Recall: MMM miss ratios

I1 Cache Miss Ratio for Intel Pentium III
- MMM with N = 1...1300
- 14KB 32B/Block 4-way 8-byte elements

IJK version (large cache)

- Data size = 3 N²
- Each miss brings in b floating-point numbers
- Miss ratio = 3 N² b⁻¹ * 4N = 0.75bN = 0.019 (b = 4, N = 10)

IJK version (small cache)

- Matrices are large compared to cache
- Miss ratio:
 - C: N²b misses (good temporal locality)
 - A: N³b misses (good spatial locality)
 - B: N³ misses (poor temporal and spatial locality)
- Miss ratio → 0.25 (b+1)/b = 0.3125 (for b = 4)
MMM experiments

L1 Cache Miss Ratio for Intel Pentium III
- MMM with $N = 1 \ldots 1300$
- 16KB 32B/Block 4-way 8-byte elements

Can we predict this?

How large can matrices be and still not suffer capacity misses?

\[
\text{DO } I = 1, M \\
\text{DO } J = 1, N \\
\text{DO } K = 1, P \\
C(I,J) = C(I,J) + A(I,K)B(K,J)
\]

- How large can these matrices be without suffering capacity misses?
 - Each iteration of outermost loop walks over entire B matrix, so all of B must be in cache
 - We walk over rows of A and successive iterations of middle loop touch same row of A, so one row of A must be in cache
 - We walk over elements of C one at a time.
 - So inequality is $NP + P + 1 \leq C$

Check with experiment

- For our machine, capacity of L1 cache is 16KB/8 doubles = 2^{11} doubles
- If matrices are square, we must solve $N^2 + N + 1 = 2^{11}$
 - which gives us $N = 45$
- This agrees well with experiment.

High-level picture of high-performance MMM code

- Block the code for each level of memory hierarchy
 - Registers
 - L1 cache
 -
- Choose block sizes at each level using the theory described previously
 - Useful optimization: choose block size at level $L+1$ to be multiple of the block size at level L
ATLAS

- Library generator for MMM and other BLAS
- Blocks only for registers and L1 cache
- Uses search to determine block sizes, rather than the analytical formulas we used
 - Search takes more time, but we do it once when library is produced
- Let us study structure of ATLAS in little more detail

Our approach

- Original ATLAS Infrastructure
- Model-Based ATLAS Infrastructure

Optimizations

- Cache-level blocking (tiling)
 - Atlas blocks only for L1 cache
- Register-level blocking
 - Important to hold array values in registers
 - MU,NU: register tile size
- Software pipelining
- Unroll and schedule operations
- Latency, xFetch: scheduling parameters
- Versioning
 - Dynamically decide which way to compute
- Back-end compiler optimizations
 - Scalar Optimizations
 - Instruction Scheduling

BLAS

- Let us focus on MMM:
  ```c
  for (int i = 0; i < M; i++)
  for (int j = 0; j < N; j++)
  for (int k = 0; k < K; k++)
      C[i][j] += A[i][k]*B[k][j]
  ```
- Properties
 - Very good reuse: O(N^2) data, O(N^3) computation
 - Many optimization opportunities
 - Few "real" dependencies
 - Will run poorly on modern machines
 - Poor use of cache and registers
 - Poor use of processor pipelines
Cache-level blocking (tiling)

- Tiling in ATLAS
 - Only square tiles (NBxNBxNB)
 - Working set of tile fits in L1
 - Tiles are usually copied to continuous storage
 - Special “clean-up” code generated for boundaries

- Mini-MMM

  ```
  for (int j = 0; j < NB; j++)
  for (int i = 0; i < NB; i++)
  for (int k = 0; k < NB; k++)
  C[i][j] += A[i][k] * B[k][j]
  ```

 NB: Optimization parameter

Register-level blocking

- Micro-MMM
 - A: MUx1
 - B: 1xNU
 - C: MUxNU

 MUxNU+MU+NU registers

 Unroll loops by MU, NU, and KU

 Mini-MMM with Micro-MMM inside

  ```
  for (int j = 0; j < NB; j += NU)
  for (int i = 0; i < NB; i += MU)
  load C[i..i+MU-1, j..j+NU-1] into registers
  for (int k = 0; k < NB; k++)
  load A[i..i+MU-1,k] into registers
  load B[k,j..j+NU-1] into registers
  multiply A's and B's and add to C's
  store C[i..i+MU-1, j..j+NU-1]
  ```

 Special clean-up code required if NB is not a multiple of MU,NU,KU

 MU, NU, KU: optimization parameters

Scheduling

- FMA Present?
- Schedule Computation
 - Using Latency
- Schedule Memory Operations
 - Using IFetch, NFetch, FFetch

- Latency, xFetch: optimization parameters

Search Strategy

- Multi-dimensional optimization problem:
 - Independent parameters: NB, MU, NU, KU, ...
 - Dependent variable: MFlops
 - Function from parameters to variables is given implicitly; can be evaluated repeatedly

- One optimization strategy: orthogonal line search
 - Optimize along one dimension at a time, using reference values for parameters not yet optimized
 - Not guaranteed to find optimal point, but might come close
Find Best NB

- Search in following range
 - $16 \leq NB \leq 80$
 - $NB^2 \leq L1Size$
- In this search, use simple estimates for other parameters
 - (eg) KU: Test each candidate for
 - Full K unrolling ($KU = NB$)
 - No K unrolling ($KU = 1$)

Model-based optimization

- Original ATLAS Infrastructure
- Model-Based ATLAS Infrastructure

Modeling for Optimization Parameters

- Optimization parameters
 - NB
 - Hierarchy of Models (later)
 - MU, NU
 - $MU \times NU + MU + NU + Latency \leq NR$
 - KU
 - $Latency$
 - $\lfloor L + \frac{1}{2} \rfloor$
 - MulAdd
 - Hardware parameter
 - xFetch
 - Set to 2

Largest NB for no capacity/conflict misses

- If tiles are copied into contiguous memory, condition for only cold misses:
 - $3 \times NB^2 \leq L1Size$
Largest NB for no capacity misses

- MMM:
 - for (int j = 0; i < N; i++)
 - for (int i = 0; j < N; j++)
 - for (int k = 0; k < N; k++)
 - c[i][j] += a[i][k] * b[k][j]

- Cache model:
 - Fully associative
 - Line size 1 Word
 - Optimal Replacement

- Bottom line:
 - $NB^2 + NB + 1 < C$
 - One full matrix
 - One row / column
 - One element

Summary: Modeling for Tile Size (NB)

- Models of increasing complexity
 - $2NB^2 < C$
 - Whole work-set fits in L1
 - $NB^2 + NB + 1 < C$
 - Fully Associative
 - Optimal Replacement
 - Line Size: 1 word
 - $NB^2 + NB + 1 < C$
 - Line Size > 1 word
 - $NB^2 + NB + 1 < C$
 - LRU Replacement

Summary of model

Experiments

- Ten modern architectures
- Model did well on
 - RISC architectures
 - UltraSparc: did better
- Model did not do as well on
 - Itanium
 - CISC architectures
- Substantial gap between ATLAS CGw/S and ATLAS Unleashed on some architectures
Some sensitivity graphs for Alpha 21264

Eliminating performance gaps
- Think globally, search locally
- Gap between model-based optimization and empirical optimization can be eliminated by
 - Local search:
 - for small performance gaps
 - in neighborhood of model-predicted values
 - Model refinement:
 - for large performance gaps
 - must be done manually
 - (future) machine learning: learn new models automatically
- Model-based optimization and empirical optimization are not in conflict

Small performance gap: Alpha 21264
- ATLAS CGw/S:
 - mini-MMM: 1300 MFlops
 - NB = 72
 - (MU,NU) = (4,4)
- ATLAS Model:
 - mini-MMM: 1200 MFlops
 - NB = 84
 - (MU,NU) = (4,4)

- Local search
 - Around model-predicted NB
 - Hill-climbing not useful
 - Search interval: [NB-\text{lcm}(MU,NU),NB+\text{lcm}(MU,NU)]
 - Local search for MU,NU
 - Hill-climbing OK

Large performance gap: Itanium
- Performance of mini-MMM
 - ATLAS CGw/S: 4000 MFlops
 - ATLAS Model: 1800 MFlops

- Problem with NB value
 - ATLAS Model: 30
 - ATLAS CGw/S: 80 (search space max)

Local search will not solve problem.
Itanium diagnosis and solution

- Memory hierarchy
 - L1 data cache: 16 KB
 - L2 cache: 256 KB
 - L3 cache: 3 MB
- Diagnosis:
 - Model tiles for L1 cache
 - On Itanium, FP values not cached in L1 cache!
 - Performance gap goes away if we model for L2 cache (NB = 105)
 - Obtain even better performance if we model for L3 cache (NB = 300, 4.6 GFlops)
- Problem:
 - Tiling for L2 or L3 may be better than tiling for L1
 - How do we determine which cache level to tile for??
- Our solution: model refinement + a little search
 - Determine tile sizes for all cache levels
 - Choose between them empirically

Opteron diagnosis and solution

- Opteron characteristics
 - Small number of logical registers
 - Out-of-order issue
 - Register renaming
- For such processors, it is better to
 - let hardware take care of scheduling dependent instructions,
 - use logical registers to implement a bigger register tile.
- x86 has 8 logical registers
 - register tiles must be of the form (x,1) or (1,x)

Large performance gap: Opteron

- MMM Performance
 - Performance of mini-MMM
 - ATLAS CGw/S: 2072 MFlops
 - ATLAS Model: 1282 MFlops
 - Key differences in parameter values: MU/NU
 - ATLAS CGw/S: (6,1)
 - ATLAS Model: (2,1)

Refined model

\[
\begin{align*}
\text{Estimating } F_{MM} & : \\
\text{Estimating } F_{RX} & : \\
\text{Estimating } F_{RL} & : \\
\text{Estimating } F_{RR} & : \\
\text{Estimating } F_{RX} & : \\
\text{Estimating } F_{RL} & : \\
\text{Estimating } F_{RR} & :
\end{align*}
\]
Bottom line

- Refined model is not complex.
- Refined model by itself eliminates most performance gaps.
- Local search eliminates all performance gaps.

Future Directions

- Repeat study with FFTW/SPRAL
 - Uses search to choose between algorithms
- Feed insights back into compilers
 - Build a linear algebra compiler for generating high-performance code for dense linear algebra codes
 - Start from high-level algorithmic descriptions
 - Use restructuring compiler technology
 - Part IBM PERCS Project
 - Generalize to other problem domains