generator

(MMCase)
xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

Modeling for Optimization Parameters

 Optimization parameters
 NB

 Hierarchy of Models (later)
 MU, NU



 KU
 maximize subject to L1 Instruction Cache

 Latency
 (L* + 1)/2

 MulAdd
 hardware parameter

 xFetch
 set to 2

NRLatencyNUMUNUMU *

Modeling for Tile Size (NB)

 Models of increasing complexity
 3*NB2 ≤ C

 Whole work-set fits in L1

 NB2 + NB + 1 ≤ C
 Fully Associative

 Optimal Replacement

 Line Size: 1 word

 or

 Line Size > 1 word

 or

 LRU Replacement

B

N

A C

NB

KB

C

B

NB

B

NB













1

2

B

C
NB

B

NB









1

2

B

C

B

NB

B

NB

B

NB


























12

2

B

C
NB

B

NB









13

2
A

K

C

B

N (J)

K
B

A

K

C

B

N (J)

K
L

Summary of model

9/5/2017

6

Experiments

0% 50% ATLAS

CGw�S

100%

150% 200%

Pentium 4

Pentium III

Athlon MP

Opteron 240

Itanium2

UltraSparc IIIi

R12K

Power 4

Power 3

Alpha 21264

Unleashed

Refined Model

Model

• Ten modern architectures
• Model did well on

•RISC architectures
•UltraSparc: did better

• Model did not do as well on
•Itanium
•CISC architectures

• Substantial gap between
ATLAS CGw/S and ATLAS
Unleashed on some
architectures

Some sensitivity graphs for Alpha 21264

1000 2000 3000 4000 5000
Size

200

400

600

800

1000

1200

1400

MFLOPS

Compiler

Model

CGw�S

BLAS

Unleashed

200 400 600 800
NB

200

400

600

800

1000

1200

MFLOPS

20 40 60 80 100 120
NB

200

400

600

800

1000

1200

MFLOPS

2
4

6
8

10
12

14
16

NU

2
4

6
8

10
12

14
16

MU

0

500

1000

2
4

6
8

10
12

14
NU

2
4

6
8

10
12

14
MU

Eliminating performance gaps

 Think globally, search locally
 Gap between model-based optimization and

empirical optimization can be eliminated by
 Local search:

 for small performance gaps
 in neighborhood of model-predicted values

 Model refinement:
 for large performance gaps
 must be done manually
 (future) machine learning: learn new models

automatically

 Model-based optimization and empirical
optimization are not in conflict

Small performance gap: Alpha 21264

20 40 60 80 100 120
NB

200

400

600

800

1000

1200

MFLOPSATLAS CGw/S:
mini-MMM: 1300 MFlops
NB = 72
(MU,NU) = (4,4)

ATLAS Model
mini-MMM: 1200 MFlops
NB = 84
(MU,NU) = (4,4)

• Local search
•Around model-predicted NB
•Hill-climbing not useful
•Search interval:[NB-lcm(MU,NU),NB+lcm(MU,NU)]

•Local search for MU,NU
•Hill-climbing OK

9/5/2017

7

Large performance gap: Itanium

1000 2000 3000 4000 5000
Size

1000

2000

3000

4000

5000

MFLOPS

Compiler

Model

CGw�S

Unleashed

BLAS

200 400 600 800 1000
NB

1000

2000

3000

4000

MFLOPS

20 40 60 80 100 120
NB

1000

2000

3000

4000

MFLOPSMMM Performance

NB Sensitivity

Performance of mini-MMM
• ATLAS CGw/S: 4000 MFlops
• ATLAS Model: 1800 MFlops

Problem with NB value
ATLAS Model: 30
ATLAS CGw/S: 80 (search space max)

Local search will not solve problem.

Itanium diagnosis and solution

 Memory hierarchy
 L1 data cache: 16 KB
 L2 cache: 256 KB
 L3 cache: 3 MB

 Diagnosis:
 Model tiles for L1 cache
 On Itanium, FP values not cached in L1 cache!
 Performance gap goes away if we model for L2 cache (NB = 105)
 Obtain even better performance if we model for L3 cache

(NB = 360, 4.6 GFlops)

 Problem:
 Tiling for L2 or L3 may be better than tiling for L1
 How do we determine which cache level to tile for??

 Our solution: model refinement + a little search
 Determine tile sizes for all cache levels
 Choose between them empirically

Large performance gap: Opteron

1000 2000 3000 4000 5000
Size

500

1000

1500

2000

2500

MFLOPS

Compiler

Model

CGw�S

BLAS

Unleashed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2
4

6
8

10
12

14
16

NU

2
4

6
8

10
12

14
16

MU

0
500

1000

1500

2000

2
4

6
8

10
12

14
NU

2
4

6
8

10
12

14
MU

MMM Performance

MU,NU Sensitivity

Performance of mini-MMM
• ATLAS CGw/S: 2072 MFlops
• ATLAS Model: 1282 MFlops

Key differences in parameter values:MU/NU
• ATLAS CGw/S: (6,1)
• ATLAS Model: (2,1)

Opteron diagnosis and solution

 Opteron characteristics
 Small number of logical registers

 Out-of-order issue

 Register renaming

 For such processors, it is better to
 let hardware take care of scheduling dependent

instructions,

 use logical registers to implement a bigger register tile.

 x86 has 8 logical registers
  register tiles must be of the form (x,1) or (1,x)

9/5/2017

8

Refined model Bottom line

0% 50% ATLAS

CGw�S

100%

150% 200%

Pentium 4

Pentium III

Athlon MP

Opteron 240

Itanium2

UltraSparc IIIi

R12K

Power 4

Power 3

Alpha 21264

Unleashed

Refined Model

Model

• Refined model is not complex.
• Refined model by itself eliminates
most performance gaps.
• Local search eliminates all
performance gaps.

Performance of MMM code produced by
Intel’s Itanium compiler (-O3)

Goto BLAS obtains close to 99% of peak, so compiler is pretty good!

GFLOPS relative to -O2; bigger is better

0

5

10

15

20

25

30

-O
1

-O
2

+
pr

ef
et

ch

+
in

te
rc

ha
ng

e

+
un

ro
ll-

jam

+
bl

oc
kin

g
=

-O
3

gc
c -

O4

fa
ct

o
r

fa
st

er
 t

h
an

 -
O

2

92% of Peak
Performance

Things to think about

 What is the space of program variants?
 Space must include the optimal point or at least points

close to it in performance
 Question: what kinds of MMM implementations are not

explored by ATLAS?
 What is the search strategy and is it guaranteed to

find the optimal (or at least very good) point?
 ATLAS uses orthogonal line search
 One general problem: you spend much more time executing non-

optimal program variants than the optimal one!
 Some notion of importance sampling might be useful if search time matters

 What were the key approximations made in the
analytical performance model?
 Need to look at model used for each parameter
 Are these approximations reasonable?

