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Intel

OTHER PARALLEL WORKLOADS. IT PROVIDES SIGNIFICANTLY HIGHER PERFORMANCE AND

MEMORY BANDWIDTH QVER THE PREVIOUS GENERATION. IT IS A STANDARD, SELF-

BOOTING CPU THAT IS BINARY COMPATIBLE WITH PRIOR INTEL PROCESSORS. ITS

INNOVATIONS INCLUDE A POWER-EFFICIENT CORE, A 512-BIT VECTOR INSTRUCTION SET, A

NEW MEMORY ARCHITECTURE, A HIGH-BANDWIDTH ON-DIE INTERCONNECT, AND AN ON-

PACKAGE NETWORK FABRIC.

eo0oo0e oKnighLS Landing (I(NL) is the
code name for the second-generation Intel
Xeon Phi product family, which targets high-
performance computing (HPC) and other par-
allel computing segments. It is a brand-new
many-core architecture that delivers massive
thread parallelism, data parallelism, and mem-
ory bandwidth in a CPU form factor for high-
throughput workloads. KNL brings many
innovations to market. It is a standard, stand-
alone processor that can boot an off-the-shelf
operating system. This is a big change from
the previous-generation Intel Xeon Phi co-
processor, Knights Corner (KNC),! which was
a PCI Express- (PCle-)connected coprocessor.
In addition, KNL is binary compatible with
prior Intel Xeon processors, which ensures that
any legacy software will run on KNL. Further-
more, KNL improves on scalar and vector per-
formance over KNC by about three times,
packing more than 3 Teraflops of double-
precision and 6 Teraflops of single-precision
peak floating-point performance in the chip. It
also introduces an innovative memory archi-
tecture comprising two types of memory,

which provides both the high bandwidth and
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large capacity needed to run large HPC work-
loads. Finally, KNL integrates the Intel Omni-
Path Fabric on the package to provide a more
scalable and cost-effective fabric solution for
large systems.

KNL will be available in three product
varieties: a KNL self-booting processor, KNL
self-booting with integrated fabric, and a
KNL PCle-connected coprocessor card as a
follow-on product to KNC. The primary
focus of this article will be the KNL self-
booting processor, which is the main product
and the baseline for the other two products.

KNL Architecture Overview

We begin by providing an overview of the
KNL architecture. Figure la shows the KNL
CPU’s block diagram, and Figure 2 shows its
die photo. The KNL CPU comprises 38 phys-
ical tiles, of which at most 36 are active; the
remaining two tiles are for yield recovery. Each
tile (see Figure 1b) comprises two cores, two
vector processing units (VPUs) per core, and a
1-Mbyte level-2 (L2) cache that is shared

between the two cores. The core is a new
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Figure 1. Knights Landing (KNL) block diagram: (a) the CPU, (b) an example tile, and (c) KNL with Omni-Path Fabric integrated
on the CPU package. (CHA: caching/home agent; DDRMC: DDR memory controller; DMI: Direct Media Interface; EDC:
MCDRAM controllers; MCDRAM: multichannel DRAM; PCle: PCI Express; VPU: vector processing unit.)

Figure 2. KNL CPU die photo.

two-wide, out-of-order core that is derived
from the Intel Atom core (based on Silvermont
microarchitecture).” It includes heavy modifi-
cations over the inherited microarchitecture to
incorporate features necessary for HPC work-
loads, such as four threads per core, deeper
out-of-order buffers, higher cache bandwidth,
new instructions, better reliability, larger trans-
lation look-aside buffers (TLBs), and larger
caches. KNL introduces the new Advanced
Vector Extensions instruction set, AVX-512,
which provides 512-bit-wide vector instruc-
tions and more vector registers.3 In addition, it
continues to support all legacy x86 instruc-

tions, making it completely binary-compatible
with prior Intel processors.

KNL introduces a new 2D, cache-coherent
mesh interconnect that connects the tiles,
memory controllers, I/O controllers, and
other agents on the chip. The mesh intercon-
nect provides the high-bandwidth pathways
necessary to deliver the huge amount of mem-
ory bandwidth provisioned on the chip to the
different parts of the chip. The mesh supports
the MESIF (modified, exclusive, shared, inva-
lid, forward) cache-coherent protocol.4 It
employs a distributed tag directory to keep the
L2 caches in all tiles coherent with each other.
Each tile contains a caching/home agent that
holds a portion of the distributed tag directory
and also serves as a connection point between
the tile and the mesh.

KNL has two types of memory: mult-
channel DRAM (MCDRAM) and double
data rate (DDR) memory. MCDRAM is the
16-Gbyte high-bandwidth memory compris-
ing eight devices (2 Gbytes each) integrated
on-package and connected to the KNL die via
a proprictary on-package I/O. All eight
MCDRAM devices together provide an aggre-
gate Stream triad benchmark bandwidth of
more than 450 Gbytes per second (GBps; see
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www.cs.virginia.edu/stream). KNL has six
DDR4 channels running up to 2,400 MHz,
with three channels on each of two memory
controllers, providing an aggregate bandwidth
of more than 90 GBps. Each channel can sup-
port at most one memory DIMM. The total
DDR memory capacity supported is up to
384 Gbytes. The two types of memory are
presented to users in three memory modes:
cache mode, in which MCDRAM is a cache
for DDR; flat mode, in which MCDRAM is
treated like standard memory in the same
address space as DDR; and /ybrid mode, in
which a portion of MCDRAM is cache and
the remainder is flat.

KNL supports a total of 36 lanes of PCle
Gen3 for 1/O, split into two x16 lanes and
one x4 lane. It also has four lanes of propriet-
ary Direct Media Interface to connect to the
Southbridge chip, just like Intel Xeon
processors. The Southbridge chip provides
support for legacy features necessary for a
self-booting system.

KNL integrates the Intel Omni-Path Fab-
ric’ on-package in one of the product incar-
nations (see Figure 1c). The Omni-Path
Fabric is connected via the two x16 lanes of
PCle to the KNL die and provides two 100-
Gbits-per-second ports out of the package.
The typical power (thermal design power)
for KNL (including MCDRAM memory)
when running a computationally intensive
workload is 215 W without the fabric and
230 W with the fabric.

Vision and Motivation

In this section, we provide the motivations
behind some of the choices made in the KNL
architecture. The most fundamental choice
we made was to make it a self-booting, stand-
ard CPU. The primary motivation was to get
away from the PCle bottlenecks inherent in a
coprocessor and to provide the computation
and bandwidth necessary for HPC workloads
in a standard CPU form factor. Once this
choice was made, several other choices fol-
lowed. With KNL as a standard CPU, it is
expected to run all kinds of software—not
just the highly parallel code—such as stand-
ard operating systems, system infrastructure
code, general libraries, and debug tools. This
motivated binary compatibility of KNL with

existing Intel processors, because requiring
that every piece of support software be
recompiled to run on KNL would be a big
overhead for users. Being a standard CPU
also implied that KNL would run entire
applications. This motivated us to develop a
new core with significantly higher scalar per-
formance than KNC to ensure KNL also ran
serial portions of the applications well.

Binary compatibility motivated the need
to define 512-bit vector extensions in a man-
ner consistent with existing AVX and AVX2
instruction sets. This resulted in the intro-
duction of AVX512 instructions.

We designed KNL's memory architecture
to support its large computational capability
and its stand-alone processor status. We
chose MCDRAM memory to provide the
high bandwidth needed to feed the large
computational capability, and we chose
DDR to provide the large memory capacity
needed to run an entire application with all
the necessary support software on KNL. We
did not include a shared on-die L3 cache,
because we found that the targeted HPC
workloads benefited less from it compared to
adding more cores; many HPC workloads
either could be blocked in each per-tile L2 or
were too large to fit in any reasonably sized
on-die L3 cache.

Finally, the mesh interconnect had two
motivations: the need to provide a network
that could easily support the huge memory
bandwidth provisioned on the chip, and the
need to provide lower latency connections—
that is, fewer average hops to go from one
point to another—between different agents
on the large chip.

Tile Architecture

We now provide more details on the main
components within a tile: the core, VPU,
and L2 cache.

Core and VPU Architecture

The KNL core differs from the parent Intel
Atom cores (based on the Silvermont micro-
architecture) because of the HPC modifica-
tions. Figure 3 shows the block diagram of the
core and the VPU, which is divided roughly
into five units: the front-end unit (FEU), the
allocation unit, the integer execution unit



(IEU), the memory execution unit (MEU),
and the VPU. Although the core is two-wide
from the point of view of decoding, allocating,
and retiring operations, it can execute up to
six operations per cycle in the middle.

Front-end unit. The core’s FEU comprises a
32-Kbyte instruction cache (IL1) and a 48-
entry instruction TLB. In case of a hit, the
instruction cache can deliver up to 16 bytes
per cycle. These bytes are then sent to a two-
wide decoder. Most instructions are decoded
into a single micro-op, but a few complex ones
that produce more micro-ops are handled by a
two-wide microsequencer engine. Fetch direc-
tion is provided by a gskew-style branch pre-
dictor. Decoded micro-ops are placed into a
32-entry instruction queue.

Allocation wunit. The allocation unit reads
two micro-ops per cycle from the instruction
queue. It assigns the necessary pipeline
resources required by the micro-ops, such as
reorder buffer (ROB) entries (72), rename
buffer entries (72), store data buffers (16),
gather-scatter table entries (4), and reserva-
tion station entries. It also renames the regis-
ter sources and destinations in the micro-ops.
The rename buffer stores the results of the in-
flight micro-ops until they retire, at which
point the results are transferred to the archi-
tectural register file. After the allocation unit,
the micro-ops are sent to one of three execu-
tion units—IEU, MEU, or VPU—depend-
ing on their opcode types. Some micro-ops
could get sent to more than one execution
unit. For example, an Add instruction that
has a memory source will be sent to the
MEU to read the memory source, and then
to the IEU to execute the Add operation.

Integer execution unit. The TEU executes
integer micro-ops, which were defined as
those that operate on general-purpose regis-
ters RO through R15. There are two IEUs in
the core. Each IEU contains one 12-entry
reservation station that issues one micro-op
per cycle. The integer reservation station is
fully out-of-order in its scheduling. Most
operations have one-cycle latency and are
supported by both IEUs. But a few have

three- or five-cycle latency (for example,

s

Figure 3. Core and VPU dataflow block diagram showing important
microarchitectural structures and data bus connections between them.
(ALU: arithmetic logic unit; iTLB: instruction translation look-aside buffer; RF:

register file; RS: reservation station.)

“multiplies”) and are only supported by one
of the IEUs.

Memory execution unit. The MEU executes
memory micro-ops and also services fetch
requests for instruction cache misses and
instruction TLB misses.

Up to two memory operations, either
load or store, can be executed in the MEU in
a given cycle. Memory operations are issued
in-order from the 12-entry memory reserva-
tion station, but they can execute and com-
plete out of order. Micro-ops that do not
complete successfully are allocated into the
recycle buffer and reissued to the MEU pipe-
line once their conflict conditions are
resolved. Completed loads are kept in the
memory ordering queue until they are retired
to maintain consistency. While stores are
kept in the store buffer after address transla-
tion, they can forward data to dependent
loads. Stores are committed to memory in
the program order, one per cycle.

The 64-entry, eight-way set-associative L1
micro TLB is backed up by the 256-entry,
eight-way set-associative L2 data TLB. The
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data TLB also contains an eight-way, 128-
entry table for 2-Mbyte pages and a fully asso-
clative, 16-entry table for 1-Gbyte pages. The
writeback, nonblocking, 32-Kbyte, eight-way
set-associative L1 data cache (DL1) supports
two simultaneous 512-bit reads and one 512-
bit write, with a load-to-use latency of four
cycles for integer loads and five cycles for float-
ing-point loads. The L1 hardware prefetcher
monitors memory address patterns and gener-
ates data prefetch requests to the L2 cache to
bring cache lines in advance.

The MEU supports unaligned memory
accesses without any penalties and supports
accesses that split into two cache lines with a
two-cycle penalty. This helps HPC workloads
where memory accesses might not always be
aligned to natural data size. In addition, the
MEU supports 48 virtual and 46 physical
address bits (up to 39 physical bits for address-
ing cacheable memory and the rest for
uncacheable memory) to provide the large
memory addressing capability commensurate
with a stand-alone, standard CPU.

Finally, the MEU contains specialized logic
to handle gather-scatter instructions effi-
clently. A single gather-scatter instruction can
access many memory locations. This genera-
tion of multiple accesses is done very close to
the L1 cache pipeline. This allows maximum
utilization of the two memory pipelines while

consuming minimal resources in rest of the
core (such as the FEU, allocation unit, reserva-
tion stations, and reorder buffer).

Vector processing unit. The VPU is KNLs
vector and floating-point execution unit and
provides support for x87, MMX, Streaming
SIMD Extensions (SSE), AVX, and AVX-
512 instructions, as well as integer divides.
Two VPUs are connected to the core. They
are tightly integrated into the pipeline, with
the allocation unit dispatching instructions
directly into the VPUs. The VPUs are mostly
symmetrical, and each can provide a steady-
state throughput of one AVX-512 instruction
per cycle, providing a peak of 64 single-
precision or 32 double-precision floating-
point operations per cycle from both VPUs.
One of the VPUs is extended to provide sup-
port for the legacy floating-point instruc-
tions, such as x87, MMX, and a subset of
byte and word SSE instructions.

Each VPU contains a 20-entry floating-
point reservation station that issues one
micro-op per cycle out of order. The float-
ing-point reservation station differs from the
IEU and MEU reservation stations in that it
does not hold source data to help reduce its
size; the floating-point micro-ops read their
source data from the floating-point rename
buffer and the floating-point register file after
they issue from the floating-point reservation
station, spending an extra cycle between the
reservation station and execution compared
to integer and memory micro-ops. Most
floating-point arithmetic operations have a
latency of six cycles, whereas the rest of the
operations have a latency of two or three
cycles, depending on the operation type.

The VPU also supports the new transcen-
dental and reciprocal instructions, AVX-
512ER,® and the vector conflict detection
instructions, AVX-512CD,’ introduced in
KNL.

L2 Architecture

On a KNL tile, the two cores share a 16-way
associative, 1-Mbyte unified L2 cache. The
bus interface unit (BIU) maintains intra-tile
coherency (see Figure 4) and also acts as the
local shared L2 cache management unit.
Lines in the L2 cache are maintained in one
of the MESIF states. Requests are made by



the cores to the BIU via a dedicated request
interface to each core. Cacheable requests
look up the L2 tags for hit, miss, and line-
state evaluation, whereas other requests are
bypassed directly out to the mesh to be serv-
iced by the targeted caching/home agent.
KNL implements a unique cache topol-
ogy to minimize coherency maintenance
traffic. First, the L2 cache includes DL1 but
not IL1. The lines brought into IL1 fill in
the L2 cache, but when those lines are
evicted, the corresponding IL1 line is not
invalidated. This avoids invalidations due to
hot-IL1/cold-L2 scenarios, in which a line
in active use in IL1 gets invalidated due to
eviction of the corresponding line from L2
cache due to inactivity. Second, the L2 cache
stores “presence” bits per line to track which
of them are actively used in DLI1. This
information is used to filter the coherency
DL1
required. It also factors into the L2 victim-

probes for inclusive when not
selection algorithm to minimize eviction of
in-use lines.

The BIU also contains an L2 hardware
prefetcher that is trained on requests coming
from the cores. It supports up to 48 inde-
pendent prefetch streams. Once a stream is
detected to be stable either forward or back-
ward, prefetch requests are issued to succes-
sive cache lines in that stream (that is, the
unit cache line stride distance).

Threading

A KNL core supports up to four hardware
contexts or threads using hyperthreading
techniques.® Core resources can be dynami-
cally partitioned, shared, or replicated, and
pipelines are regulated by thread selectors.
The goal is to maximize resource utilization
among active threads.

In general terms, threads become inactive
after they execute a halt or monitor wait
(mwait) instruction’; otherwise, they are con-
sidered to be active. Three threading modes
are defined depending on the number of
active threads: single-thread mode when only
one thread is active (any one), dual-thread
mode when any two threads are active, and
quad-thread mode when any three or all four
threads are active.

Dynamically partitioned resources are
equally distributed among threads, depending

on the thread mode. For example, in single-
thread mode, the active thread is allowed to
use the full 72 entries in the ROB; in dual-
thread mode, each thread will get 36 entries;
and in quad-thread mode, each active thread
will get 18 entries. Besides the ROB, other
noteworthy structures that are also dynami-
cally partitioned are the rename buffers, reser-
vation stations, store data buffers, instruction
queue, and gather-scatter table entries.

Shared resources do not enforce partition-
ing, although some structures have a small
number of per-thread reserved entries to
avoid deadlocks. Threads get shared resources
on a first-come, first-served basis. Notewor-
thy shared resources are caches, TLBs, most
MEU structures, branch predictors, and
hardware prefetcher tables. Except for caches
(in which lines are thread unaware), a partic-
ular entry in a shared structure is owned by
only a single thread.

Replicated structures are limited to the
bare minimum. In replicated structures, each
thread has its dedicated structure that is not
taken away when the thread becomes inactive.
These structures include rename tables, archi-
tectural registers, and other control registers.

The core pipeline has thread selectors at
several points to maximize utilization and
throughput of the pipeline and maintain fair-
ness among threads. These exist mainly in
the in-order portion of the pipeline. The
thread selector considers the availability of
resources down the pipeline and tries to
make informed selections. The important
thread selectors are located in the FEU, allo-
cation unit, retire pipeline, and MEU reser-
vation stations. The out-of-order parts of the
machine are thread agnostic and pick instruc-
tions based on readiness.

Instruction-Set Architecture

Figure 5 shows how KNLs instruction-set archi-
tecture compares to those of recent Intel Xeon
processors.” KNL supports all legacy instruc-
tions, including 128-bit SSE and SSE4.2 and
256-bit AVX and AVX2 technologies.

KNL introduces Intel AVX-512 instruc-
tions. AVX-512 provides 512-bit SIMD sup-
port, 32 logical registers, native support for
true vector predication via eight new mask
registers, and a generalization of indirect vec-
tor accesses via gathers (for loading sparse
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data) and scatters (for storing sparse data). A
single AVX-512 instruction can pack eight
double-precision multiply-add operations
(16 flops) or 16 single-precision multiply-
add operations (32 flops), with an optional
memory location used as an operand that can
either be a vector or a scalar.

Intel AVX-512 instructions fall into four
categories: foundation instructions (AVX-
512F), which are the base 512-bit extensions
described earlier; conflict-detection instruc-
tions (AVX-CD); exponential and reciprocal
instructions (AVX-ER); and prefetch instruc-
tions (AVX-PF). These capabilities provide
efficient conflict detection to allow more loops
(such as histogram updates) to be vectorized,
fast exponential and reciprocal operations to
speed up transcendental functions, and new
sparse prefetch capabilities, respectively.

We defined AVX-512 with programm-
ability in mind. Most AVX-512 program-
ming occurs in high-level languages—such

as C/C++ and Fortran, with the help of

vectorizing compilers and pragmas to guide
the compilers—or in libraries with optimized
instruction sequences, which could use
intrinsics.

KNL does not implement Intel’s Transac-
tional Synchronization Extensions. The soft-
ware is expected to confirm hardware
support using a CPUID feature bit to ensure
that it will run on machines with and without

these extensions.

Mesh Architecture

The Intel mesh on-die interconnect architec-
ture (see Figure 6a) is based on the Ring
architecture, which has been widely deployed
in the Intel Xeon processor family. The mesh
features four parallel networks, each of which
delivers different types of packets (for exam-
ple, commands, data, and responses) and is
highly optimized for the KNL traffic flows
and protocols. The mesh can deliver greater
than 700 GBps of total aggregate bandwidth.

The mesh is rows and columns of half
rings, which fold upon themselves at the end-
points. The mesh enforces a YX routing rule,
which means a transaction always travels ver-
tically first until it hits the target row, makes a
turn, and then travels horizontally until it
reaches its destination. Messages arbitrate
with the existing traffic on the mesh at injec-
tion points as well as when making a turn,
with the existing traffic on the mesh taking
higher priority. The static YX routing helps
reduce deadlock cases and thereby simplifies
the protocol. One hop on mesh takes one
clock in the Y direction and two clocks in the
X direction.

Cache Coherency and Distributed Tag Directory
The entire KNL chip is cache coherent and
implemented with a MESIF protocol. The
introduction of the F (forward) state is to
allow efficient sharing. The core with the F
state will be able to provide shared data
directly to the requesting core without going
to memory. A distributed tag directory serves
as a snoop filter that tracks lines that are cur-
rently owned or shared by the cores. It is dis-
tributed among all the tiles. The directory in
each tile owns a portion of the address space
based on an address hash. Figure 6 shows a
simple L2 cache miss flow.
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(SNC) cluster mode.

Cluster Modes

The Intel mesh supports three modes of
clustered operation that provide different
levels of address affinity to improve overall
performance. These cluster modes aim to
lower latencies and improve bandwidth by
lowering the distance that protocol flows
traverse on the chip. These modes are
selectable from the basic I/O system (BIOS)
at boot time.

All-to-all mode. This mode lacks any affinity
between the tile, directory, and memory. It is
the most general mode and has no specific
requirement for the software for memory
configurations, but it typically has lower per-
formance than the other cluster modes. Fig-
ure 6b shows how an L2 miss can traverse the

mesh to fill a cache line from memory for the
all-to-all cluster mode.

Quadrant mode. This mode divides the KNL
chip into four virtual quadrants, each of
which provides affinity between the directory
and the memory. There is no affinity between
a tile and the directory or the memory—that
is, a request from any tile can land on any
directory. However, the directory will access
only the memory in its own quadrant. This
cluster mode requires symmetric memory
(that is, the same total capacity on both
DDR memory controllers). It provides better
latency than the all-to-all mode and is trans-
parent to software support. Figure 6¢ shows
how L2 miss transactions flow in the quad-
rant mode.
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Sub-NUMA clustering (SNC). This mode
extends the quadrant mode further by affini-
tizing the tle with the directory and the
memory. In this mode, the KNL chip is div-
ided and exposed as two or four nonuniform
memory access (NUMA) domains (or clus-
ters) to the OS. For NUMA-optimized soft-
ware (see http://man7.org/linux/man-pages/
man7/numa.7.html), there will be an affinity
between the tile, directory, and memory—that
is, a request from a tile will access a directory in
its cluster and, in turn, the directory will access
the memory controllers that are also within
that cluster (the MCDRAM controllers are
labeled as EDC, and the DDR controllers are
labeled as MC in Figure 6). This cluster mode
has the best latency profile among all modes—
especially under loaded operations—because
most traffic will be contained within the local
cluster. For software to exploit this mode’s per-
formance, it must be NUMA optimized—that
is, it needs to allocate memory in the same
NUMA cluster where it runs. Figure 6d shows
the L2 miss transactions in SNC mode.

Memory Architecture

KNL supports two levels of memory:
MCDRAM and DDR. MCDRAM is a
stacked DRAM architecture (see Figure 7)
comprising multiple channels or vaults on
each DRAM die that are vertically connected

with through-silicon vias.” Note that this is a
conceptual picture and not an actual layout.
Each DRAM die in the stack is partitioned
with multiple banks in each partition. Corre-
sponding partitions from all DRAM dies
when taken together form a channel or vault.
Each channel has its own set of command,
address, and data pins. All of the channels
can be accessed in parallel and provide high
bandwidth for HPC applications. For each
four-high stack, there are a total of 16 inter-
nal channels, with eight banks per channel,
for a total of 128 banks. The large number of
banks allows more parallelism. The page size
is 2,048 bytes.

The DRAM dies are stacked on top of a
logic buffer die that connects to the CPU
through a proprietary on-package I/O, which
runs at a higher frequency than that of the
DRAM core, allowing for a narrower but
much faster interface to the CPU. MCDRAM
memory supports self-refresh and power-
down modes.

Memory Modes

KNL features three primary memory modes:
cache, flat, and hybrid (see Figure 8). These
modes are selectable through the BIOS at
boot time.

Cache mode. In this mode, MCDRAM is
configured as a memory-side cache for the
entire DDR memory. It is a direct-mapped
cache with 64-byte cache lines. The tags are
stored in the error-correcting code bits corre-
sponding to the cache lines. The tags are read
at the same time as the cache lines from the
MCDRAM, allowing determination of hit or
miss without requiring additional tag accesses
from the MCDRAM. Because MCDRAM is
much larger than traditional caches, there is
no significant change in conflict misses due to
the direct-mapped policy in most cases.

In this mode, all requests first go to
MCDRAM for a cache lookup and then, in
case of a miss, are sent to the DDR. The state
of a line in the MCDRAM cache uses a
modified, exclusive, garbage, invalid (MEGI)
protocol. A garbage state means the line has
been reserved for a future write that is guar-
anteed, but the current data is not valid.

Cache mode does not require any soft-
ware change and works well for many
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Figure 8. Three memory modes in KNL. These modes—cache, flat, and hybrid—are

selectable through the BIOS at boot time.

applications. For applications that do not
show a good hit rate in MCDRAM, the
other two memory modes provide more con-
trol to better use MCDRAM.

Flar  mode. This mode presents both
MCDRAM memory and DDR memory as
regular memory mapped in the same system
address space. Flat mode is ideal for applica-
tions that can separate their data into a larger,
lower-bandwidth region and a smaller, higher-
bandwidth region. Accesses to MCDRAM in
flat mode see guaranteed high bandwidth
compared to cache mode, where it depends
on the hit rates. Flat mode requires software
support to enable the application to take

advantage of this mode, unless the workload
can fit entirely in MCDRAM.

Hybrid mode. In this mode, we split either
half or a quarter of the MCDRAM as cache;
the rest is used as flat memory. The cache
portion will serve all of the DDR memory.
This is ideal for a mixture of applications that
benefit from general caching, but also can
take advantage by storing critical or fre-
quently accessed data in flat memory. As with
the flat mode, software enabling is required
to access the flat mode section of MCDRAM
when software does not entirely fit into it.
The cache mode section does not require any
software support.

Flat MCDRAM software architecture. Flat
mode requires software to explicitly allocate
memory into MCDRAM. We created soft-
ware architecture for exposing MCDRAM as

memory by relying on mechanisms that are
already supported in the existing software
stack. This minimizes any major enabling
effort and ensures that applications written
for flat MDRAM remain portable to sys-
tems without flat MCDRAM. This software
architecture is based on the NUMA mem-
ory support (see http://man7.org/linux/
man-pages/man7/numa.7.html) that exists
in current operating systems and is widely
used to optimize software for current multi-
socket systems, as shown in Figure 9b. We
use the same mechanism to expose the two
types of memory on KNL as two separate
NUMA nodes (see Figure 9a). This pro-
vides software with a way to address the two
types of memory using NUMA mecha-
nisms. By default, BIOS sets KNL cores
to have higher affinity to DDR than
MCDRAM. This affinity helps direct all
default and noncritical memory allocations
to DDR, keeping them out of MCDRAM.
To allocate critical memory in MCDRAM,
we provide a HBW _malloc library (https://
with
memory allocation function calls, and a

github.com/memkind/memkind)

Fortran language annotation called FAST-
MEM. Figure 9c shows how we use these
two methods.

The code written using the HBW _malloc
library and FASTMEM attribute will remain
portable. On systems that do not have
MCDRAM memory, these mechanisms will
default to standard memory-allocation poli-
cies. MCDRAM memory behaves just like a
regular NUMA memory in a two-socket sys-
tem for all purposes.
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KNL with 2 NUMA nodes Xeon with 2 NUMA nodes
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Node 0 Node 1 Node O Node 1
(@) (b)
C/C++ (https://github.com/memkind) Intel Fortran
Allocate into DDR Allocate into MCDRAM
. @ Declare arrays to be dynamic
Hlesis ST REAL, ALLOCATABLE :: A(:)
fv = (float *)malloc (sizeof (float)*100) ;
!DEC$ ATTRIBUTES, FASTMEM :: A
NSIZE=1024
Allocate into MCDRAM c allocate array ‘A’ from MCDRAM
@
ALLOCATE (A (1:NSIZE))
float *fv;
fv = (float *)hbw malloc(sizeof (float) * 100);

()

Figure 9. Flat MCDRAM analogy with two-socket Xeon and MCDRAM memory allocation
example. (a) KNL in flat MCDRAM modes boots up, showing two NUMA domains. (b) Two-
socket Xeon with its own memory showing two NUMA domains. (c) Simple code examples
showing the use of functions in HBW_malloc library and FASTMEM attribute in Fortran.

Performance

Figure 10 compares the relative performance
and performance per watt of preproduction
KNL versus a one-socket ES-2697 V3 series
Intel Xeon processor (codenamed Haswell)
for a set of applications covering bandwidth
benchmarks (Stream), dense linear algebra
benchmarks (Linpack), general-purpose work-
loads (SpecInt and SpecFP), scientific algo-
rithms (QCD-Wilson Dslash, MILC, AMG,
SNAP, MiniFE, HPCG, and N-body),
weather modeling code (WREF), earthquake
modeling code (SeiSol), machine learning
(CNN), and financial services code (American
Option Approximation). We use cache mode
for AMG, SNAR MILC, MiniFE, Speclnt,
and SpecFP, and flat mode for the rest. We use
quadrant mode for Linpack, Stream, and
Interest Rate Simulations, and all-to-all mode
for the rest.

On Linpack and Stream, which repre-
sent computing- and bandwidth-bound
workloads, KNL provides 3.7 and 8 times
the performance and 2.5 and 5.5 times the
performance per watt over the one-socket
Haswell, respectively. For other categories
of workloads that are computing and
bandwidth bound to different degrees,

early KNL silicon data, mostly unoptimized
for KNL, show 2 to 5.3 times the perform-
ance and 1.3 to 3.6 times the performance
per watt over one-socket Haswell. On Spec-
Int and SpecFP rates—which exemplify out-
of-box, general-purpose performance—early
KNL silicon data shows 1.2 to 1.7 times the
performance and 0.8 to 1.1 times the per-
formance per watt over one-socket Haswell.
The performance of KNL production silicon
will generally be higher than these numbers.
This shows that KNL delivers respectable
performance and performance per watt for
general-purpose, out-of-box, unoptimized,
parallel code, while providing a significant
performance boost for optimized computing-

and bandwidth-bound workloads.

Knights Landing’s innovations include
its power-efficient core, AVX-512 vec-
tor instruction set, dual MCDRAM and
DDR memory architecture, high-bandwidth
on-die interconnect, and an integrated on-
package network fabric. These innovations
enable the processor to significantly improve
performance for computationally intensive
and bandwidth-bound workloads while still

providing good performance on unoptimized
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Figure 10. Performance and performance-per-watt comparison of a one-socket KNL at 215 W
(preproduction part) versus one-socket Xeon E5-2697v3 at 145 \W. Numbers may vary with

production parts.

legacy workloads, without requiring any spe-
cial way of programming other than the
standard CPU programming model. HICRD
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