Cache Models and Program Transformations

Keshav Pingali
University of Texas at Austin

Goal of lecture

• Develop abstractions of real caches for understanding program performance
• Study the cache performance of matrix-vector multiplication (MVM)
 – simple but important computational science kernel
• Understand MVM program transformations for improving performance

Matrix-vector product

• Code:
 for i = 1,N
 for j = 1,N
 y(i) = y(i) + A(i,j)*x(j)
 Total number of references = 4N^2
 – This assumes that all elements of A,x,y are stored in memory
 – Smart compilers nowadays can register-allocate y(i) in the inner loop
 – You can get this effect manually
 for i = 1,N
 temp = y(i)
 for j = 1,N
 temp = temp + A(i,j)*x(j)
 y(i) = temp
 – To keep things simple, we will not do this but our approach applies to this optimized code as well

Cache abstractions

• Real caches are very complex
• Science is all about tractable and useful abstractions (models) of complex phenomena
 – models are usually approximations
• Can we come up with cache abstractions that are both tractable and useful?
• Focus:
 – two-level memory model: cache + memory
Stack distance

- r_1, r_2: two memory references
 - r_1 occurs earlier than r_2
- stackDistance(r_1, r_2): number of distinct cache lines referenced between r_1 and r_2
- Stack distance was defined by Mattson et al (IBM Systems Journal paper)
 - arguably the most important paper in locality

Modeling approach

- First approximation:
 - ignore conflict misses
 - only cold and capacity misses
- Most problems have some notion of “problem size”
 - (eg) in MVM, the size of the matrix (N) is a natural measure of problem size
- Question: how does the miss ratio change as we increase the problem size?
- Even this is hard, but we can often estimate miss ratios at two extremes
 - large cache model: problem size is small compared to cache capacity
 - small cache model: problem size is large compared to cache capacity
 - we will define these more precisely in the next slide.

Large and small cache models

- Large cache model
 - no capacity misses
 - only cold misses
- Small cache model
 - cold misses: first reference to a line
 - capacity misses: possible for succeeding references to a line
 - let r_1 and r_2 be two successive references to a line
 - assume r_2 will be a capacity miss if stackDistance(r_1, r_2) is some function of problem size
 - argument: as we increase problem size, the second reference will become a miss sooner or later
- For many problems, we can compute
 - miss ratios for small and large cache models
 - problem size transition point from large cache model to small cache model

MVM study

- We will study five scenarios
 - Scenario I
 - i,j loop order, line size = 1 number
 - Scenario II
 - j,i loop order, line size = 1 number
 - Scenario III
 - i,j loop order, line size = b numbers
 - Scenario IV
 - j,i loop order, line size = b numbers
 - Scenario V
 - blocked code, line size = b numbers
Scenario I

- Code:
 for \(i = 1, N \)
 for \(j = 1, N \)
 \(y(i) = y(i) + A(i,j) \cdot x(j) \)

- Inner loop is known as DDOT in NA literature if working on doubles:
 - Double-precision DOT product

- Cache line size
 - 1 number

- Large cache model:
 - Misses:
 - \(A \): \(N^2 \) misses
 - \(x \): \(N \) misses
 - \(y \): \(N \) misses
 - Total = \(N^2 + 2N \)
 - Miss ratio = \(\frac{N^2 + 2N}{4N^2} \)
 \(\approx 0.25 + 0.5/N \)

- Small cache model:
 - \(A \): \(N^2 \) misses
 - \(x \): \(N + N(N-1) \) misses (reuse distance=\(O(N) \))
 - \(y \): \(N \) misses (reuse distance=\(O(1) \))
 - Total = \(2N^2 + N \)
 - Miss ratio = \(\frac{2N^2 + N}{4N^2} \)
 \(\approx 0.5 + 0.25/N \)

- Transition from large cache model to small cache model
 - As problem size increases, when do capacity misses begin to occur?
 - Subtle issue: depends on replacement policy (see next slide)

- Question: as problem size increases, when do capacity misses begin to occur?
- Depends on replacement policy:
 - Optimal replacement:
 - do the best job you can, knowing everything about the computation
 - only \(x \) needs to be cache-resident
 - elements of \(A \) can be "streamed in" and tossed out of cache after use
 - So we need room for \((N+2) \) numbers
 - Transition: \(N + 2 > C \)
 - LRU replacement:
 - by the time we get to end of a row of \(A \), first few elements of \(x \) are "cold" but we do not want them to be replaced
 - Transition: \(2N + 2 > C \)\(\Rightarrow N \approx C/2 \)

- Note:
 - optimal replacement requires perfect knowledge about future
 - most real caches use LRU or something close to it
 - some architectures support "streaming"
 - in hardware
 - in software: hints to tell processor not to cache certain references

Scenario I (contd.)

Address stream: \(\{x(0), A(0,0), x(1), y(1), A(1,0), x(2), y(1), \ldots, A(1,N), x(N), y(1), y(2), A(2,0), x(1), y(2), \ldots \} \)

- Miss ratio graph
 - Jump from large cache model to small cache model will be more gradual in reality because of conflict misses
Scenario II

• Code:
  ```
  for j = 1,N
      for i = 1,N
          y(i) = y(i) + A(i,j)*x(j)
  ```

• Inner loop is known as AXPY in NA literature
 - \(y(i) = \alpha \cdot x + y \)

• Miss ratio picture exactly the same as Scenario I
 - roles of x and y are interchanged

Scenario III

• Code:
  ```
  for i = 1,N
      for j = 1,N
          y(i) = y(i) + A(i,j)*x(j)
  ```

• Cache line size
 - \(b \) numbers

• Large cache model:
 - Misses:
 - \(A \) : \(N^2/b \) misses
 - \(x \) : \(N/b \) misses
 - \(y \) : \(N/b \) misses
 - Total = \((N^2+2N)/b \)
 - Miss ratio = \((N^2+2N)/4bN^2 \)
 \[\approx \frac{0.25}{b} + \frac{0.5}{bN} \]

Scenario III (contd.)

• Small cache model:
 - \(A \) : \(N^2/b \) misses
 - \(x \) : \(N/b + N(N-1)/b \) misses (reuse distance=\(O(N) \))
 - \(y \) : \(N/b \) misses (reuse distance=\(O(1) \))
 - Total = \((2N^2+N)/b \)
 - Miss ratio = \((2N^2+N)/4bN^2 \)
 \[\approx \frac{0.5}{b} + \frac{0.25}{bN} \]

• Transition from large cache model to small cache model
 - As problem size increases, when do capacity misses begin to occur?
 - LRU: roughly when \((2N+2b) = C \)
 - Optimal: roughly when \((N+2b) \approx C \)
 - So miss ratio picture for Scenario III is similar to that of Scenario I but the y-axis is scaled down by \(b \)
 - Typical value of \(b = 4 \) (SGI Octane)

Miss ratio graph

• Jump from large cache model to small cache model will be more gradual in reality because of conflict misses
Scenario IV

- Code:
 for i = 1:N
 for j = 1:N
 y(i) = y(i) + A(i,j) * x(j)

- Large cache model:
 Same as Scenario III

- Small cache model:
 Misses:
 - A : \(N^2 \)
 - x : \(N / b \)
 - y: \(N/b + N(N-1)/b = N^2/b \)
 - Total: \(N^2(1+1/b) + N/b \)

- Transition from large cache to small cache model:
 - LRU: \(Nb + N + b = C \) \(\Rightarrow N ~ C/(b+1) \)
 - optimal: \(N + 2b = C \) \(\Rightarrow N ~ C \)

- Transition happens much sooner than in Scenario III (with LRU replacement)

Scenario V

- Intuition: perform blocked MVM so that data for each blocked MVM fits in cache
 - One estimate for B: all data for block MVM must fit
 \(N^2b + 2Nb ~ C \) \(\Rightarrow B ~ \sqrt{C} \)
 - Actually we can do better than this

- Code: blocked code
 for i = 1:N
 for j = 1:N,B
 for k = 1:min(b-1,N)
 y(i) = y(i) + A(i,j) * x(j)

- Choose block size B so
 - you have large cache model while executing block
 - B is as large as possible (to reduce loop overhead)
 - for our example, this means \(B \approx \frac{c}{2} \) for row-major order of storage and LRU replacement

- Since entire MVM computation is a sequence of block MVMs, this means miss ratio will be \(0.25/b \) independent of N
Miss ratios

Key transformations

- Loop permutation
 \[\begin{align*}
 &\text{for } i = 1, N \\
 &\text{for } j = 1, N \\
 &S \\
 &\text{for } j = 1, N \\
 &S
 \end{align*}\]

- Strip-mining
 \[\begin{align*}
 &\text{for } i = 1, N \\
 &S \\
 &\text{for } i = 1, N \\
 &S \\
 &\text{for } i = b, \min(b, N) \\
 &S
 \end{align*}\]

- Loop tiling = strip-mine and interchange
 \[\begin{align*}
 &\text{for } i = 1, N \\
 &S \\
 &\text{for } i = 1, N \\
 &S \\
 &\text{for } j = 1, N \\
 &S \\
 &\text{for } j = b, \min(b + 1, N) \\
 &S
 \end{align*}\]

Notes

- Strip-mining does not change the order in which loop body instances are executed
 – so it is always legal
- Loop permutation and tiling do change the order in which loop body instances are executed
 – so they are not always legal
- For MVM and MMM, they are legal, so there are many variations of these kernels that can be generated by using these transformations
 – different versions have different memory behavior as we have seen

Matrix multiplication

- We have studied MVM in detail.
- In dense linear algebra, matrix-matrix multiplication is more important.
- Everything we have learnt about MVM carries over to MMM fortunately, but there are more variations to consider since there are three matrices and three loops.
Three loops: I, J, K
- You can show that all six permutations of these three loops compute the same values.
- As in MVM, the cache behavior of the six versions is different

IJK version of matrix multiplication

- K loop innermost
 - A: good spatial locality
 - C: good temporal locality
- I loop innermost
 - B: good temporal locality
- J loop innermost
 - B: good spatial locality
 - A: good temporal locality
- So we would expect IKJKU versions to perform best, followed by IJKJK, followed by JKJKU

Observations

- Miss ratios depend on which loop is in innermost position
 - so there are three distinct miss ratio graphs
- Large cache behavior can be seen very clearly and all six version perform similarly in that region
- Big spikes are due to conflict misses for particular matrix sizes
 - notice that versions with J loop innermost have few conflict misses (why?)
IJK version (large cache)

```
DO I = 1, N/row-major storage
DO J = 1, N
DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)
```

- **Large cache scenario:**
 - Matrices are small enough to fit into cache
 - Only cold misses, no capacity misses
 - Miss ratio:
 - Data size = $3N^2$
 - Each miss brings in b floating-point numbers
 - Miss ratio = $3N^2/b*4N^3 = 0.75/bN$ (eg) 0.019 ($b=4,N=10$)

IJK version (small cache)

```
DO I = 1, N/row-major storage
DO J = 1, N
DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)
```

- **Small cache scenario:**
 - Matrices are large compared to cache
 - Stack distance is not $O(1)$ => miss
 - Cold and capacity misses
 - Miss ratio:
 - C: N^2/b misses (good temporal locality)
 - A: N^2b misses (good spatial locality)
 - B: N^3 misses (poor temporal and spatial locality)
 - Miss ratio $0.25(b+1)/b = 0.3125$ (for $b=4$)

Miss ratios for other versions

```
DO I = 1, N/row-major storage
DO J = 1, N
DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)
```

- **K loop innermost**
 - A: good spatial locality
 - C: good temporal locality
 - Miss ratio $0.25(b+1)/b$

- **I loop innermost**
 - B: good temporal locality
 - Miss ratio $(N^3/b + N^2 + N^2)/4N^3 \Rightarrow 0.5$

- **J loop innermost**
 - B, C: good spatial locality
 - A: good temporal locality
 - Miss ratio $(N^2b + N^2b + N^2b)/4N^3 \Rightarrow 0.5b$

- So we would expect IKJ/KIU versions to perform best, followed by IJK/JIK, followed by JKI/KJI
MMM experiments
L1 Cache Miss Ratio for Intel Pentium III
- MMM with \(N = 1 \ldots 1000 \)
 - 16KB 32B Block 4-way 8-byte elements

Can we predict this?

Transition out of large cache
DO \(I = 1, \frac{N}{\text{row-major storage}} \)
DO \(J = 1, N \)
DO \(K = 1, N \)
\(C(I,J) = C(I,J) + A(I,K)B(K,J) \)

- Find the data element(s) that are reused with the largest stack distance
- Determine the condition on \(N \) for that to be less than \(C \)
- For our problem:
 - \(N^2 + N + b < C \) (with optimal replacement)
 - \(N^2 + 2N < C \) (with LRU replacement)
 - In either case, we get \(N \approx \sqrt{C} \)
 - For our cache, we get \(N \approx 45 \) which agrees quite well with data

Blocked code
As in blocked MVM, we actually need to stripmine only two loops

Notes
- So far, we have considered a two-level memory hierarchy
- Real machines have multiple level memory hierarchies
- In principle, we need to block for all levels of the memory hierarchy
- In practice, matrix multiplication with really large matrices is very rare
 - MMM shows up mainly in blocked matrix factorizations
 - therefore, it is enough to block for registers, and L1/L2 cache levels
- How do we organize such a code?
 - We will study the code produced by ATLAS.
 - ATLAS also introduces us to self-optimizing programs.