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Abstract

Are imperative languages tied inseparably to the von Neumann model or can they be implemented
in some natural way on data�ow architectures� In this paper� we show how imperative language

programs can be translated into data�ow graphs and executed on a data�ow machine like Monsoon�
This translation can exploit both �ne�grain and coarse�grain parallelism in imperative language pro�

grams� More importantly� we establish a close connection between our work and current research
in the imperative languages community on data dependences� control dependences� program de�

pendence graphs� and static single assignment form� These results suggest that data�ow graphs
can serve as an executable intermediate representation in parallelizing compilers�
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� Introduction

Imperative and declarative schools of parallel computation o�er competing approaches to exploit�
ing parallelism� The imperative school takes a conservative position on both languages and ar�
chitectures � it believes in using conventional� imperative languages like fortran to program

interconnections of von Neumann processors 	�
� ���� The declarative school� on the other hand�
is radical in its approach to both languages and architectures � it believes in using functional

or logic programming languages 	�
� ��� to program data�ow and reduction machines 	�� ��� ����
Are these approaches contradictory and irreconcilable or can we �nd some middle ground� We are

far from being able to answer this question� but to do so� it will be necessary to separate out the
e�ects of language from those of architecture� In particular� we must answer the following question�

Are imperative languages tied inseparably to the von Neumann model or can they be implemented
e�ciently on data�ow machines�

At �rst sight� data�ow machines appear ill�suited to executing imperative language programs�
Traditionally� the data�ow model has been tied closely to functional languages� for example�
data�ow operators in both the static and dynamic models of data�ow are functions from inputs

to outputs 	�� ���� Moreover� data�ow machines have no program counter to sequence operations�
rather� instructions are scheduled dynamically for execution whenever they receive input data� This

is in stark contrast to the traditional operational semantics of imperative language programs� Each
statement in an imperative language program is a command whose execution causes a change in a

global� updatable store� Sequencing of command execution is achieved through a program counter
which speci�es the unique next instruction to be executed� The existence of a program counter

in the underlying operational model is re�ected in the programming language through commands
such as goto�s that modify the program counter� Thus� there is a wide gulf between the data�ow

model of execution and the standard operational semantics of imperative languages�
Given these di�erences� is it possible to execute imperative language programs on data�ow

machines� Some researchers have proposed to achieve this goal by extending data�ow graphs with

imperative operators� and executing the entire graph sequentially using a �thread descriptor� 	��� to
simulate a program counter� In our opinion� this is really a simulation of von Neumann instruction

sequencing on a data�ow machine� which exploits neither the parallelism that can be found in the
source program by a parallelizing compiler� nor the potential for parallel execution in the data�ow

hardware�
In this paper� we exhibit a translation of imperative language programs into data�ow graphs

which can be executed on a data�ow machine like Monsoon 	���� This translation uses information
about program dependencies to expose instruction�level parallelism in the data�ow graph� The

bene�ts of this are manifold�

�� For data�ow researchers� our results mean that their machines can be programmed in con�
ventional imperative languages like FORTRAN� This will vastly increase the potential user

community of these machines�

�� For imperative language programmers and compiler writers� we o�er a parallel model of
execution for their programs� in which synchronization is cheap and in which details such as
the number of processors� communication network topology� distribution of data structures�

etc� are abstracted away� Such a model is ideally suited for measuring the extent to which
parallelization techniques can expose parallelism in imperative language programs�
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�� We establish a close connection between our work and current e�orts in the imperative lan�
guages community to de�ne a good intermediate representation for parallelizing compilers�
We relate our work to data dependences ����	 control dependences	 program dependence
graphs ���	 
�	 and static single assignment form ���� We have used the results in this pa�
per to de�ne an executable intermediate program representation	 for both imperative and
declarative languages	 that appears to be superior to existing ones �����

The rest of the paper is organized as follows� In Section ���	 we describe control�
ow graphs for
a simple imperative language� In Section ���	 we describe our data
ow model	 and in Section ���
we show a simple translation of imperative programs into data
ow graphs� This translation does
not exploit any parallelism across the statements of the source program� In Section �	 we re�ne
our translation by parallelizing independent memory operations� Section � discusses a further
re�nement that increases parallelism by avoiding redundant control operations� this re�nement is
related to the notions of control dependences and static single assignment form� The development in
these sections ignores aliasing and data structures� However	 any realistic scheme for implementing
imperative languages on a parallel machine must take these factors into account� In Section �	 we
present a translation that handles aliasing and sketch one way to use data dependence information
to parallelize array operations� We conclude in Section 
 by contrasting our approach with related
e�orts�

� A Framework for Translation

In this section	 we show a simple translation of imperative language programs to data
ow graphs�
Even though this scheme does not exploit parallelism across statements	 it is a useful �rst step
towards deriving the more sophisticated translation presented in Section �� We also introduce a
fairly standard data
ow execution model� with minor changes	 the data
ow graphs in this paper
can be executed on the Monsoon data
ow machine being built at M�I�T� ��
��

��� Control��ow graphs

The translation begins with the statement level control�
ow graph �CFG� for the source program�
Nodes in this graph correspond to statements of three types�

�� assignments of the form x �� e	

�� forks of the form if p then goto lt else goto lf
�	 and

�� labeled joins which represent no computation	 but are the only nodes in the graph which can
be the target of goto�s�

An edge from node A to node B indicates that execution of node A may be followed immediately
by execution of node B� There is a unique initial node labeled start which has no incoming edges	
and a unique �nal node labeled end	 which has no out�going edges� By convention	 an edge is
added between start and end	 and thus start is a fork in the control�
ow graph ����� Every node

�Our development can be generalized to multi�way branches� but we restrict discussion to binary branches for

simplicity�
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Figure �� An Example Control�Flow Graph

lies on some path from start to end� Algorithms for translating high�level language programs into
control�
ow graphs are well�known ����

We denote the fact that node N is a predecessor of M in the control�
ow graph by N � M �

A non�null control�
ow path between N and M is denoted N
�
�M � The out�edges of a fork are

indexed by a boolean� we refer to this as the out�direction of the edge�
We will use the following program as a running example�

start�

l� join
y �� x� �
x �� x� �
if x � � then goto l else goto end

end�

Figure � illustrates the CFG for this program�

��� Data�ow Model

We will use a conventional explicit token store data
ow machine as our model of execution� In this
model	 each invocation of a procedure and each loop iteration gets an activation context	 which
is analogous to a stack frame in conventional computers� Frame memory takes the place of the
waiting�matching section in earlier dynamic data
ow models� tokens destined for an operator with
more than one input will rendezvous at a �xed location in some frame�

One important aspect of our model is the behavior of memory� While every data
ow machine

has updatable storage locations	 the existence of such locations in the implementation is not directly
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Figure �� Key To Data�ow Schema Symbols

re�ected in standard data�owmodels ��� ��� Instead� these models provide an abstraction of storage�
such as I�structure storage� in which locations are written into at most once �	�� In our model of

data�ow� memory locations can be written more than once� Thus� the result of a read can depend
on the order of memory operations
 in these cases correct ordering must be observed by the data�ow

program graph� To facilitate such ordering� each load and store operation consumes a �dummy�
token at its input and generates another at its output when the operation has completed� These

tokens are used only to sequence load and store operations
 the value they carry is irrelevant� As in
all data�ow models� loads and stores are implemented as split�phase operations to avoid blocking

the processor pipeline while a memory operation is underway�
In our opinion� this extension makes the data�ow model more useful while preserving the

essential feature that execution of the program is accomplished by the concurrent execution of

operators that test conditions at their inputs and outputs to determine when to execute�
There is no standard textual representation of data�ow programs� Instead they are represented

as graphs� with operations speci
ed at the nodes and the propagation of tokens between nodes
shown as arcs� For clarity� we use dotted lines to represent arcs that carry dummy tokens used

for coordinating memory operations� General subgraphs are represented by rectangles bearing an
appropriate label
 expression subgraphs are represented by labeled triangles�

Three important operators are shown in Figure �� A switch is a special operation that has two
inputs x and y� and two outputs zt and zf � When tokens are present on both x and y� the token

on x is output to either zt or zf according to the boolean value carried by the token on y� A merge

operator has inputs x�� x�� � � � and output z� A token arriving on any input is output on z� In the
translation� we will use switch to model forking of control at forks� and merge to model joins� A

synch tree has n inputs and a single output
 once a token has arrived on each of the n inputs� a
token is output�

��� A Simple Translation

To translate control��ow graphs into data�ow graphs� we apply a compositional translation
scheme that translates each assignment and conditional statement in the control��ow graph ac�

cording to the rules shown in Figure 	� The graphs for the expressions e and p are not shown� A
detailed view of the read block in Figure 	 is shown in Figure �� Joins are simply translated to a

data�ow merge� The nodes labeled start and end in the control��ow graph are translated to nodes
with the same labels in the data�ow graph� Figure � illustrates the translation for our example
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Figure 	� Schema � � Implementing Sequential Semantics
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Figure �� Detail of Schema � Read Block
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Figure �� Example of Schema � Translation
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Figure �� Schema � � Re�ning Access Control

control��ow graph�

Execution of the data�ow graph is achieved by circulating a token along the dotted arcs of

the data�ow graph� This token plays a role similar to that of the program counter in executing a

control��ow graph � it originates at start� visits statements in sequence� and visits every memory

operation within a statement in sequence� Conditional branching in the control��ow graph is

implemented through a switch operator that directs this token to one of two possible destinations�

Notice that this token does not carry any value since it represents permission to access the stored

state of the program variables� Therefore� we will call it the access token�

This schema correctly implements the sequential semantics of control��ow graphs� Expression

parallelism is allowed within a single statement� but statements are executed one at a time� This

ordering of operations is more restrictive than it needs to be� In the next section� we re�ne our

schema to allow parallelism across the statements of a program�

� Parallelizing Memory Operations

Since operations on di	erent memory locations need not be sequentialized� we can enhance paral�

lelism in the data�ow graph by circulating a set of access tokens� one for each variable� To simplify

the presentation of this schema� we will assume initially that there is no aliasing � therefore� every

variable denotes a unique memory location� We will denote the token that represents access to the

variable named x by accessx� Its arrival at a statement means that all previous memory opera�

tions on location x have completed� Therefore� a memory operation on x begins when it receives

the token accessx at its input� and it propagates the token to its output when the operation is

complete�
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Figure �� Detail of Schema � Read Block

In translation Schema �� illustrated in Figures � and �� the circulation of a single access token

has been replaced by a set of access tokens corresponding to variable names� Tokens representing

variables not used by an assignment statement �ow directly to the next statement� By allowing

independent memory operations to proceed in parallel� we are exploiting �ne�grain parallelism

across statements�

Readers familiar with the data�ow model of execution may �nd it odd that all communication

of values between statements is through memory� The assignment schema begins by reading the

values it will reference� and ends by storing a result� The ability of data�ow tokens to carry useful

values is used only in the calculation of expressions and predicates� Access tokens that �ow between

nodes are dummy tokens which carry no useful value� but are used only for synchronization�

It would be possible to replace every accessx token in Schema � with a token carrying the

value of x� This is true because we have disallowed array references and aliasing� We retain the

memory�based description of Schema � in order to allow us to generalize it in Section � to account

for these complications�

Unfortunately� naively translating each statement using Schema � does not work correctly if

there is a cycle� Consider the data�ow graph corresponding to our running example� illustrated

in Figure 
� For now� let us ignore the boxes labeled loop entry and loop exit� Operations on

location x can proceed independently of operations on location y� When the load operator labeled

L �res� it produces a token at the input of the increment operator labeled I� The token accessx

is passed on to the second statement where operations on x are allowed to proceed� When these

operators complete� the token accessx can start on a new iteration of the loop� returning to the

�rst statement� and the load operator labeled L can �re again�

It is easy to verify that the load operator labeled L can �re an unbounded number of times before

the increment operator labeled I �res� In explicit token store machines like Monsoon� as in static

data�ow architectures� each arc can hold at most one token� In tagged�token data�ow machines�

tokens belonging to di	erent iterations must have di	erent tags� and we have not introduced any

operators yet for generating such tags� Therefore� if we ignore the loop control boxes� the graph

shown in Figure 
 does not specify a meaningful data�ow computation��

This problem arises whenever the control��ow graph has cycles in it� To identify cycles in

�There was no problem with cycles under Schema � since statements were not executed in parallel in that

translation�
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general control��ow graphs that may arise from unstructured source programs� we perform an
interval decomposition of the control��ow graph ��	
 An interval is a generalization of a loop and
is a maximal� single entry subgraph having a unique node called the header which is the only
entry node and in which all cyclic paths contain the header
 Notice that any subgraph that
strictly contains an interval cannot itself be an interval
 On the other hand� if the inner intervals
are collapsed to single nodes �and self�loops are eliminated�� the outer subgraph may become an
interval in the new graph
 It can be shown that most control��ow graphs arising from programs
can be decomposed hierarchically into nested intervals this way 
 if we allow code copying� then
any control��ow graph can be decomposed into such nested intervals�


To translate control��ow graphs into data�ow code� we �rst decompose the control��ow graph
into nested intervals and introduce two new statements called loop control statements at the entry
and exit of each cyclic interval
 Arcs leading to the header from outside the interval are changed
to lead to a single loop entry statement� which then leads to the header
 All arcs from within the
interval back to the header are changed to lead back to the loop entry node
 A loop exit statement
is placed on any edge that exits the cyclic part of the interval 
 that is� on any edge A � B
in which there a path in the interval from A to the header� but not from B to the header
 This
transformed control��ow graph can then be translated as in Schema �


How should we translate the new statements into data�ow operators� This depends intimately
on the model of data�ow we assume
 On Monsoon� the loop entry statement could be translated into
code that allocated a frame for the next iteration� while the loop exit operator could be translated
into code that returned tokens from the last iteration of the loop
 There are many other possible
approaches to data�ow loop control� and we will not specify the implementation of the loop control
statements any further
 The interested reader is referred to the data�ow literature ��� ��	
 In the
rest of the paper� we leave the loop control operators as black boxes� and in translation Schema
�� we will simply require that each of them takes the complete set of access tokens as input and
produces this set again as output
 In Section �� we will relax this requirement to allow some access
tokens to bypass loops in which they are not needed� thereby increasing parallelism


Notice that corresponding to every edge in the control��ow graph there is one edge in the
data�ow graph for each variable in the program
 Therefore� if E is the number of edges in the
control��ow graph and V is the number of variables� then the size of the data�ow graph is O�E �V �


� Optimizing the Data�ow Graph

Schema � exploits parallelism between independent memory operations by using access tokens
that circulate independently
 However� these access tokens still �ow along the path of sequential
execution 
 that is� they �ow through every node that is executed even if they play no role
in the execution of that node
 This can result in access tokens �owing through switch operators
needlessly� which introduces unnecessary order constraints
 An example of this is shown in Figure �

Figure ��a� shows a control��ow graph in which x is not used within the if�then�else construct

Figure ��b� is the corresponding data�ow graph produced by Schema �
 Clearly� the switch operator
for accessx is unnecessary
 Eliminating this switch and sending accessx directly from the statement
x �� x�� to the statement x �� � results in a more parallel program with no order imposed between
the calculation of the predicate w � � and the execution of the second assignment to x
 Notice

�For structured programs� this is the same as identifying all loops�
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that in the optimized program� the accessx token does not �ow along a control��ow path since it

bypasses the conditional construct altogether�
This suggests that one way to optimize the data�ow graph produced by Schema � is to eliminate

switches whose outputs are immediately merged together in the data�ow graph� The elimination of

such redundant switches may make other switches redundant� As an example� consider a program in
which one if�then�else construct is nested within another if�then�else� neither of which use x� Once

the inner switch for accessx is recognized as redundant and removed� the outer switch for accessx
becomes redundant� These newly redundant switches may be eliminated in turn� A generalization

of this idea� which also allows access tokens to bypass loops in which they are not needed� leads to
an iterative algorithm for redundant switch elimination and was discussed at length in an earlier

version of this paper ����
Rather than optimize iteratively the data�ow graph produced by Schema �� we develop a direct

construction that avoids introducing unnecessary switches� Notice that the problem is trivial if the
source language has only structured conditionals and loops� since the program can be decomposed
hierarchically� and syntactic analysis is su�cient to determine which access tokens are needed in

each portion of the program�
With unstructured control��ow the problem is harder� but it can be viewed as a generalization

of the structured case� Rather than look for uses of variables inside loops and conditionals� consider
the portion of the control��ow graph between a node N and its immediate postdominator� P � Every

control��ow path starting at N ultimately ends up at P � Suppose that there is no reference to a
variable x in any node on any path between N and P � It is clear that an access token for x that

enters N may bypass this region of the graph altogether and go directly to P �
This intuitive idea is formalized in Section 	�
� For each variable x� we identify fork nodes

in the control��ow graph where switches must be introduced for accessx� We show that switch
placement can be e�ciently computed using the postdominator tree of the control��ow graph� In
Section 	��� we present an algorithm which uses the switch placement information to construct

directly a data�ow graph without any redundant switches�

��� Switch Placement

We �rst give a simple characterization of where switches are needed and then show how this

information can be e�ciently computed� This characterization is closely tied to the notion of
control dependence �

��

The following de�nition captures the intuitive idea of a node being between another node and
its immediate postdominator�

De�nition � If F is a node in the control��ow graph� we say that node N is between F and its

immediate postdominator P i� there exists a non�null path F
�
�N that does not pass through P �

Since the path F
�
�N can be extended to pass through P � it is natural to think of N as being

between F and P � If N lies between F and P � our intuitive characterization says that we must

�A CFG node M postdominates node N i� every path from N to end passes through M ����� Postdomination
is re�exive� every node postdominates itself� If M postdominates N � and M and N are distinct nodes� M is said
to be a strict postdominator of N � Every node has a unique immediate postdominator which is its closest strict
postdominator on any path to end� The immediate postdominator relation is tree structured� and can be computed
in O	E
 time �����
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 An Example of Restrictive Sequential Ordering

�



introduce switches at F for all the access tokens needed by N � The following de�nition formalizes
this intuitive description�

De�nition � Let F and N be nodes in the control��ow graph� F needs a switch for N i� N is

between F and its immediate postdominator�

We apply this general notion to de�ne needing a switch for accessx�

De�nition � F needs a switch for accessx if F needs a switch for some N that contains a reference

to variable x�

Having characterized where switches are needed for the access token of each variable� we show
how this information may be computed e�ciently� This is done by relating this problem to that of
computing control dependences �����

De�nition � A node N is control dependent on node F i�

�� there is a non�null path p � F
�
�N such that N postdominates every node after F on the path

p� and

�� N does not strictly postdominate the node F �

Let CD�N	 denote the set of nodes on which N is control dependent� for S� a set of nodes� we let

CD�S	 

S
N�S CD�N	�

As we will prove in Corollary �� the set of forks that need a switch for N is exactly the iterated
control dependence set of N � This set contains all nodes that N is control dependent on� together
with all nodes that these nodes are themselves control dependent on� etc� More formally� we have
the following de�nition�

De�nition � The iterated control dependence set of node N � denoted CD��N	� is the limit of the

following sequence of sets�

CD��N	 
 CD�N	

CDi���N	 
 CDi�N	� CD�CDi�N		

Theorem � If F and N are nodes in the control��ow graph� then N is between F and its immediate

postdominator i� F � CD��N	�

Proof� Let P be the immediate postdominator of F �
��	 Given that N is between F and P �

Let p be a path F
�
�N that does not pass through P � Suppose that N postdominates all nodes

on p between F and N after F � Notice that N cannot strictly postdominate F since P does not
appear on path p� Therefore� N is control dependent on F � Otherwise� there is at least one node
on path p other than F that is not postdominated by N � If F� is the last such node on path p��
then clearly N is control dependent on F�� so F� � CD�N	� Now� consider the portion of path
p between F and F�� If F� postdominates all the nodes on p� between F and F� other than F �
then F � CD�F�	� which implies that F � CD��N	 and we are done� Otherwise� we can apply the
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worklist � f g
for each variable x do

for each node N do

mark N as unvisited

for each node N that references x do
worklist � worklist � fNg
mark N as visited

while worklist not empty do
remove N from worklist
for all F on which N is control dependent do

mark F as needing a switch for accessx
if F unvisited then

worklist � worklist � fFg
mark F as visited

Figure ��� Algorithm for Switch Placement

construction again to the path between F and F� to �nd a node F� between F and F� such that
F� � CD�F�	 etc� Since the length of the path under consideration decreases each time� it follows
that F � CD��N	�

��	 Given F � CD��N	� The proof is an induction on the de�nition of CD��N	�
Suppose that F � CD�N	� Then N postdominates all nodes on a path p from F to N other

than F � but does not strictly postdominate F � Therefore� P cannot occur on path p� Hence� there
is path from F to N that does not pass through P �

Inductively� suppose that F� � CDi�N	 and F � CD�F�	� Let P� be the immediate postdom

inator of F�� By the induction hypothesis� there is a path p� from F� toN that does not pass
through P�� From the base case of the induction� there is a path p� from F to F� that does not
pass through P � Now consider the path obtained by concatenating p� and p�� We will show that
P cannot occur on this path� thereby completing the inductive step� Now� P does occur on p�� If
P occurred on p�� there is a path from F� to P that does not pass through P�� a contradiction�

Therefore� we have constructed a path F
�
�N that does not pass through P � �

Corollary � If F and N are nodes in the control��ow graph� then F needs a switch for N i�

F � CD��N	�

Control dependences can be computed e�ciently using a bottom
up walk of the postdominator
tree ���� The algorithm of Figure �� uses this information to place switches�

Like switch placement� merge placement can also be computed directly from the control
�ow
graph� We will not discuss this algorithm since the algorithm in Section ��� for constructing the
data�ow graph requires only that switch placement information be available� and it computes merge
placement information as it wires up the graph�
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��� Constructing the Data�ow Graph

Given a control��ow graph� we can now construct a data�ow graph having no redundant switches�
At each nodeN we construct a source vector indexed by program variable� which we denote SVN�x��
For each node N � SVN�x� speci�es a set of pairs hM� si where M is a data�ow node and s is an
out�direction from M � Intuitively� SVN�x� represents the sources of accessx for node N � If pair
hM� si is in SVN�x�� then accessx will �ow fromM to N along a data�ow arc corresponding to out�
direction s �true or false�� If N does not need accessx� then SVN�x� � fg� For example� if accessx
�ows from conditional F along the false out�direction directly to node N � then SVN�x� � hF� falsei�
If the source node has only a single out�direction then we simply use true as the out�direction�

If N is a switch which needs accessx or a statement which refers to x� then each set SVN�x� will
have a single element� In the case where N is a join� and SVN�x� has a single element� no data�ow
merge for accessx is needed at that point� If SVN�x� has more than one element� a data�ow merge
is needed for accessx at N �

We construct a data�ow graph from a CFG as follows�

	� Insert loop�entry and loop�exit nodes into the CFG as discussed in Section 
�

�� Calculate where switches are needed for accessx using the algorithm in Figure 	��


� Calculate SVN using the algorithm in Figure 		� This calculation is analogous to building def�
use chains when every reference to a variable x� every fork which needs a switch for accessx�
v and every join of accessx is treated as both a de�nition and a use of x� It di
ers from a
simple data �ow algorithm in two ways�

�a� a non�local step is introduced to propagate information from a node which does not need
a switch for accessx to its immediate postdominator� and

�b� the basic chaining information is augmented with the out�direction of each arc�

�� Build the data�ow graph from the control��ow graph and source vector information by trans�
lating each node N according to Schema � and wiring its input arcs according to SVN �
Conditionals are translated by creating a switch for every accessx which is needed at N �
Joins are translated by creating a data�ow merge for every accessx with more than one
source� A join with a single source is equivalent to no operator�

The data�ow graph so constructed exhibits all of the data parallelism of Schema �� and gains
additional parallelism through the suppresion of redundant switches�

� Aliasing� Parallelism� and Synchronization

The possibility of aliasing is signi�cant because it means that a single memory location may be
accessed by more than one name� The set of variables that may be aliased to a given variable x is
called the alias class of x� and is denoted �x�� We formalize this notion by de�ning a structure that
speci�es the aliasing of variable names�

De�nition � If V is a set of variable names� an alias structure over V is a pair hV��i where V

is a set of variable names and the alias relation � is a re�exive� symmetric binary relation on V�
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for all N do

SVN���� f g
mark N as unvisited

worklist � fstartg
mark start as visited

while worklist not empty do

remove N from worklist

case typeof N
� N is start�

let S be the successor of N �
for each program variable x do

SVS�x�� f hN� truei g

� N is an assignment statement or loop�exit�
let S be the successor of N �
for each program variable x do

if x referenced in N then

SVS�x�� SVS�x� � f hN� truei g
else

SVS�x�� SVS�x� � SVN�x�

� N is a fork�
for each accessx needing a switch at N do

for each successor S of N along out�direction d do

SVS�x�� SVS�x� � f hN� di g

for each accessx not needing a switch at N do

SVP �x�� SVP �x� � SVN�x�
where P is the immediate postdominator of N

� N is a join or loop�entry�
let S be the successor of N �
for each variable x do

SVS�x�� SVS�x� � f hN� truei g

for each unmarked successor S of N do

if all predecessors �ignoring backedges� of S have been visited then

worklist � worklist � fSg
mark S as visited

Figure 		� Algorithm for Computing Source Vectors
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The interpretation of the alias relation is that x � y i
 x � �y�� Thus the alias relation determines
the alias class of every variable in V �

Consider the following simple example� A fortran subroutine is declared with three formal
parameters X� Y� and Z�

SUBROUTINE F�X� Y� Z�

and is called in two places�

CALL F�A� B� A�

CALL F�C� D� D�

Since all parameter passing in fortran is by reference� the formal parameters X and Y are each
aliased to Z� However� since neither call identi�es X and Y with the same location� they are not
aliased to one another� Thus the alias structure for subroutine F is given by�

�X� � fX� Zg
�Y� � fY� Zg
�Z� � fX� Y� Zg

Schema � can be generalized to account for aliasing as follows� Before a memory operation is
performed on variable x� it is necessary to ensure that all memory operations on that location have
completed� This condition can be ensured by requiring that all memory operations on any variable
in the alias class of x have completed� We implement this requirement by specifying that access
tokens for all variable names in the alias class of x must be collected before a memory operation
on x is initiated�

In our example there would be three access tokens representing variables X� Y� and Z� Memory
operations on X or Y would collect two access tokens� corresponding to the variable operated on
and Z� Memory operations on Z would collect all three access tokens�

The drawback with this simple approach is that if there is a lot of aliasing then there will be
considerable synchronization devoted to collecting access tokens� We will thus consider a re�nement
to this basic scheme which can reduce synchronization� Instead of having each access token denote
a single variable name� we allow an access token to denote an arbitrary subset of the set of variables
V �

De�nition � A cover C of an alias structure over V is a collection of subsets of V whose union

is equal to V � A member of this collection is called a cover element�

Schema 
 is parameterized by the choice of a cover C� Each access token accessc speci�es a
cover element c � C� As is illustrated in Figures 	� and 	
� a memory operation on variable x

must collect all access tokens accessc such that c � �a� �� fg� This collection of cover elements is
the access set of x� denoted C�x�� We denote the set of access tokens corresponding to the access
set of a variable x by access�x�� leaving C implicit� The entry and exit points of the data�ow graph
are considered to be a use of every variable� and thus every access token must pass through them�

In choosing a cover for a given alias structure there are two concerns� maximizing parallelism
and minimizing synchronization� It is possible to �nd a cover that maximizes parallelism and one
that minimizes synchronization� However� in general there will be no one cover that achieves both�
Choices of cover can provide a tradeo
 between parallelism and synchronization� depending on the
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particular �owgraph being considered� Since we do not as yet have a useful analysis of this tradeo�	

we will not consider such choices here	 and refer the reader to an associated technical report in
which some of these issues are discussed 
���

� Parallelizing Transformations

Up to this point	 our concern has been the translation of programs into data�ow graphs without
inserting unnecessary dependencies� In many programs	 parallelism can be enhanced by trans


formations that remove dependencies� Many of these transformations make the program more
�functional� in the sense that they are used to remove dependencies that arise because of multi


ple writes into a single memory location� In fact	 in the absence of aliasing	 memory operations
on scalars can be eliminated completely and all values can be carried on tokens	 as is usual in
implementations of functional languages on data�ow machines� We also discuss brie�y the use of

dependence analysis techniques to improve the code generated by the schemas presented so far�

��� Elimination of Memory Operations

In our data�ow schema	 all communication of values between statements is through memory� Every

statement begins by reading the values it will reference	 and ends by storing a result� The ability of
data�ow tokens to carry useful values is used only in the calculation of expressions and predicates�

Access tokens that �ow across statements are dummy tokens which carry no useful value	 but are
used only to sequence memory operations� An important optimization is to eliminate memory

operations wherever possible by passing values directly on tokens	 rather than through memory
locations� For variables that are not aliased	 this is very easy� Load and store operations are

deleted from the graph	 and values are passed on tokens from de�nitions to uses�
If we restrict our attention to unaliased scalar variables only	 this transformation has the e�ect

of converting the program into a single assignment	 functional program� It is similar in e�ect to
classical transformations like renaming	 live range splitting and conversion to static single assign

ment form� Why is this transformation so simple in our representation� Consider two de�nitions

of a variable that both reach some use� Most conventional transformations will not rename the
lefthand side variables of the two de�nitions to di�erent variables since there is no easy way of

�joining� these variables together at the use� the exception is static single assignment form which
uses �
functions for this purpose� In our representation	 the joining of values to produce a single

value is implicit in the model	 which simpli�es the transformation considerably�

��� Parallel Operations and Aliasing

Eliminating storage operations for potentially aliased variables is more di�cult� However	 some

parallelism can be exploited even for these variables� If a store to a variable x is followed sequentially
by a read from x	 with no intervening stores to any variable that could be aliased to x	 then the

value stored can be passed directly to the output of the load�
Another important category of parallelization is parallelism between memory reads� Our access

tokens enforce sequential access to memory	 which is necessary only when writes are involved�

Parallel access to memory can be allowed among any set of reads	 even to potentially aliased
variables�
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Figure ��� Parallelizing array operations

Consider a sequence of load operations� each of which receives the accessc from its predecessor
and passes it directly to its successor� The predecessor of the �rst load can safely replicate accessc
and pass it to every operation in the sequence� The replicas must be collected and passed to
the successor of the last operation in the sequence� By parallelizing maximal sequences of load
operations� read parallelism is maximized�

��� Parallelization of Array Operations

Arrays can be incorporated into the the translation schemas discussed thus far by treating
an assignment to any array location as an assignment to the entire array � in a sense� arrays
and scalar variables are treated identically� In many programs� however� standard disambiguation
techniques such as subscript analysis ���	 can be applied to programs to permit more parallelism
in the resulting code�

Consider the following loop�

start� join

i �
 i� ��
x�i	 �
 ��
if i � �� then goto start else goto end

end�

It is clear that stores to successive elements of the array x are independent� and can be executed
in parallel� However� analysis based on variable names would sequentialize them� since all require
the access token for x�

One approach to parallelizing these operations� illustrated in Figure �� is a generalization of
the method for parallelizing reads� Part 
a� shows the sequential stores to x�i	 in each iteration
of the loop unfolded into a single thread of execution� Part 
b� shows how the the access token
for x can duplicated and passed to the next iteration� After storing to x�i	� the access token must
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then be synchronized with the completion of the store in the next iteration� The duplication of
the token ensures that there is no dependence between stores in successive iterations� and the
synchronization ensures that the token is not generated at the end of the loop until all stores have
completed� Finally� part 
c� shows how this schema can be implemented in a data�ow loop�

A further enhancement of this transformation is to detect when an array is �write�once�� If
the data�ow machine has I�structure memory ��	� array reads and writes can be done concurrently�
since I�structure memory takes care of delaying premature read requests until the corresponding
writes have occurred�

This is a simple example of how array dependence information can be used to enhance par�
allelism� A more complete discussion of this issue is under preparation and will be presented
elsewhere�

� Conclusions

In this paper� we have shown that imperative languages are not wedded to von Neumann architec�
tures or to the von Neumann execution model by presenting a number of schemes for executing such
programs on a data�ow machine� The �nal scheme can generate data�ow graphs from programs
in an imperative language with unstructured �ow of control� aliased variables and arrays� making
use of sophisticated dependence information to enhance parallelism�

Veen and van den Born ���� ��	 use a method similar to our Schema � to compile a restricted
subset of the C programming language to a static data�ow architecture� They consider only struc�
tured programs with single�exit loops� For such programs� it is easy to build data�ow graphs
without redundant switches� by constructing the graph starting with the innermost control struc�
ture� In addition� their data�ow model does not allow imperative updates to memory locations�
which complicates the handling of aliased variables and arrays� Our approach does not su�er from
these problems since our memory model permits imperative updates� We believe that the essence
of the data�ow model lies in the local �ring rules that determine when an operator should execute�
not in the functional treatment of memory�

Ballance� Maccabe and Ottenstein ��	 take a di�erent approach to this problem� They start
with the program dependence graph 
PDG�� in which control and data dependencies are separated
out� and attempt to deduce information� such as switch and merge placement� that deals with the
interaction of control and data dependencies� The translation schema described in their paper ��	 is
very complex� although it is unclear to us whether this is an inevitable consequence of starting from
PDG�s or whether it is an artifact of their particular approach� The simplicity of our approach arises
from the fact that we base our translation on the control��ow graph� using dependency information
to optimize this process�

The importance of our work is not limited to the implementation of imperative languages
on data�ow architectures� Currently� compilers for imperative languages use abstract syntax trees�
control �ow graphs� and a combination of data dependence graphs and control dependence graphs to
provide complete information about the execution semantics of programs and dependences between
operations� On the other hand� many declarative language compilers use continuation passing style

CPS� as an intermediate form� Data�ow graphs synthesize these compiling technologies since
the arcs in a data�ow graph can be seen both as encodings of dependence information as well
as continuations in a parallel model of execution� Based on these ideas� we have developed the
dependence �ow graph 
DFG�� a program representation that has a parallel� executable semantics
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and can also be viewed as a data structure incorporating data dependence information� The
Typhoon project at Cornell is developing a compiler based on this representation to show its
usefulness for conventional optimizations and for parallelization�
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